On 2-walks in chordal planar graphs ${ }^{\text {* }}$

Jakub Teska*
Department of Mathematics, University of West Bohemia and Institute for Theoretical Computer Sciences, Univerzitní 8, 30614 Plzeň, Czech Republic School of Information Technology and Mathematical Sciences, University of Ballarat, VIC 3353, Australia

A R TICLE INFO

Article history:

Received 14 November 2007
Received in revised form 14 November 2008
Accepted 18 November 2008
Available online 6 January 2009

Keywords:

2-walk
Toughness
Chordal planar graph

Abstract

A 2-walk is a closed spanning trail which uses every vertex at most twice. A graph is said to be chordal if each cycle different from a 3 -cycle has a chord. We prove that every chordal planar graph G with toughness $t(G)>\frac{3}{4}$ has a 2 -walk.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we will consider simple, undirected graphs without loops. For concepts and notations not defined here we refer the reader to the book [2]. A k-walk is a closed spanning trail which uses every vertex at most k times. The subgraph of a graph G induced by a set of vertices M is denoted by $\langle M\rangle_{G}$, and $N_{G}(x)$ denotes the set of all the neighbours of a vertex x in G. The toughness of a non-complete graph is $t(G)=\min \left(\frac{|S|}{c(G-S)}\right)$, where the minimum is taken over all nonempty vertex sets S such that $c(G-S) \geq 2$, where $c(G-S)$ denotes the number of components of the graph $G-S$. For a complete graph K_{n} we set $t\left(K_{n}\right)=\infty$. The concept of toughness was introduced by Chvátal [4] in 1973. It is obvious that a Hamiltonian graph is 1 -tough. This can be easily generalized as follows: Every graph containing a k-walk is $\frac{1}{k}$-tough.

One of the most famous conjectures concerning Hamiltonian cycles is due to Chvátal.
Conjecture 1.1 ([4]). There exists an integer t_{0} such that if $t \geq t_{0}$, then every t-tough graph is Hamiltonian.
Chvátal's conjecture is known to be true for several special classes of graphs. We mention two results on chordal graphs. Recall that a graph is chordal if it does not contain an induced cycle of length four or more.

Theorem 1.1 ([3]). Every 18-tough chordal graph is Hamiltonian.

It is conjectured that 18 can be reduced to two in this statement [3]. Better bounds are known for chordal planar graphs.
Theorem 1.2 ([1]). Every chordal planar graph with toughness more than 1 is Hamiltonian.

[^0]This result is the best possible. Another approach to Chvátal's conjecture is to show the existence of weaker substructures than Hamilton cycles. A k-walk of G is a closed walk that visits each vertex of G at least once and at most k times. There is the following easy necessary condition for the existence of a k-walk in a graph G : Every graph containing a k-walk is $1 / k$-tough.

Jackson and Wormald [8] conjectured that every 1-tough graph has a 2-walk. The conjecture is still open. The best known result is:

Theorem 1.3 ([7]). Every 4-tough graph has a 2-walk.
Motivated by these results, first we state the following conjecture which we find interesting:
Conjecture 1.2. Every 2-tough chordal graph has a 2-walk.
In this paper we prove the following theorem:
Theorem 1.4. Every chordal planar graph G with toughness greater $\frac{3}{4}$ has a 2 -walk.
The best known lower bound on $t(G)$ for 2-connected chordal planar graphs G with a 2-walk is in [6]. The authors found chordal planar graphs with toughness $4 / 7$ having no 2 -walk.

2. Proof of Theorem 1.4

Throughout the rest of the paper, whenever we consider a planar graph G, we always mean a fixed embedding of G into the plane. Such a graph is called a plane graph. A vertex v of a graph G is called a simplicial vertex if the subgraph of G induced by the neighbours of v is complete.

Before proceeding with the proof of the theorem, several useful results about chordal planar graphs are given below. The following theorem is due to Dirac [5].

Theorem 2.1 ([5]). Every chordal graph G has a simplicial vertex v.
We will also need the following result from [1].
Theorem 2.2 ([1]). If G is an ℓ-connected chordal graph and v is a simplicial vertex in G, then the graph $G-v$ is either ℓ-connected or complete.

We will prove Theorem 1.4 by induction. Before we start the induction, we prove the following two useful lemmas. Lemma 2.1 shows that our induction will be well defined, and Lemma 2.2 shows the way the toughness changes during the induction.

Lemma 2.1. If G is a 2-connected chordal planar graph, then there is a sequence of graphs G_{0}, \ldots, G_{k} and a sequence of sets S_{0}, \ldots, S_{k-1} such that:
(i) $G_{0}=K_{3}$,
(ii) $V\left(G_{i+1}\right)=V\left(G_{i}\right) \cup S_{i}$, where $S_{i} \cap V\left(G_{i}\right)=\emptyset,\left\langle V\left(G_{i}\right)\right\rangle_{G_{i+1}}=G_{i}, N_{G_{i+1}}\left(S_{i}\right) \subset V\left(G_{i}\right)$ and, for every $x \in S_{i},\left\langle N_{G_{i+1}}(x)\right\rangle_{G_{i+1}}$ is complete, $i=0, \ldots, k-1$,
(iii) $G_{k}=G$.
(iv) The integer k, the graphs $G_{i}(i=0, \ldots, k)$ and the sets $S_{i}(i=0, \ldots, k-1)$ can be chosen so that, for every $i=0, \ldots, k-1$,
(A) there is a vertex $v_{i} \in V\left(G_{i}\right)$ such that v_{i} is simplicial in G_{i} and $S_{i} \subset N_{G_{i+1}}\left(v_{i}\right)$;
(B) if $x \in S_{i}$ is of degree $d_{G_{i+1}}(x)=3$, then x lies in the inner face of the triangle $\left\langle N_{G_{i+1}}(x)\right\rangle_{G_{i+1}}$.

