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a b s t r a c t

A 2-walk is a closed spanning trail which uses every vertex at most twice. A graph is said to
be chordal if each cycle different from a 3-cycle has a chord. We prove that every chordal
planar graph Gwith toughness t(G) > 3

4 has a 2-walk.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we will consider simple, undirected graphs without loops. For concepts and notations not defined here we
refer the reader to the book [2]. A k-walk is a closed spanning trail which uses every vertex at most k times. The subgraph of
a graph G induced by a set of verticesM is denoted by 〈M〉G, andNG(x) denotes the set of all the neighbours of a vertex x in G.
The toughness of a non-complete graph is t(G) = min( |S|

c(G−S) ), where the minimum is taken over all nonempty vertex sets
S such that c(G− S) ≥ 2, where c(G− S) denotes the number of components of the graph G− S. For a complete graph Kn
we set t(Kn) = ∞. The concept of toughness was introduced by Chvátal [4] in 1973. It is obvious that a Hamiltonian graph
is 1-tough. This can be easily generalized as follows: Every graph containing a k-walk is 1k -tough.
One of the most famous conjectures concerning Hamiltonian cycles is due to Chvátal.

Conjecture 1.1 ([4]). There exists an integer t0 such that if t ≥ t0, then every t-tough graph is Hamiltonian.

Chvátal’s conjecture is known to be true for several special classes of graphs. Wemention two results on chordal graphs.
Recall that a graph is chordal if it does not contain an induced cycle of length four or more.

Theorem 1.1 ([3]). Every 18-tough chordal graph is Hamiltonian.

It is conjectured that 18 can be reduced to two in this statement [3]. Better bounds are known for chordal planar graphs.

Theorem 1.2 ([1]). Every chordal planar graph with toughness more than 1 is Hamiltonian.
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This result is the best possible. Another approach to Chvátal’s conjecture is to show the existence ofweaker substructures
than Hamilton cycles. A k-walk of G is a closed walk that visits each vertex of G at least once and at most k times. There is the
following easy necessary condition for the existence of a k-walk in a graph G: Every graph containing a k-walk is 1/k-tough.
Jackson andWormald [8] conjectured that every 1-tough graph has a 2-walk. The conjecture is still open. The best known

result is:

Theorem 1.3 ([7]). Every 4-tough graph has a 2-walk.

Motivated by these results, first we state the following conjecture which we find interesting:

Conjecture 1.2. Every 2-tough chordal graph has a 2-walk.

In this paper we prove the following theorem:

Theorem 1.4. Every chordal planar graph G with toughness greater 34 has a 2-walk.

The best known lower bound on t(G) for 2-connected chordal planar graphs Gwith a 2-walk is in [6]. The authors found
chordal planar graphs with toughness 4/7 having no 2-walk.

2. Proof of Theorem 1.4

Throughout the rest of the paper, whenever we consider a planar graph G, we always mean a fixed embedding of G into
the plane. Such a graph is called a plane graph. A vertex v of a graph G is called a simplicial vertex if the subgraph of G induced
by the neighbours of v is complete.
Before proceeding with the proof of the theorem, several useful results about chordal planar graphs are given below. The

following theorem is due to Dirac [5].

Theorem 2.1 ([5]). Every chordal graph G has a simplicial vertex v.

We will also need the following result from [1].

Theorem 2.2 ([1]). If G is an `-connected chordal graph and v is a simplicial vertex inG, then the graphG−v is either `-connected
or complete.

We will prove Theorem 1.4 by induction. Before we start the induction, we prove the following two useful lemmas.
Lemma 2.1 shows that our induction will be well defined, and Lemma 2.2 shows the way the toughness changes during the
induction.

Lemma 2.1. If G is a 2-connected chordal planar graph, then there is a sequence of graphs G0, . . . ,Gk and a sequence of sets
S0, . . . , Sk−1 such that:
(i) G0 = K3,
(ii) V (Gi+1) = V (Gi) ∪ Si, where Si ∩ V (Gi) = ∅, 〈V (Gi)〉Gi+1 = Gi, NGi+1(Si) ⊂ V (Gi) and, for every x ∈ Si, 〈NGi+1(x)〉Gi+1 is
complete, i = 0, . . . , k− 1,

(iii) Gk = G.
(iv) The integer k, the graphs Gi (i = 0, . . . , k) and the sets Si (i = 0, . . . , k−1) can be chosen so that, for every i = 0, . . . , k−1,

(A) there is a vertex vi ∈ V (Gi) such that vi is simplicial in Gi and Si ⊂ NGi+1(vi);
(B) if x ∈ Si is of degree dGi+1(x) = 3, then x lies in the inner face of the triangle 〈NGi+1(x)〉Gi+1 .