Proof. First we show that there is a sequence G_{0}, \ldots, G_{k} satisfying the statements (i), (ii), (iii) and (iv-A). By Theorem 2.1, $G=G_{k}$ has at least one simplicial vertex. Let S be the set of all simplicial vertices in G_{k}. By Theorem 2.1, the graph $G-S$ is a chordal graph and there exists a simplicial vertex x in $G-S$. Let S_{k-1}^{\prime} be the set of all simplicial vertices in G_{k} adjacent to x. If all the vertices in S_{k-1}^{\prime} are independent in G_{k}, then we set $S_{k-1}^{\prime}=S_{k-1}$ and $v_{k-1}=x$. Otherwise there exist in S_{k-1}^{\prime} two vertices u_{1} and u_{2} that are adjacent in G_{k}, and we set $S_{k-1}=\left\{u_{1}\right\}$ and $v_{k-1}=u_{2}$. By Theorem 2.1, the graph $G-S_{k-1}=G_{k-1}$ is again chordal, and the vertex v_{k-1} is simplicial in G_{k-1}. We can repeat this procedure until we obtain K_{3}. If we reverse this procedure we can construct an arbitrary chordal graph from K_{3} such that the statements (i), (ii), (iii) and (iv-A) hold.
(B) Suppose that statement (iv-B) holds for every G_{j}, for $1 \leq j \leq i$. We prove that the statement also holds for G_{i+1}. If not, then there is a vertex $u_{2} \in S_{i}$ of degree 3 , which lies in the outer face of the triangle $\left\langle N_{G_{i+1}}\left(u_{2}\right)\right\rangle_{G_{i+1}}$. Note that $d_{G_{i}}\left(v_{i}\right)=2$. Otherwise, we would get a contradiction with the planarity of G. Let $v^{\prime}, v^{\prime \prime}$ be the neighbours of v_{i} in G_{i}. If u_{2} is the only vertex in S_{i} of degree 3 then we can place u_{1} into the inner face of the triangle $\left\langle N_{G_{i+1}}\left(u_{i}\right)\right\rangle_{G_{i+1}}$. There cannot be three vertices of degree 3 in S_{i}, otherwise $K_{3,3}$ is a subgraph of G_{i+1}.

Next assume that there are two vertices of degree 3, namely, $u_{1}, u_{2} \in S_{i+1}$. Since u_{1} and u_{2} are simplicial vertices in G_{i+1}, we conclude that $N\left(u_{1}\right)_{G_{i+1}}=N\left(u_{2}\right)_{G_{i+1}}=\left\{v_{i}, v^{\prime}, v^{\prime \prime}\right\}$. We may assume that u_{1} lies in the inner face of the triangle $\left\langle\left\{v_{i}, v^{\prime}, v^{\prime \prime}\right\}\right\rangle_{G_{i}}$ and u_{2} lies in its outer face. We separate the construction step from G_{i} to G_{i+1} into two steps G_{i} to G_{i}^{\prime} and G_{i}^{\prime} to G_{i+1}^{\prime}, in such a way that the statement (iv-B) will hold. That is, we define $S_{i}^{\prime}=\left\{u_{2}\right\}$ and $G_{i+1}^{\prime}=\left\langle V\left(G_{i}\right) \cup\left\{u_{2}\right\}\right\rangle_{G_{i+1}}$. Additionally, we define $S_{i+1}^{\prime}=S_{i} \backslash\left\{u_{2}\right\}$. We connect vertices from S_{i+1}^{\prime} with vertices in G_{i+1}^{\prime} as in G_{i+1}, but every vertex will be incident with u_{1} instead of v_{i}. Now $G_{i+1} \cong G_{i+2}^{\prime}$. See Fig. 1 .

Fig. 1. Modification of construction.
Let G be a 2 -connected chordal planar graph, and let G_{0}, \ldots, G_{k} and S_{0}, \ldots, S_{k-1} be any sequences of graphs and sets, respectively, satisfying the conditions of Lemma 2.1. We say that the sequence $\left(G_{0}, \ldots, G_{k} ; S_{0}, \ldots, S_{k-1}\right)$ is a convenient construction of G and, for any $x \in S_{i}, i=0, \ldots, k-1$, a vertex v_{i} with the properties given in part (iv-A) of Lemma 2.1 will be said to be a parent of the vertex x, denoted $v_{i}=p(x)$. From Lemma 2.1, it is obvious that every vertex, except vertices in G_{0}, has exactly one parent. Furthermore, the vertex v_{i} is the parent of all vertices in S_{i} and there are no other vertices in G such that v_{i} is their parent. If $p(x) \notin V\left(G_{0}\right)$ then we write $p^{2}(x)$ to denote the parent of the parent of a vertex x. More generally, if $p^{j-1} \notin V\left(G_{0}\right)$ for some $j \geq 2$, then we write $p^{j}(x)=p\left(p^{j-1}(x)\right)$.

In the rest of the paper we use the following notation: For an arbitrary nonsimplicial vertex u in a graph G_{i} from a convenient construction, we define an integer $\varphi(u), 0 \leq \varphi(u)<k$, as the integer such that u is simplicial in $G_{\varphi(u)}$ and is not simplicial in $G_{\varphi(u)+1}$ (i.e., we added some new simplicial vertices into the neighbourhood of u).

It is clear that for every vertex u from G, except the three vertices in G_{0}, the construction step $\varphi(p(u))$ is exactly the step in which vertex u was added into the graph $G_{\varphi(p(u))}$. Therefore, $u \in S_{\varphi(p(u))}$, for every $u \in V(G) \backslash V\left(G_{0}\right)$.

Lemma 2.2. If $\left(G_{0}, \ldots, G_{k} ; S_{0}, \ldots, S_{k-1}\right)$ is a convenient construction of a t-tough chordal planar graph G, then each graph G_{i} for $0 \leq i \leq k-1$, is also t-tough.

Proof. Let G_{j} be a graph from the convenient construction where $0<j \leq k$. If there is a set of vertices P such that $\omega\left(G_{j}-P\right)<\omega\left(G_{j-1}-P\right)$, then there are two components C_{1}, C_{2} of $G_{j-1}-P$ such that both C_{1} and C_{2} are in the same component of $G_{j}-P$. We get G_{j} by adding new simplicial vertices to G_{j-1}. There must be a simplicial vertex v in G_{j} which has two neighbours v_{1}, v_{2}, such that $v_{1} \in C_{1}$ and $v_{2} \in C_{2}$. This is a contradiction because v_{1} and v_{2} are not adjacent, which contradicts the fact that v is a simplicial vertex.

Hence for any subset of vertices $P, \omega\left(G_{j}-P\right) \geq \omega\left(G_{j-1}-P\right)$. Therefore, if G_{j} is t-tough, G_{j-1} is also t-tough.
The following definitions will be useful in the proof of Theorem 1.4. If a graph G has a 2 -walk T, then we can define, for every vertex v in G, the multiplicity of v in T as: $m_{T}(v)=1$ if v is used once in the 2-walk T, and $m_{T}(v)=2$ if v is used twice in the 2-walk T. For every vertex v with multiplicity $m_{T}(v)=1$, the predecessor of the vertex v in the 2-walk T will be denoted v_{T}^{-}and the successor of v in T will be denoted v_{T}^{+}. Note that possibly $v_{T}^{+}=v_{T}^{-}$. Also, for every vertex v with multiplicity $m_{T}(v)=1$, we define $e_{T}(v)=\left|\left\{v_{T}^{+}, v_{T}^{-}\right\}\right|$.

Let G be a 2 -connected chordal planar graph, and let $\left(G_{0}, \ldots, G_{k} ; S_{0}, \ldots, S_{k-1}\right)$ be its convenient construction. We say that a 2-walk T_{i} in a graph $G_{i}(0 \leq i \leq k)$ is a good 2-walk if there exists a sequence of 2-walks $T_{0}, \ldots T_{i}$ such that, T_{j} is a 2-walk in $G_{j}, 0 \leq j \leq i$, with the following properties.

For every simplicial vertex x in G_{i}, different from vertices in G_{0}, we have
(i) $m_{T_{i}}(x)=1$.
(ii) If $\left|S_{\varphi(x)}\right|<4$ then $x_{T_{i}}^{+}=p(x)$ or $x_{T_{i}}^{-}=p(x)$.
(iii) If $d_{G_{i}}(x)=3$ and $e_{T_{i}}(x)=1$ then $d_{G_{\varphi(p(x))}}(p(x))=3$ and
(A) $e_{T_{\varphi(p(x))}}(p(x))=1$ and $p^{2}(x) \notin N_{G_{i}}(x)$ or
(B) $e_{T_{\varphi(p(x))}}(p(x))=2$ and in the set $S_{\varphi(p(x))}$ there are three vertices of degree 3 in the graph $G_{\varphi(p(x))+1}$ (x is one of them) or
(C) $e_{T_{\varphi(p(x))}}(p(x))=2$ and $x_{T_{i}}^{+} \neq p(x)$ and $x_{T_{i}}^{-} \neq p(x)$.
(iv) If $d_{G_{i}}(x)=3, e_{T_{i}}(x)=2, m_{T_{i}}(p(x))=2$ and $x_{T_{i}}^{-} x_{T_{i}}^{+} \notin E\left(T_{i}\right)$, then either:
(A) $d_{G_{\varphi(p(x))}}(p(x))=2$ and $\left|S_{\varphi(p(x))}\right|=2$, or
(B) $d_{G_{\varphi(p(x))}}(p(x))=3$ and either

- $\left|S_{\varphi(p(x))}\right| \geq 3$ or
- $\left|S_{\varphi(p(x))}\right|=2$ and there is a vertex $x^{\prime} \in S_{\varphi(p(x)),}, x^{\prime} \neq x$, such that either
$-\left|S_{\varphi\left(x^{\prime}\right)}\right|=4$ or
$-N_{G_{\varphi\left(x^{\prime}\right)}}\left(x^{\prime}\right) \subseteq N_{G_{i}}(x)$.
(v) Subject to the properties (i)-(iv), the number of simplicial vertices of degree 3 with $e_{T_{i}}=2$ is maximal.

Fig. 2. Construction of a 2 -walk in Cases 1 and 2 .

Next we proceed with a crucial lemma. We prove this lemma using a induction and all the properties of a good 2-walk will be needed. In most of the cases we get a 2-walk in G_{i+1} only by local extensions of a good 2-walk in G_{i}. This would not be possible if we assumed that G_{i} had only a 2 -walk.

Lemma 2.3. Let G be a chordal planar graph with toughness greater than $\frac{3}{4}$. Let $\left(G_{0}, \ldots, G_{r} ; S_{0}, \ldots, S_{r-1}\right)$ be a convenient construction of G. If for some i with $0 \leq i \leq r-1$, all graphs G_{ℓ} have good 2 -walks T_{ℓ}, for $\ell=\{0,1, \ldots, i\}$, then the graph G_{i+1} has a good 2-walk T_{i+1}.
Proof. Since G_{i} is a chordal planar graph with toughness greater than $\frac{3}{4}$, all simplicial vertices in G_{i} have degree 2 or 3 . Let v be a simplicial vertex in G_{i} such that all vertices $u_{j} \in S_{i}$ are incident with v in G_{i+1}.

Case 1. $d(v)=2,\left|S_{i}\right|=2$ and $e_{T_{i}}(v)=2$.
Let $u_{1}, u_{2} \in S_{i}$. Suppose first that $N_{G_{i+1}}\left(u_{1}\right)=N_{G_{i+1}}\left(u_{2}\right)$. Due to Lemma 2.1, statement (iv-B), and planarity of G_{i+1}, $d_{G_{i+1}}\left(u_{1}\right)=d_{G_{i+1}}\left(u_{2}\right)=2$. Let $N_{G_{i+1}}\left(u_{1}\right)=N_{G_{i+1}}\left(u_{2}\right)=X$. Then the graph $G_{i+1}-X$ must have at least three components a contradiction with the toughness of G_{i+1}. Hence $N_{G_{i+1}}\left(u_{1}\right) \neq N_{G_{i+1}}\left(u_{2}\right)$.