Proof. First we show that there is a sequence G0, . . . ,Gk satisfying the statements (i), (ii), (iii) and (iv-A). By Theorem 2.1,
G = Gk has at least one simplicial vertex. Let S be the set of all simplicial vertices in Gk. By Theorem 2.1, the graph G− S is
a chordal graph and there exists a simplicial vertex x in G − S. Let S ′k−1 be the set of all simplicial vertices in Gk adjacent to
x. If all the vertices in S ′k−1 are independent in Gk, then we set S

′

k−1 = Sk−1 and vk−1 = x. Otherwise there exist in S ′k−1 two
vertices u1 and u2 that are adjacent in Gk, and we set Sk−1 = {u1} and vk−1 = u2. By Theorem 2.1, the graph G− Sk−1 = Gk−1
is again chordal, and the vertex vk−1 is simplicial in Gk−1. We can repeat this procedure until we obtain K3. If we reverse this
procedure we can construct an arbitrary chordal graph from K3 such that the statements (i), (ii), (iii) and (iv-A) hold.
(B) Suppose that statement (iv-B) holds for every Gj, for 1 ≤ j ≤ i. We prove that the statement also holds for Gi+1. If not,

then there is a vertex u2 ∈ Si of degree 3, which lies in the outer face of the triangle 〈NGi+1(u2)〉Gi+1 . Note that dGi(vi) = 2.
Otherwise, we would get a contradiction with the planarity of G. Let v′, v′′ be the neighbours of vi in Gi. If u2 is the only
vertex in Si of degree 3 then we can place u1 into the inner face of the triangle 〈NGi+1(ui)〉Gi+1 . There cannot be three vertices
of degree 3 in Si, otherwise K3,3 is a subgraph of Gi+1.
Next assume that there are two vertices of degree 3, namely, u1, u2 ∈ Si+1. Since u1 and u2 are simplicial vertices in

Gi+1, we conclude that N(u1)Gi+1 = N(u2)Gi+1 = {vi, v
′, v′′}. We may assume that u1 lies in the inner face of the triangle

〈{vi, v
′, v′′}〉Gi and u2 lies in its outer face. We separate the construction step from Gi to Gi+1 into two steps Gi to G

′

i and
G′i to G

′

i+1, in such a way that the statement (iv-B) will hold. That is, we define S
′

i = {u2} and G
′

i+1 = 〈V (Gi) ∪ {u2}〉Gi+1 .
Additionally, we define S ′i+1 = Si \ {u2}. We connect vertices from S

′

i+1 with vertices in G
′

i+1 as in Gi+1, but every vertex will
be incident with u1 instead of vi. Now Gi+1 ∼= G′i+2. See Fig. 1. �
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Fig. 1. Modification of construction.

Let G be a 2-connected chordal planar graph, and let G0, . . . ,Gk and S0, . . . , Sk−1 be any sequences of graphs and sets,
respectively, satisfying the conditions of Lemma 2.1. We say that the sequence (G0, . . . ,Gk; S0, . . . , Sk−1) is a convenient
construction of G and, for any x ∈ Si, i = 0, . . . , k− 1, a vertex vi with the properties given in part (iv-A) of Lemma 2.1 will
be said to be a parent of the vertex x, denoted vi = p(x). From Lemma 2.1, it is obvious that every vertex, except vertices
in G0, has exactly one parent. Furthermore, the vertex vi is the parent of all vertices in Si and there are no other vertices in
G such that vi is their parent. If p(x) 6∈ V (G0) then we write p2(x) to denote the parent of the parent of a vertex x. More
generally, if pj−1 6∈ V (G0) for some j ≥ 2, then we write pj(x) = p(pj−1(x)).
In the rest of the paper we use the following notation: For an arbitrary nonsimplicial vertex u in a graph Gi from a

convenient construction, we define an integer ϕ(u), 0 ≤ ϕ(u) < k, as the integer such that u is simplicial in Gϕ(u) and
is not simplicial in Gϕ(u)+1 (i.e., we added some new simplicial vertices into the neighbourhood of u).
It is clear that for every vertex u from G, except the three vertices in G0, the construction step ϕ(p(u)) is exactly the step

in which vertex uwas added into the graph Gϕ(p(u)). Therefore, u ∈ Sϕ(p(u)), for every u ∈ V (G) \ V (G0).

Lemma 2.2. If (G0, . . . ,Gk; S0, . . . , Sk−1) is a convenient construction of a t-tough chordal planar graph G, then each graph Gi
for 0 ≤ i ≤ k− 1, is also t-tough.

Proof. Let Gj be a graph from the convenient construction where 0 < j ≤ k. If there is a set of vertices P such that
ω(Gj − P) < ω(Gj−1 − P), then there are two components C1, C2 of Gj−1 − P such that both C1 and C2 are in the same
component of Gj − P . We get Gj by adding new simplicial vertices to Gj−1. There must be a simplicial vertex v in Gj which
has two neighbours v1, v2, such that v1 ∈ C1 and v2 ∈ C2. This is a contradiction because v1 and v2 are not adjacent, which
contradicts the fact that v is a simplicial vertex.
Hence for any subset of vertices P , ω(Gj − P) ≥ ω(Gj−1 − P). Therefore, if Gj is t-tough, Gj−1 is also t-tough. �

The following definitions will be useful in the proof of Theorem 1.4. If a graph G has a 2-walk T , then we can define, for
every vertex v in G, the multiplicity of v in T as: mT (v) = 1 if v is used once in the 2-walk T , and mT (v) = 2 if v is used
twice in the 2-walk T . For every vertex v with multiplicity mT (v) = 1, the predecessor of the vertex v in the 2-walk T will
be denoted v−T and the successor of v in T will be denoted v+T . Note that possibly v+T = v−T . Also, for every vertex v with
multiplicitymT (v) = 1, we define eT (v) = |{v+T , v−T }|.
Let G be a 2-connected chordal planar graph, and let (G0, . . . ,Gk; S0, . . . , Sk−1) be its convenient construction. We say

that a 2-walk Ti in a graph Gi (0 ≤ i ≤ k) is a good 2-walk if there exists a sequence of 2-walks T0, . . . Ti such that, Tj is a
2-walk in Gj, 0 ≤ j ≤ i, with the following properties.
For every simplicial vertex x in Gi, different from vertices in G0, we have

(i) mTi(x) = 1.
(ii) If |Sϕ(x)| < 4 then x+Ti = p(x) or x

−

Ti
= p(x).