Since $e_{T_{i}}(v)=2$, we may assume that $v, v_{T_{i}}^{-} \in N_{G_{i+1}}\left(u_{1}\right)$ and $v, v_{T_{i}}^{+} \in N_{G_{i+1}}\left(u_{2}\right)$. Hence the subgraph $\left\langle N_{G_{i+1}}(v)\right\rangle_{G_{i+1}}$ has the structure shown in Fig. 2. We get T_{i+1} as follows: we remove from T_{i} the walk $v_{T_{i}}^{-} v v_{T_{i}}^{+}$and replace it with the walk $v_{T_{i}}^{-} u_{1} v u_{2} v_{T_{i}}^{+}$.

Clearly the 2-walk T_{i+1} meets conditions (i), (ii) and (v) of a good 2-walk. Note that $p\left(u_{1}\right)=p\left(u_{2}\right)=v$. Since $e_{T_{i+1}}\left(u_{1}\right)=e_{T_{i+1}}\left(u_{2}\right)=2$ and $m_{T_{i+1}}(v)=1$, the 2-walk T_{i+1} also trivially satisfies conditions (iii) and (iv) of a good 2walk. Hence T_{i+1} is a good 2-walk in G_{i+1} (see Fig. 2).

Case 2. $d(v)=2,\left|S_{i}\right|=2$ and $e_{T_{i}}(v)=1$.
Set $S_{i}=\left\{u_{1}, u_{2}\right\}$. As in the proof of Case $1, N_{G_{i+1}}\left(u_{1}\right) \neq N_{G_{i+1}}\left(u_{2}\right)$. Since $e_{T_{i}}(v)=1$, we may assume that $v, v_{T_{i}}^{-} \in N_{G_{i+1}}\left(u_{1}\right)$ and $d_{G_{i+1}}\left(u_{2}\right)=2$. Hence the subgraph $\left\langle N_{G_{i+1}}(v)\right\rangle_{G_{i+1}}$ has the structure shown in Fig. 2. We get T_{i+1} as follows: we remove $v_{T_{i}}^{-} v v_{T_{i}}^{+}$from T_{i} and replace it with $v_{T_{i}}^{-} u_{1} v u_{2} v v_{T_{i}}^{+}$.

Clearly, the 2-walk T_{i+1} meets conditions (i), (ii) and (v) of a good 2-walk. Note that $p\left(u_{1}\right)=p\left(u_{2}\right)=v$. Since $e_{T_{i+1}}\left(u_{1}\right)=2$ and $d_{G_{i+1}}\left(u_{2}\right)=2$, the 2 -walk T_{i+1} also trivially satisfies condition (iii) of a good 2 -walk. Furthermore, $m_{T_{i+1}}(v)=2$ but $d_{G_{\varphi(v)}}(v)=2$ and $\left|S_{\varphi(v)}\right|=2$, therefore T_{i+1} meets condition (iv) as well. Hence T_{i+1} is a good 2-walk in G_{i+1} (see Fig. 2).

Case 3. $d(v)=2$ and $\left|S_{i}\right| \neq 2$.
Then $\left|S_{i}\right|=1$, otherwise we would get a contradiction with the toughness of G_{i+1}. We get a 2 -walk T_{i+1} in a similar way as in Case 1 or 2 . Observe that if the vertex $u_{1} \in S_{i}$ has degree 3 in G_{i+1}, there always exists a 2 -walk T_{i+1} in G_{i+1} such that $e_{T_{i+1}}\left(u_{1}\right)=2$. Hence, there always exists a good 2-walk T_{i+1}.

Case 4. $d(v)=3$ and $\left|S_{i}\right| \leq 3$.
Similarly as in Case 1, for every $u_{a} \neq u_{b}$ from the set $S_{i}, N_{G_{i+1}}\left(u_{a}\right) \neq N_{G_{i+1}}\left(u_{b}\right)$.
Subcase 4.1. There is at most one vertex $u \in S_{i}$ such that $\left\{v_{T_{i}}^{-}, v_{T_{i}}^{+}\right\} \cap N_{G_{i+1}}(u)=\emptyset$.
We prove the existence of a good 2-walk T_{i+1} in G_{i+1} separately for $\left|S_{i}\right|=3,\left|S_{i}\right|=2$ and $\left|S_{i}\right|=1$.
Subcase 4.1.1: $\left|S_{i}\right|=1$.
Let $S_{i}=\left\{u_{1}\right\}$. Note that the vertex u_{1} is adjacent in G_{i+1} to v and one or two vertices in $N_{G_{i}}(v)$.

- u_{1} is adjacent to $v_{T_{i}}^{-}$or $v_{T_{i}}^{+}$in G_{i+1}.

Without loss of generality, we may assume that u_{1} is adjacent to $v_{T_{i}}^{-}$. If not, then change the orientation of T_{i}. We get T_{i+1} as follows: we remove $v_{T_{i}}^{-} v$ from T_{i} and we replace it with $v_{T_{i}}^{-} u_{1} v$. Observe that $e_{T_{i+1}}\left(u_{1}\right)=2$ and $m_{T_{i+1}}(v)=1$. Clearly, T_{i+1} is a good 2-walk in G_{i+1}.

Fig. 3. Construction of a 2-walk in Case 4.1.3.

- u_{1} is not adjacent to $v_{T_{i}}^{-}$and $v_{T_{i}}^{+}$in G_{i+1}

We get T_{i+1} as follows: we remove $v_{T_{i}}^{-} v v_{T_{i}}^{+}$from T_{i} and we replace it with $v_{T_{i}}^{-} v u_{1} v v_{T_{i}}^{+}$. Observe that $e_{T_{i+1}}\left(u_{1}\right)=1$ and $m_{T_{i+1}}(v)=2$. Clearly, the 2-walk T_{i+1} meets conditions (i), (ii), (iv) and (v) of a good 2-walk. If $d_{G_{i+1}}\left(u_{1}\right)=3$ then $v_{T_{i}}^{-}=v_{T_{i}}^{+}$. Hence $e_{T_{i}}(v)=1$ and T_{i+1} meets condition (iii) as well.

Subcase 4.1.2: $\left|S_{i}\right|=2$.
Let $S_{i}=\left\{u_{1}, u_{2}\right\}$. Due to the assumption of Subcase $4.1, u_{1}$ or u_{2} is adjacent to $v_{T_{i}}^{-}$or $v_{T_{i}}^{+}$in G_{i+1}. Without loss of generality, we may assume that u_{1} is adjacent to $v_{T_{i}}^{-}$. Otherwise, we change the orientation of T_{i}. We distinguish two cases.

- u_{2} is adjacent in G_{i+1} to $v_{T_{i}}^{+}$.

We get T_{i+1} as follows: we remove $v_{T_{i}}^{-} v v_{T_{i}}^{+}$from T_{i} and we replace it with $v_{T_{i}}^{-} u_{1} v u_{2} v_{T_{i}}^{+}$. Observe that $e_{T_{i+1}}\left(u_{1}\right)=2$, $e_{T_{i+1}}\left(u_{2}\right)=2$ and $m_{T_{i+1}}(v)=1$. Clearly, T_{i+1} is a good 2-walk in G_{i+1}.

- u_{2} is not adjacent to $v_{T_{i}}^{+}$.

We may assume that, if u_{2} is adjacent to $v_{T_{i}}^{-}$then $d_{G_{i+1}}\left(u_{1}\right)=3$, otherwise we relabel vertices in S_{i}. Note that, in this case, both vertices u_{1} and u_{2} cannot have degree 2 in G_{i+1}, otherwise we would get a contradiction with the toughness of G_{i+1}. We get T_{i+1} as follows: we remove $v_{T_{i}}^{-} v v_{T_{i}}^{+}$from T_{i} and we replace it with $v_{T_{i}}^{-} u_{1} v u_{2} v v_{T_{i}}^{+}$. Observe that $e_{T_{i+1}}\left(u_{1}\right)=2$, $e_{T_{i+1}}\left(u_{2}\right)=1$ and $m_{T_{i+1}}(v)=2$. Clearly, the 2-walk T_{i+1} meets conditions (i), (ii) and (v) of a good 2-walk.

Note that $d_{G_{i+1}}\left(u_{2}\right)=3$ only if $v_{T_{i}}^{-}=v_{T_{i}}^{+}$. Hence $e_{T_{i}}(v)=1$ and T_{i+1} meets condition (iii) of a good 2-walk.
Recall that $e_{T_{i+1}}\left(u_{1}\right)=2$ and $m_{T_{i+1}}\left(p\left(u_{1}\right)\right)=2$. Now, we distinguish two cases.
(A) $v_{T_{i}}^{-}=v_{T_{i}}^{+}$.

Observe that $u_{1}+\frac{T_{i+1}}{+}=v$ and $u_{1 T_{i+1}}^{-}=v_{T_{i}}^{+}=v_{T_{i}}^{-}$. Since the edge $v v_{T_{i}}^{+} \in E\left(T_{i+1}\right), T_{i+1}$ meets condition (iv) of a good 2-walk.
(B) $v_{T_{i}}^{-} \neq v_{T_{i}}^{+}$.

Since $d_{G_{i+1}}\left(u_{1}\right)=3$ and vertex u_{2} is not adjacent to $v_{T_{i}}^{+}, d_{G_{i+1}}\left(u_{2}\right)=2$. Moreover, $N_{G_{i+1}}\left(u_{2}\right) \subseteq N_{G_{i+1}}\left(u_{1}\right)$. Hence T_{i+1} meets condition (iv) of a good 2-walk.

Subcase 4.1.3: $\left|S_{i}\right|=3$.
Let $S_{i}=\left\{u_{1}, u_{2}, u_{3}\right\}$. There are no vertices $v_{a}, v_{b} \in N_{G_{i}}(v)$ such that $N_{G_{i+1}}\left(S_{i}\right)=\left\{v_{a}, v_{b}, v\right\}$ since otherwise the graph $G_{i+1}-\left\{v, v_{a}, v_{b}\right\}$ has exactly four components - a contradiction with the toughness of G_{i+1}. In other words, it means that $\left|N_{G_{i+1}}\left(S_{i}\right)\right|=4$.

Now we can rename the vertices in S_{i} such that $v_{T_{i}}^{-} \in N_{G_{i+1}}\left(u_{1}\right)$ and $v_{T_{i}}^{+} \in N_{G_{i+1}}\left(u_{3}\right)$. Moreover, if $e_{T_{i}}(v)=2$, we may assume that if there is a vertex in S_{i} of degree 2 in G_{i+1} then it is the vertex u_{2}. If $e_{T_{i}}(v)=1$, then we rename vertices in such a way that $d_{G_{i+1}}\left(u_{2}\right)=3$ if and only if u_{2} is not adjacent to $v_{T_{i}}^{-}=v_{T_{i}}^{+}$in G_{i+1}.

Now the subgraph $\left\langle N_{G_{i+1}}(v)\right\rangle_{G_{i+1}}$ has the structure shown in Fig. 3. We get T_{i+1} as follows: we remove $v_{T_{i}}^{-} v v_{T_{i}}^{+}$from T_{i} and we replace it with $v_{T_{i}}^{-} u_{1} v u_{2} v u_{3} v_{T_{i}}^{+}$.

Clearly, the 2-walk T_{i+1} meets conditions (i), (ii) and (v) of a good 2-walk. Note that $p\left(u_{1}\right)=p\left(u_{2}\right)=v$ and $e_{T_{i+1}}\left(u_{2}\right)=1$. Vertex u_{2} has degree 3 in G_{i+1} if and only if either
(A) $e_{T_{i}}(v)=1$ and u_{2} is not adjacent to $p^{2}(x)=v_{T_{i}}^{-}=v_{T_{i}}^{+}$in G_{i+1} or
(B) $e_{T_{i}}(v)=2$ and $d_{G_{i+1}}\left(u_{1}\right)=d_{G_{i+1}}\left(u_{2}\right)=d_{G_{i+1}}\left(u_{3}\right)=3$.

Hence the 2-walk T_{i+1} also satisfies condition (iii) of a good 2-walk. Furthermore, $m_{T_{i+1}}(v)=2$ but $d_{G_{\varphi(v)}}(v)=3$ and $\left|S_{\varphi(v)}\right|=3$, therefore T_{i+1} meets (iv) as well. Hence T_{i+1} is a good 2-walk in G_{i+1} (see Fig. 3).