(iii) If dGi(x) = 3 and eTi(x) = 1 then dGϕ(p(x))(p(x)) = 3 and
(A) eTϕ(p(x))(p(x)) = 1 and p

2(x) 6∈ NGi(x) or
(B) eTϕ(p(x))(p(x)) = 2 and in the set Sϕ(p(x)) there are three vertices of degree 3 in the graph Gϕ(p(x))+1 (x is one of them)
or

(C) eTϕ(p(x))(p(x)) = 2 and x
+

Ti
6= p(x) and x−Ti 6= p(x).

(iv) If dGi(x) = 3, eTi(x) = 2,mTi(p(x)) = 2 and x
−

Ti
x+Ti 6∈ E(Ti), then either:

(A) dGϕ(p(x))(p(x)) = 2 and |Sϕ(p(x))| = 2, or
(B) dGϕ(p(x))(p(x)) = 3 and either
• |Sϕ(p(x))| ≥ 3 or
• |Sϕ(p(x))| = 2 and there is a vertex x′ ∈ Sϕ(p(x)), x′ 6= x, such that either
– |Sϕ(x′)| = 4 or
– NGϕ(x′)

(x′) ⊆ NGi(x).
(v) Subject to the properties (i)–(iv), the number of simplicial vertices of degree 3 with eTi = 2 is maximal.
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Fig. 2. Construction of a 2-walk in Cases 1 and 2.

Next we proceed with a crucial lemma. We prove this lemma using a induction and all the properties of a good 2-walk
will be needed. In most of the cases we get a 2-walk in Gi+1 only by local extensions of a good 2-walk in Gi. This would not
be possible if we assumed that Gi had only a 2-walk.

Lemma 2.3. Let G be a chordal planar graph with toughness greater than 34 . Let (G0, . . . ,Gr; S0, . . . , Sr−1) be a convenient
construction of G. If for some i with 0 ≤ i ≤ r − 1, all graphs G` have good 2-walks T`, for ` = {0, 1, . . . , i}, then the graph Gi+1
has a good 2-walk Ti+1.

Proof. Since Gi is a chordal planar graph with toughness greater than 34 , all simplicial vertices in Gi have degree 2 or 3. Let
v be a simplicial vertex in Gi such that all vertices uj ∈ Si are incident with v in Gi+1.

Case 1. d(v) = 2, |Si| = 2 and eTi(v) = 2.
Let u1, u2 ∈ Si. Suppose first that NGi+1(u1) = NGi+1(u2). Due to Lemma 2.1, statement (iv-B), and planarity of Gi+1,

dGi+1(u1) = dGi+1(u2) = 2. Let NGi+1(u1) = NGi+1(u2) = X . Then the graph Gi+1 − X must have at least three components —
a contradiction with the toughness of Gi+1. Hence NGi+1(u1) 6= NGi+1(u2).
Since eTi(v) = 2, we may assume that v, v−Ti ∈ NGi+1(u1) and v, v+Ti ∈ NGi+1(u2). Hence the subgraph 〈NGi+1(v)〉Gi+1 has

the structure shown in Fig. 2. We get Ti+1 as follows: we remove from Ti the walk v−Ti v v+Ti and replace it with the walk
v−Ti u1 v u2 v+Ti .
Clearly the 2-walk Ti+1 meets conditions (i), (ii) and (v) of a good 2-walk. Note that p(u1) = p(u2) = v. Since

eTi+1(u1) = eTi+1(u2) = 2 and mTi+1(v) = 1, the 2-walk Ti+1 also trivially satisfies conditions (iii) and (iv) of a good 2-
walk. Hence Ti+1 is a good 2-walk in Gi+1 (see Fig. 2).

Case 2. d(v) = 2, |Si| = 2 and eTi(v) = 1.
Set Si = {u1, u2}. As in the proof of Case 1,NGi+1(u1) 6= NGi+1(u2). Since eTi(v) = 1, wemay assume that v, v−Ti ∈ NGi+1(u1)

and dGi+1(u2) = 2. Hence the subgraph 〈NGi+1(v)〉Gi+1 has the structure shown in Fig. 2. We get Ti+1 as follows: we remove
v−Ti v v+Ti from Ti and replace it with v−Ti u1 v u2 v v+Ti .
Clearly, the 2-walk Ti+1meets conditions (i), (ii) and (v) of a good2-walk. Note that p(u1) = p(u2) = v. Since eTi+1(u1) = 2

and dGi+1(u2) = 2, the 2-walk Ti+1 also trivially satisfies condition (iii) of a good 2-walk. Furthermore, mTi+1(v) = 2 but
dGϕ(v)

(v) = 2 and |Sϕ(v)| = 2, therefore Ti+1 meets condition (iv) as well. Hence Ti+1 is a good 2-walk in Gi+1 (see Fig. 2).