Fig. 4. Subcase 4.2.

Fig. 5. Case 5.

Note that we proved a slightly stronger statement. One vertex, let us say u_{2}, from S_{i} has $e_{T_{i+1}}\left(u_{2}\right)=1$. If $e_{T_{i}}(v)=2$ and all the vertices in S_{i} have degree 3 in G_{i+1}, then we can choose the vertex u_{2} from S_{i} arbitrarily. Hence we can get three different good 2-walks in G_{i+1}. Since we use this observation later, we state it as a claim.

Claim 2.1. Under the assumption of Subcase 4.1.3, if $e_{T_{i}}(v)=2$ and $d_{G_{i+1}}\left(u_{1}\right)=d_{G_{i+1}}\left(u_{2}\right)=d_{G_{i+1}}\left(u_{3}\right)=3$, there exist three different good 2-walks $T_{i+1}, T_{i+1}^{\prime}$ and $T^{\prime \prime}{ }_{i+1}$ in G_{i+1} such that $e_{T_{i+1}}\left(u_{2}\right)=1, e_{T_{i+1}^{\prime}}\left(u_{1}\right)=1$ and $e_{T^{\prime \prime}{ }_{i+1}}\left(u_{3}\right)=1$.

Subcase 4.2. There are $u_{m}, u_{n} \in S_{i}$ such that $\left\{v_{T_{i}}^{-}, v_{T_{i}}^{+}\right\} \cap N_{G_{i+1}}\left(u_{m}\right)=\emptyset$ and $\left\{v_{T_{i}}^{-}, v_{T_{i}}^{+}\right\} \cap N_{G_{i+1}}\left(u_{n}\right)=\emptyset$.
Now $e_{T_{i}}(v)=1$ and the subgraph $\left\langle N_{G_{i+1}}(v)\right\rangle_{G_{i+1}}$ has the structure shown in Fig. 4. In this case we cannot simply extend the good 2-walk T_{i} on the new vertices in S_{i}. We postpone the proof of this subcase. Later, together with Subcase 5.2, and after Subcase 5.1, we show that there exists a good 2-walk T_{i}^{*} in G_{i}, such that $e_{T_{i}^{*}}(v)=2$. Then we transform Subcase 4.2 back to Subcase 4.1.

Case 5. $d(v)=3$ and $\left|S_{i}\right| \geq 4$.
Now $\left|S_{i}\right|=4$, otherwise we would get a contradiction with the toughness of G_{i+1}. As in Case $1, N_{G_{i}}\left(u_{a}\right) \neq N_{G_{i}}\left(u_{b}\right)$, for every $u_{a}, u_{b} \in S_{i}$.

If S_{i}^{\prime} is an arbitrary subset of S_{i}, such that $\left|S_{i}^{\prime}\right|=3$, then there is no vertex $v^{\prime} \in N_{G_{i}}(v)$, such that $\left\{v^{\prime}\right\} \cap N_{G_{i+1}}\left(S_{i}\right)=\emptyset$. If not, then for the set $X=\{v\} \cup N_{G_{i}}(v) \backslash\left\{v^{\prime}\right\}$ we have $|X|=3$ and the graph $G_{i+1}-X$ has exactly four components - a contradiction with the toughness of G_{i+1}. The subgraph $\left\langle N_{G_{i+1}}(v)\right\rangle_{G_{i+1}}$ has the structure shown in Fig. 5 (up to a symmetry). Subcase 5.1. $e_{T_{i}}(v)=2$.

Let $S_{i}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. We first prove that $m_{T_{i}}(p(v))=1$ or the edge $v_{T_{i}}^{-} v_{T_{i}}^{+}$is in the 2 -walk T_{i} in G_{i}.
Suppose to the contrary that $m_{T_{i}}(p(v))=2$ and $v_{T_{i}}^{-} v_{T_{i}}^{+} \notin E\left(T_{i}\right)$. Due to the properties of a good 2-walk T_{i} (property (iv)), we have the following cases:
(A) $d_{G_{\varphi(p(v))}}(p(v))=2$ and $\left|S_{\varphi(p(v))}\right|=2$.

If $X=N_{G_{i}}(v) \cup\{v\}$, then $|X|=4$ and the graph $G_{i+1}-X$ has at least six components, namely, four isolated vertices from S_{i}, one component with the other vertex from $S_{\varphi(p(v))}$ and the rest of the graph. This contradicts the toughness of G_{i+1}.
(B) $d_{G_{\varphi(p(v))}}(p(v))=3$ and

- $\left|S_{\varphi(p(v))}\right| \geq 3$.

If $X=N_{G_{\varphi(p(v))}}(p(v)) \cup\{v, p(v)\} .|X|=5$, then the graph $G_{i+1}-X$ has at least seven components, namely, four isolated vertices from S_{i}, two components each containing a vertex from $S_{\varphi(p(v))}$ different from v, and the rest of the graph. This contradicts the toughness of G_{i+1}.

Fig. 6. Construction of a 2 -walk when $\left|S_{i}\right|=4$ and $m_{T_{i}}(p(v))=1$.

- $\left|S_{\varphi(p(v))}\right|=2$ and there is a vertex $v^{\prime} \in S_{\varphi(p(v))}, v^{\prime} \neq v$, such that
$-\left|S_{\varphi\left(v^{\prime}\right)}\right|=4$.
If $X=N_{G_{\varphi(p(v))}}(p(v)) \cup\left\{v, v^{\prime}, p(v)\right\}$, then $|X|=6$ and the graph $G-X$ has at least nine components, namely, four isolated vertices from S_{i}, four components each containing a vertex from $S_{\varphi\left(v^{\prime}\right)}$, and the rest of the graph. This contradicts the toughness of G_{i+1}.
- $N_{G_{\varphi\left(v^{\prime}\right)}}\left(v^{\prime}\right) \subseteq N_{G_{i}}(v)$.