Case 3. d(v) = 2 and |Si| 6= 2.
Then |Si| = 1, otherwise we would get a contradiction with the toughness of Gi+1. We get a 2-walk Ti+1 in a similar way

as in Case 1 or 2. Observe that if the vertex u1 ∈ Si has degree 3 in Gi+1, there always exists a 2-walk Ti+1 in Gi+1 such that
eTi+1(u1) = 2. Hence, there always exists a good 2-walk Ti+1.

Case 4. d(v) = 3 and |Si| ≤ 3.
Similarly as in Case 1, for every ua 6= ub from the set Si, NGi+1(ua) 6= NGi+1(ub).

Subcase 4.1. There is at most one vertex u ∈ Si such that {v−Ti , v
+

Ti
} ∩ NGi+1(u) = ∅.

We prove the existence of a good 2-walk Ti+1 in Gi+1 separately for |Si| = 3, |Si| = 2 and |Si| = 1.
Subcase 4.1.1: |Si| = 1.
Let Si = {u1}. Note that the vertex u1 is adjacent in Gi+1 to v and one or two vertices in NGi(v).

• u1 is adjacent to v−Ti or v
+

Ti
in Gi+1.

Without loss of generality, we may assume that u1 is adjacent to v−Ti . If not, then change the orientation of Ti. We get
Ti+1 as follows: we remove v−Ti v from Ti and we replace it with v−Ti u1 v. Observe that eTi+1(u1) = 2 and mTi+1(v) = 1.
Clearly, Ti+1 is a good 2-walk in Gi+1.
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Fig. 3. Construction of a 2-walk in Case 4.1.3.

• u1 is not adjacent to v−Ti and v+Ti in Gi+1
We get Ti+1 as follows: we remove v−Ti v v+Ti from Ti and we replace it with v−Ti v u1 v v+Ti . Observe that eTi+1(u1) = 1

and mTi+1(v) = 2. Clearly, the 2-walk Ti+1 meets conditions (i), (ii), (iv) and (v) of a good 2-walk. If dGi+1(u1) = 3 then
v−Ti = v+Ti . Hence eTi(v) = 1 and Ti+1 meets condition (iii) as well.

Subcase 4.1.2: |Si| = 2.
Let Si = {u1, u2}. Due to the assumption of Subcase 4.1, u1 or u2 is adjacent to v−Ti or v

+

Ti
in Gi+1. Without loss of generality,

we may assume that u1 is adjacent to v−Ti . Otherwise, we change the orientation of Ti. We distinguish two cases.

• u2 is adjacent in Gi+1 to v+Ti .
We get Ti+1 as follows: we remove v−Ti v v+Ti from Ti and we replace it with v−Ti u1 v u2 v+Ti . Observe that eTi+1(u1) = 2,

eTi+1(u2) = 2 andmTi+1(v) = 1. Clearly, Ti+1 is a good 2-walk in Gi+1.
• u2 is not adjacent to v+Ti .

We may assume that, if u2 is adjacent to v−Ti then dGi+1(u1) = 3, otherwise we relabel vertices in Si. Note that, in this
case, both vertices u1 and u2 cannot have degree 2 in Gi+1, otherwise we would get a contradiction with the toughness of
Gi+1.We get Ti+1 as follows:we remove v−Ti v v+Ti from Ti andwe replace itwith v−Ti u1 v u2 v v+Ti . Observe that eTi+1(u1) = 2,
eTi+1(u2) = 1 andmTi+1(v) = 2. Clearly, the 2-walk Ti+1 meets conditions (i), (ii) and (v) of a good 2-walk.
Note that dGi+1(u2) = 3 only if v

−

Ti
= v+Ti . Hence eTi(v) = 1 and Ti+1 meets condition (iii) of a good 2-walk.

Recall that eTi+1(u1) = 2 andmTi+1(p(u1)) = 2. Now, we distinguish two cases.
(A) v−Ti = v+Ti .

Observe that u1+Ti+1 = v and u1−Ti+1 = v+Ti = v−Ti . Since the edge v v+Ti ∈ E(Ti+1), Ti+1 meets condition (iv) of a good
2-walk.

(B) v−Ti 6= v+Ti .
Since dGi+1(u1) = 3 and vertex u2 is not adjacent to v+Ti , dGi+1(u2) = 2. Moreover, NGi+1(u2) ⊆ NGi+1(u1). Hence

Ti+1 meets condition (iv) of a good 2-walk.

Subcase 4.1.3: |Si| = 3.
Let Si = {u1, u2, u3}. There are no vertices va, vb ∈ NGi(v) such that NGi+1(Si) = {va, vb, v} since otherwise the graph

Gi+1 − {v, va, vb} has exactly four components — a contradiction with the toughness of Gi+1. In other words, it means that
|NGi+1(Si)| = 4.
Now we can rename the vertices in Si such that v−Ti ∈ NGi+1(u1) and v+Ti ∈ NGi+1(u3). Moreover, if eTi(v) = 2, we may

assume that if there is a vertex in Si of degree 2 in Gi+1 then it is the vertex u2. If eTi(v) = 1, then we rename vertices in such
a way that dGi+1(u2) = 3 if and only if u2 is not adjacent to v−Ti = v+Ti in Gi+1.
Now the subgraph 〈NGi+1(v)〉Gi+1 has the structure shown in Fig. 3. We get Ti+1 as follows: we remove v−Ti v v+Ti from Ti

and we replace it with v−Ti u1 v u2 v u3 v+Ti .
Clearly, the 2-walk Ti+1meets conditions (i), (ii) and (v) of a good 2-walk. Note that p(u1) = p(u2) = v and eTi+1(u2) = 1.

Vertex u2 has degree 3 in Gi+1 if and only if either

(A) eTi(v) = 1 and u2 is not adjacent to p2(x) = v−Ti = v+Ti in Gi+1 or
(B) eTi(v) = 2 and dGi+1(u1) = dGi+1(u2) = dGi+1(u3) = 3.

Hence the 2-walk Ti+1 also satisfies condition (iii) of a good 2-walk. Furthermore, mTi+1(v) = 2 but dGϕ(v)
(v) = 3 and

|Sϕ(v)| = 3, therefore Ti+1 meets (iv) as well. Hence Ti+1 is a good 2-walk in Gi+1 (see Fig. 3).
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Fig. 4. Subcase 4.2.

Fig. 5. Case 5.

Note that we proved a slightly stronger statement. One vertex, let us say u2, from Si has eTi+1(u2) = 1. If eTi(v) = 2 and all
the vertices in Si have degree 3 in Gi+1, then we can choose the vertex u2 from Si arbitrarily. Hence we can get three different
good 2-walks in Gi+1. Since we use this observation later, we state it as a claim.

Claim 2.1. Under the assumption of Subcase 4.1.3, if eTi(v) = 2 and dGi+1(u1) = dGi+1(u2) = dGi+1(u3) = 3, there exist three
different good 2-walks Ti+1, T ′i+1 and T

′′
i+1 in Gi+1 such that eTi+1(u2) = 1, eT ′i+1(u1) = 1 and eT ′′ i+1(u3) = 1.

Subcase 4.2. There are um, un ∈ Si such that {v−Ti , v
+

Ti
} ∩ NGi+1(um) = ∅ and {v−Ti , v

+

Ti
} ∩ NGi+1(un) = ∅.

Now eTi(v) = 1 and the subgraph 〈NGi+1(v)〉Gi+1 has the structure shown in Fig. 4. In this case we cannot simply extend
the good 2-walk Ti on the new vertices in Si. We postpone the proof of this subcase. Later, together with Subcase 5.2, and
after Subcase 5.1, we show that there exists a good 2-walk T ∗i in Gi, such that eT∗i (v) = 2. Then we transform Subcase 4.2
back to Subcase 4.1.

Case 5. d(v) = 3 and |Si| ≥ 4.
Now |Si| = 4, otherwise we would get a contradiction with the toughness of Gi+1. As in Case 1, NGi(ua) 6= NGi(ub), for

every ua, ub ∈ Si.
If S ′i is an arbitrary subset of Si, such that |S

′

i | = 3, then there is no vertex v′ ∈ NGi(v), such that {v′} ∩ NGi+1(Si) = ∅.
If not, then for the set X = {v} ∪ NGi(v) \ {v′} we have |X | = 3 and the graph Gi+1 − X has exactly four components — a
contradiction with the toughness of Gi+1. The subgraph 〈NGi+1(v)〉Gi+1 has the structure shown in Fig. 5 (up to a symmetry).
Subcase 5.1. eTi(v) = 2.
Let Si = {u1, u2, u3, u4}. We first prove thatmTi(p(v)) = 1 or the edge v−Ti v

+

Ti
is in the 2-walk Ti in Gi.

Suppose to the contrary thatmTi(p(v)) = 2 and v−Ti v
+

Ti
6∈ E(Ti). Due to the properties of a good 2-walk Ti (property (iv)),

we have the following cases:

(A) dGϕ(p(v))
(p(v)) = 2 and |Sϕ(p(v))| = 2.

If X = NGi(v) ∪ {v}, then |X | = 4 and the graph Gi+1 − X has at least six components, namely, four isolated vertices
from Si, one component with the other vertex from Sϕ(p(v)) and the rest of the graph. This contradicts the toughness of
Gi+1.

(B) dGϕ(p(v))
(p(v)) = 3 and

• |Sϕ(p(v))| ≥ 3.
If X = NGϕ(p(v))

(p(v)) ∪ {v, p(v)}. |X | = 5, then the graph Gi+1 − X has at least seven components, namely, four
isolated vertices from Si, two components each containing a vertex from Sϕ(p(v)) different from v, and the rest of the
graph. This contradicts the toughness of Gi+1.
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Fig. 6. Construction of a 2-walk when |Si| = 4 andmTi (p(v)) = 1.

• |Sϕ(p(v))| = 2 and there is a vertex v′ ∈ Sϕ(p(v)), v′ 6= v, such that
– |Sϕ(v′)| = 4.

If X = NGϕ(p(v))
(p(v)) ∪ {v, v′, p(v)}, then |X | = 6 and the graph G − X has at least nine components, namely,

four isolated vertices from Si, four components each containing a vertex from Sϕ(v′), and the rest of the graph. This
contradicts the toughness of Gi+1.