If $X=N_{G_{i+1}}(v) \cup\{v\}$, then $|X|=4$ and the graph $G-X$ has at least six components, namely, four isolated vertices from S_{i}, one component with v^{\prime} and the rest of the graph. This contradicts the toughness of G.

Therefore, $m_{T_{i}}(p(v))=1$ or the edge $v_{T_{i}}^{-} v_{T_{i}}^{+}$is in the 2-walk T_{i} in G_{i}. We obtain a good 2-walk T_{i+1} as follows:

- If $m_{T_{i}}(p(v))=1$, then we choose orientation of T_{i}, such that $p(v)=v_{T_{i}}^{-}$(see the property of a good 2-walk (ii)). We label vertices in S_{i} such that, if there is a vertex of degree 2 adjacent to $v_{T_{i}}^{-}$in G_{i+1}, then we name this vertex u_{1}, and then we rename the rest of S_{i} such that $v_{T_{i}}^{-} \in N_{G_{i+1}}\left(u_{2}\right), v_{T_{i}}^{+} \in N_{G_{i+1}}\left(u_{4}\right)$ and u_{3} is the remaining vertex. We may assume that $d_{G_{i+1}}\left(u_{2}\right)=3$ and $d_{G_{i+1}}\left(u_{4}\right)=3$.

If there is no vertex of degree 2 adjacent to $v_{T_{i}}^{-}$in G_{i+1}, then we take an arbitrary vertex from S_{i} of degree 3 in G_{i+1}, which is incident with $v_{T_{i}}^{-}$in G_{i+1}, and we label this vertex u_{1}. Rename the rest of S_{i} such that $v_{T_{i}}^{-} \in N_{G_{i+1}}\left(u_{2}\right), v_{T_{i}}^{+} \in N_{G_{i+1}}\left(u_{4}\right)$ and u_{3} is the remaining vertex. Note that the degree of u_{3} is 2 in G_{i+1}.

We get T_{i+1} as follows: we remove $v_{T_{i}}^{-} v v_{T_{i}}^{+}$from T_{i} and we replace it with $v_{T_{i}}^{-} u_{1} v_{T_{i}}^{-} u_{2} v u_{3} v u_{4} v_{T_{i}}^{+}$.
Since $\left|S_{i}\right|=4, T_{i+1}$ meets conditions (i), (ii) and (v) of a good 2-walk. Note that $p\left(u_{1}\right)=p\left(u_{2}\right)=v$ and $e_{T_{i+1}}\left(u_{1}\right)=e_{T_{i+1}}\left(u_{3}\right)=1$. If $d_{G_{i+1}}\left(u_{1}\right)=2$, then $d_{G_{i+1}}\left(u_{3}\right)=3$ if and only if $d_{G_{i+1}}\left(u_{2}\right)=d_{G_{i+1}}\left(u_{3}\right)=d_{G_{i+1}}\left(u_{4}\right)=3$. If $d_{G_{i+1}}\left(u_{1}\right)=3$, then $d_{G_{i+1}}\left(u_{3}\right)=2$. Therefore, the 2 -walk T_{i+1} satisfies either condition (iii-B) or condition (iii-C) of a good 2-walk. Furthermore, $m_{T_{i+1}}(v)=2$ and $d_{G_{\varphi(v)}}(v)=3$, but $\left|S_{\varphi(v)}\right|=4$. Therefore T_{i+1} meets (iv) as well. Hence T_{i+1} is a good 2-walk in G_{i+1}.

- If $m_{T_{i}}(p(v))=2$ and the edge $v_{T_{i}}^{-} v_{T_{i}}^{+}$is in the 2-walk T_{i} in G_{i}, then we have the following cases:
(A) If there is a vertex u_{a} in S_{i} such that $\left\{v_{T_{i}}^{-}, v_{T_{i}}^{+}\right\} \subset N_{G_{i+1}}\left(u_{a}\right)$, then we relabel vertices in S_{i} in the following way: $u_{1}=u_{a}, v_{T_{i}}^{-} \in N_{G_{i+1}}\left(u_{2}\right), v_{T_{i}}^{+} \in N_{G_{i+1}}\left(u_{4}\right)$ and u_{3} is the remaining vertex. Clearly, the degree of u_{1} is 3 in G_{i+1} and we may assume that $d_{G_{i+1}}\left(u_{3}\right)=2$. We obtain T_{i+1} as follows: we remove $v_{T_{i}}^{-} v_{T_{i}}^{+}$and $v_{T_{i}}^{+} v v_{T_{i}}^{-}$from T_{i} and we replace it by $v_{T_{i}}^{-} u_{1} v_{T_{i}}^{+}$ and $v_{T_{i}}^{+} u_{2} v u_{3} v u_{4} v_{T_{i}}^{-}$.

Clearly, the 2-walk T_{i+1} meets conditions (i), (ii) (iv) and (v) of a good 2-walk. Note that $e_{T_{i+1}}\left(u_{3}\right)=1$ but $d_{G_{i+1}}\left(u_{3}\right)=2$. Therefore the 2-walk T_{i+1} satisfies condition (iii) of a good 2-walk. Hence T_{i+1} is a good 2-walk in G_{i+1}.
(B) If there is no vertex u_{a} in S_{i} such that $\left\{v_{T_{i}}^{-}, v_{T_{i}}^{+}\right\} \subset N_{G_{i+1}}\left(u_{a}\right)$, then every vertex in S_{i} is adjacent to either $v_{T_{i}}^{+}$or $v_{T_{i}}^{-}$in G_{i+1}. Moreover, due to the toughness condition, there are exactly two vertices from S_{i} adjacent to $v_{T_{i}}^{+}$in G_{i+1} and the other two vertices in S_{i} are adjacent to $v_{T_{i}}^{-}$in G_{i+1}. Relabel vertices from S_{i} in the following way: $v_{T_{i}}^{-} \in N_{G_{i+1}}\left(u_{1}\right)$, $v_{T_{i}}^{+} \in N_{G_{i+1}}\left(u_{2}\right), v_{T_{i}}^{+} \in N_{G_{i+1}}\left(u_{3}\right)$ and $v_{T_{i}}^{-} \in N_{G_{i+1}}\left(u_{4}\right)$. We obtain T_{i+1} as follows: we remove $v_{T_{i}}^{-} v_{T_{i}}^{+}$and $v_{T_{i}}^{+}, v, v_{T_{i}}^{-}$from T_{i} and we replace it by $v_{T_{i}}^{-} u_{1} v u_{2} v_{T_{i}}^{+}$and $v_{T_{i}}^{+} u_{3} v u_{4} v_{T_{i}}^{-}$.