– NGϕ(v′)
(v′) ⊆ NGi(v).

If X = NGi+1(v) ∪ {v}, then |X | = 4 and the graph G − X has at least six components, namely, four isolated
vertices from Si, one component with v′ and the rest of the graph. This contradicts the toughness of G.

Therefore,mTi(p(v)) = 1 or the edge v−Ti v
+

Ti
is in the 2-walk Ti in Gi. We obtain a good 2-walk Ti+1 as follows:

• IfmTi(p(v)) = 1, then we choose orientation of Ti, such that p(v) = v−Ti (see the property of a good 2-walk (ii)). We label
vertices in Si such that, if there is a vertex of degree 2 adjacent to v−Ti in Gi+1, then we name this vertex u1, and then we
rename the rest of Si such that v−Ti ∈ NGi+1(u2), v

+

Ti
∈ NGi+1(u4) and u3 is the remaining vertex. We may assume that

dGi+1(u2) = 3 and dGi+1(u4) = 3.
If there is no vertex of degree 2 adjacent to v−Ti inGi+1, thenwe take an arbitrary vertex from Si of degree 3 inGi+1, which

is incident with v−Ti in Gi+1, and we label this vertex u1. Rename the rest of Si such that v
−

Ti
∈ NGi+1(u2), v

+

Ti
∈ NGi+1(u4)

and u3 is the remaining vertex. Note that the degree of u3 is 2 in Gi+1.
We get Ti+1 as follows : we remove v−Ti vv+Ti from Ti and we replace it with v−Ti u1v

−

Ti
u2vu3vu4v+Ti .

Since |Si| = 4, Ti+1 meets conditions (i), (ii) and (v) of a good 2-walk. Note that p(u1) = p(u2) = v and
eTi+1(u1) = eTi+1(u3) = 1. If dGi+1(u1) = 2, then dGi+1(u3) = 3 if and only if dGi+1(u2) = dGi+1(u3) = dGi+1(u4) = 3.
If dGi+1(u1) = 3, then dGi+1(u3) = 2. Therefore, the 2-walk Ti+1 satisfies either condition (iii-B) or condition (iii-C) of a
good 2-walk. Furthermore,mTi+1(v) = 2 and dGϕ(v)

(v) = 3, but |Sϕ(v)| = 4. Therefore Ti+1 meets (iv) as well. Hence Ti+1
is a good 2-walk in Gi+1.
• IfmTi(p(v)) = 2 and the edge v−Ti v

+

Ti
is in the 2-walk Ti in Gi, then we have the following cases:

(A) If there is a vertex ua in Si such that {v−Ti , v
+

Ti
} ⊂ NGi+1(ua), then we relabel vertices in Si in the following way:

u1 = ua, v−Ti ∈ NGi+1(u2), v
+

Ti
∈ NGi+1(u4) and u3 is the remaining vertex. Clearly, the degree of u1 is 3 in Gi+1 and we may

assume that dGi+1(u3) = 2. We obtain Ti+1 as follows: we remove v−Ti v
+

Ti
and v+Ti vv−Ti from Ti and we replace it by v−Ti u1v

+

Ti
and v+Ti u2vu3vu4v

−

Ti
.

Clearly, the 2-walk Ti+1meets conditions (i), (ii) (iv) and (v) of a good 2-walk. Note that eTi+1(u3) = 1but dGi+1(u3) = 2.
Therefore the 2-walk Ti+1 satisfies condition (iii) of a good 2-walk. Hence Ti+1 is a good 2-walk in Gi+1.
(B) If there is no vertex ua in Si such that {v−Ti , v

+

Ti
} ⊂ NGi+1(ua), then every vertex in Si is adjacent to either v+Ti or

v−Ti in Gi+1. Moreover, due to the toughness condition, there are exactly two vertices from Si adjacent to v+Ti in Gi+1 and
the other two vertices in Si are adjacent to v−Ti in Gi+1. Relabel vertices from Si in the following way: v

−

Ti
∈ NGi+1(u1),

v+Ti ∈ NGi+1(u2), v
+

Ti
∈ NGi+1(u3) and v−Ti ∈ NGi+1(u4). We obtain Ti+1 as follows: we remove v−Ti v

+

Ti
and v+Ti , v, v−Ti from Ti

and we replace it by v−Ti u1vu2v
+

Ti
and v+Ti u3vu4v

−

Ti
.

Observe that eTi+1(u1) = 2, eTi+1(u2) = 2, eTi+1(u3) = 2, eTi+1(u4) = 2 and mTi+1(v) = 2. Since |Si| = 4, the 2-walk
Ti+1 satisfies all the conditions (i)–(v) of a good 2-walk.

See examples of 2-walk Ti+1 in Gi+1, formTi(p(v)) = 1, in Fig. 6 and, formTi(p(v)) = 2, in Fig. 7.
Before we move to another subcase, we summarize when a vertex from Si, let us say u3, has dGi+1(u3) = 3 and

eTi+1(u3) = 1. It happens only ifmTi(p(v)) = 1 in the two following cases.
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Fig. 7. Construction of a 2-walk when |Si| = 4 andmTi (p(v)) = 2.

• There is a vertex u1 ∈ Si of degree 2 in Gi+1 adjacent to v−Ti = p(v).
See that, eTi+1(u3) = 1 if and only if all the vertices in Si, except for u1, have degree 3 in Gi+1. Now we can choose the

vertex u3, with eTi+1(u3) = 1, arbitrarily from Si \ {u1}. Hence we can get three different good 2-walks in Gi+1. Since we
use this observation later, we state it as a claim.

Claim 2.2. Under the assumption of Subcase 5.1, if mTi(p(v)) = 1 and there is a vertex u1 ∈ Si of degree 2 in Gi+1 adjacent to
v−Ti = p(v) and dGi+1(u2) = dGi+1(u3) = dGi+1(u4) = 3, there exist three different good 2-walks Ti+1, T

′

i+1 and T
′′
i+1 in Gi+1 such

that eTi+1(u3) = 1, eT ′i+1(u2) = 1 and eT ′′ i+1(u4) = 1.

• There is no such vertex (i.e., vertex from Si of degree 2 in Gi+1 and adjacent to v−Ti = p(v)).
See that, there are two vertices, let us say u1, u2 ∈ Si, adjacent to v−Ti = p(v) in Gi+1 and dGi+1(u1) = dGi+1(u2) = 3.

Clearly, either eTi+1(u1) = 1 and eTi+1(u2) = 2, or eTi+1(u1) = 2 and eTi+1(u2) = 1. Hence we can get two different good
2-walks in Gi+1. We also use this observation later.

Claim 2.3. Under the assumption of Subcase 5.1, if mTi(p(v)) = 1 and there is no vertex of degree 2 in Gi+1 from Si adjacent to
v−Ti = p(v), then there are two vertices u1, u2 ∈ Si, dGi+1(u1) = dGi+1(u2) = 3, adjacent to v−Ti = p(v) in Gi+1. Then there exist
two different good 2-walks Ti+1 and T ′i+1 in Gi+1 such that eTi+1(u1) = 1 and eT ′i+1(u2) = 1.

Subcase 5.2. eTi(v) = 1.
In this case we cannot simply extend the good 2-walk Ti on the new vertices in Si. Due to property (i) of a good 2-walk,

we should use vertex v more than twice, which is impossible. So we need to show that there exists a good 2-walk T ∗i in Gi,
such that eT∗i (v) = 2. Then we transform Subcase 5.2 to Subcase 5.1. This will be done together with Subcase 4.2.

Claim 2.4. Let W be the class of all good 2-walks in Gi. Under the assumptions of Subcase 4.2 or 5.2 there exists a good 2-walk
T ∗i ∈ W, such that eT∗i (v) = 2.

Proof. Suppose, to the contrary, that for every good 2-walk Ti fromWeTi(v) = 1. In the graphG0, any vertex x has eT0(x) = 2.
Thus there is an integer k such that the vertex pk(v) exists and satisfies

eT
ϕ(pk(v))

(pk(v)) = 2.

Suppose that the good 2-walk Ti ∈ W is chosen such that the integer k is the smallest possible.
Denote the vertices pj(v) aswj, denote the graphsGϕ(pj(v)) asG

′

j , denote the sets Sϕ(pj(v)) as S
′

j , and denote thewalks Tϕ(pj(v))

as T ′j , for j = {1, . . . , k}.
Due to property (iii) of a good 2-walk, we have:

dG′j (wj) = 3, j = {1, . . . , k}

eT ′j (wj) = 1, j = {1, . . . , k− 1}

wj+2 6∈ NG′j (wj), j = {1, . . . , k− 2}.

Since eT ′k(wk) = 2 and eT ′k−1(wk−1) = 1, there are three vertices in S ′k of degree 3 in G
′

k−1. We will call the path
v, w1, . . . , wk a critical path (i.e., a critical path is a path starting at a vertex v, v satisfying the assumption of Subcase 4.2
or 5.2, and ending at a vertex wk, eTϕ(wk)

(wk) = 2, where p(wi) = wi+1). Now we consider two cases: (A) |S ′k| = 3 and (B)
|S ′k| = 4.
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Fig. 8. Example of three critical paths ending at vertexwk; Case (A).

(A) If |S ′k| = 3, then all the vertices in S
′

k have degree 3 inG
′

k−1. Let S
′

k = {wk−1, w
′

k−1, w
′′

k−1} and letNG′k(wk) = {x1, x2, x3},
NG′k−1(wk−1) = {wk, x1, x2},NG′k−1(w

′

k−1) = {wk, x1, x3},NG′k−1(w
′′

k−1) = {wk, x2, x3}. Using Claim 2.1, we can choose another
good 2-walk T ∗k−1 such that either eT∗k−1(w

′

k−1) = 1 or eT∗k−1(w
′′

k−1) = 1. Clearly eT∗k−1(wk−1) = 2 and therefore, we cannot
obtain any critical path starting at the vertex v in Gi+1. If not, then such a critical path would end at the vertex wk−1 at the
latest, which is impossible due to our choice of Ti. We need to show that for such a T ∗k−1 there exists a good 2-walk T

∗

i in Gi,
i.e. we will not get any critical path ending at vertex wk in some graph G`, for 1 < ` ≤ i. Recall that we can choose T ∗k−1 in
G′k−1 such that either eT∗k−1(w

′

k−1) = 1 or eT∗k−1(w
′′

k−1) = 1.
Assumeotherwise, i.e., for both choices of T ∗k−1 inG

′

k−1weobtain a critical path ending at the vertexwk. If eT∗k−1(w
′

k−1) = 1,
then we denote this critical path v′, w′1, . . . , w

′
a, wherew′a = wk andw′a−1 = w′k−1. If eT∗k−1(w

′′

k−1) = 1, then we denote the
critical path v′′, w′′1 , . . . , w

′′

b , where w′′b = wk and w′′b−1 = w′′k−1. Observe that all the vertices v′, w′1, . . . , w
′

a−1 lie inside
the triangle wk, x1, x3 and the vertex v′ is adjacent to w′1, x1 and x3 in Gϕ(v′). Similarly, all the vertices v′′, w′′1 , . . . , w

′

b−1 lie
inside the triangle wk, x2, x3 and the vertex v′′ is adjacent to w′′1 , x2 and x3 in Gϕ(v′′). Recall that the original critical path
v, w1, . . . , wk lies inside the trianglewk, x1, x2 and the vertex v is adjacent tow1, x1 and x2 in Gi.
Now we show that Gi+1 must have toughness less than or equal to 34 . We define a set of vertices X as follows. X =

NG′k(wk) ∪ {v, v′, v′′}. If v satisfies the assumptions of Subcase 5.2, add the vertex w1 into the set X . If v′ or v′′ satisfy the
assumptions of Subcase 5.2, add the vertexw′1 orw

′′

1 into the set X . If we remove X from G, then the number of components
of G−X will be greater than 43 |X |, which contradicts the toughness of G (see Fig. 8). Hence, we can obtain atmost two critical
paths ending at the vertexwk. Therefore we can choose T ∗k−1 in G

′

k−1 such that in the graph Gi there exists a good 2-walk T
∗

i
with eT∗i (v) = 2.
(B) If |S ′k| = 4. Let NG′k(wk) = {p(wk), x2, x3} and NG′k−1(wk−1) = {p(wk), wk, x2}. First we show that v satisfies only the

assumption of Subcase 4.2.
Assume otherwise, i.e., v satisfies the assumption of Subcase 5.2.We define a set X as follows : X = NG′k(wk)∪{wk, v, w1}.

Then |X | = 6 becausewk is a simplicial vertex of degree 3 inG′k. GraphGi+1−X must have at least eight components, namely
isolated vertices from Si, three components, each containing a vertex from S ′k, and the rest of the graph. This contradicts the
toughness assumption.
There are two possible ends of the critical path at vertexwk. One possible end is that (wk−1)−T ′k−1

= wk. The second is that

(wk−1)
−

T ′k−1
= p(wk) (see Fig. 9).

The first case is similar to case (A) (i.e., |S ′k| = 3), hence the proof is also similar (just instead of using Claim 2.1 we use
Claim 2.2). Consider the second case. Since dG′k−1(wk) = 3 and (wk−1)

−

T ′k−1
= p(wk), we can use Claim 2.3. Therefore, there

exists another good 2-walk T ∗k−1 in G
′

k+1, different from T
′

k−1. Clearly eT∗k−1(wk−1) = 2 and therefore, we cannot obtain any
critical path starting at the vertex v in Gi+1. Otherwise, such a critical path would end at the vertexwk−1 at the latest, which
is impossible due to our choice of Ti. We need to show that for such T ∗k−1 there exists a good 2-walk T

∗

i in Gi, i.e., that we will
not get any critical path ending at vertexwk in some graph G`, for 1 < ` ≤ i.
Assume otherwise, i.e., for the good 2-walk T ∗k−1 in G

′

k−1 we obtain a critical path ending at wk in the graph G`. Let
v′, w′1, . . . , w

′
a be this critical path, wherew′a = wk, andw′a−1 = w′k−1. Similarly as for v, v

′ satisfies only the assumption of
Subcase 4.2. Observe that all the vertices v′, w′1, . . . , w

′

a−1 lie inside the triangle wk, p(wk), x3 and the vertex v′ is adjacent
to w′1, wk and x3 in Gϕ(v′). Recall that the original critical path v, w1, . . . , wk lies inside the triangle wk, p(wk), x2 and the
vertex v is adjacent tow1, wk and x2 in Gi.
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Fig. 9. Examples of two different critical paths in Case (B).

Fig. 10. Two critical paths ending at vertexwk; Case (B).

Note that the graph G − {v′, wk, x3} has four components, namely two isolated vertices from the set S`, one isolated
vertex from the set S ′k and the rest of the graph — a contradiction with the toughness assumption (see Fig. 10). Hence, we
cannot obtain a critical path ending at the vertexwk. Therefore, for the good 2-walk T ∗k−1 in G

′

k−1, there exists a good 2-walk
T ∗i in Gi with eT∗i (v) = 2. �

At this stage we have finished the proof of Subcases 4.2 and Subcase 5.2. It follows that we have finished the proof of
Lemma 2.3, since we have discussed all possible sets Si. �
Since the graph K3 has a 2-walk, proof of Theorem 1.4 follows immediately from Lemma 2.3.
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