Observe that $e_{T_{i+1}}\left(u_{1}\right)=2, e_{T_{i+1}}\left(u_{2}\right)=2, e_{T_{i+1}}\left(u_{3}\right)=2, e_{T_{i+1}}\left(u_{4}\right)=2$ and $m_{T_{i+1}}(v)=2$. Since $\left|S_{i}\right|=4$, the 2-walk T_{i+1} satisfies all the conditions (i)-(v) of a good 2-walk.

See examples of 2-walk T_{i+1} in G_{i+1}, for $m_{T_{i}}(p(v))=1$, in Fig. 6 and, for $m_{T_{i}}(p(v))=2$, in Fig. 7 .
Before we move to another subcase, we summarize when a vertex from S_{i}, let us say u_{3}, has $d_{G_{i+1}}\left(u_{3}\right)=3$ and $e_{T_{i+1}}\left(u_{3}\right)=1$. It happens only if $m_{T_{i}}(p(v))=1$ in the two following cases.

Fig. 7. Construction of a 2-walk when $\left|S_{i}\right|=4$ and $m_{T_{i}}(p(v))=2$.

- There is a vertex $u_{1} \in S_{i}$ of degree 2 in G_{i+1} adjacent to $v_{T_{i}}^{-}=p(v)$.

See that, $e_{T_{i+1}}\left(u_{3}\right)=1$ if and only if all the vertices in S_{i}, except for u_{1}, have degree 3 in G_{i+1}. Now we can choose the vertex u_{3}, with $e_{T_{i+1}}\left(u_{3}\right)=1$, arbitrarily from $S_{i} \backslash\left\{u_{1}\right\}$. Hence we can get three different good 2-walks in G_{i+1}. Since we use this observation later, we state it as a claim.

Claim 2.2. Under the assumption of Subcase 5.1, if $m_{T_{i}}(p(v))=1$ and there is a vertex $u_{1} \in S_{i}$ of degree 2 in G_{i+1} adjacent to $v_{T_{i}}^{-}=p(v)$ and $d_{G_{i+1}}\left(u_{2}\right)=d_{G_{i+1}}\left(u_{3}\right)=d_{G_{i+1}}\left(u_{4}\right)=3$, there exist three different good 2-walks $T_{i+1}, T_{i+1}^{\prime}$ and $T^{\prime \prime}{ }_{i+1}$ in G_{i+1} such that $e_{T_{i+1}}\left(u_{3}\right)=1, e_{T_{i+1}^{\prime}}\left(u_{2}\right)=1$ and $e_{T^{\prime \prime}}{ }_{i+1}\left(u_{4}\right)=1$.

- There is no such vertex (i.e., vertex from S_{i} of degree 2 in G_{i+1} and adjacent to $v_{T_{i}}^{-}=p(v)$).

See that, there are two vertices, let us say $u_{1}, u_{2} \in S_{i}$, adjacent to $v_{T_{i}}^{-}=p(v)$ in G_{i+1} and $d_{G_{i+1}}\left(u_{1}\right)=d_{G_{i+1}}\left(u_{2}\right)=3$. Clearly, either $e_{T_{i+1}}\left(u_{1}\right)=1$ and $e_{T_{i+1}}\left(u_{2}\right)=2$, or $e_{T_{i+1}}\left(u_{1}\right)=2$ and $e_{T_{i+1}}\left(u_{2}\right)=1$. Hence we can get two different good 2-walks in G_{i+1}. We also use this observation later.

Claim 2.3. Under the assumption of Subcase 5.1, if $m_{T_{i}}(p(v))=1$ and there is no vertex of degree 2 in G_{i+1} from S_{i} adjacent to $v_{T_{i}}^{-}=p(v)$, then there are two vertices $u_{1}, u_{2} \in S_{i}, d_{G_{i+1}}\left(u_{1}\right)=d_{G_{i+1}}\left(u_{2}\right)=3$, adjacent to $v_{T_{i}}^{-}=p(v)$ in G_{i+1}. Then there exist two different good 2-walks T_{i+1} and T_{i+1}^{\prime} in G_{i+1} such that $e_{T_{i+1}}\left(u_{1}\right)=1$ and $e_{T_{i+1}^{\prime}}\left(u_{2}\right)=1$.

Subcase 5.2. $e_{T_{i}}(v)=1$.
In this case we cannot simply extend the good 2-walk T_{i} on the new vertices in S_{i}. Due to property (i) of a good 2-walk, we should use vertex v more than twice, which is impossible. So we need to show that there exists a good 2 -walk T_{i}^{*} in G_{i}, such that $e_{T_{i}^{*}}(v)=2$. Then we transform Subcase 5.2 to Subcase 5.1. This will be done together with Subcase 4.2.

Claim 2.4. Let W be the class of all good 2-walks in G_{i}. Under the assumptions of Subcase 4.2 or 5.2 there exists a good 2-walk $T_{i}^{*} \in W$, such that $e_{T_{i}^{*}}(v)=2$.

Proof. Suppose, to the contrary, that for every good 2-walk T_{i} from $W e_{T_{i}}(v)=1$. In the graph G_{0}, any vertex x has $e_{T_{0}}(x)=2$. Thus there is an integer k such that the vertex $p^{k}(v)$ exists and satisfies

$$
e_{T_{\varphi\left(p^{k}(v)\right)}}\left(p^{k}(v)\right)=2
$$

Suppose that the good 2-walk $T_{i} \in W$ is chosen such that the integer k is the smallest possible.
Denote the vertices $p^{j}(v)$ as w_{j}, denote the graphs $G_{\varphi\left(p^{j}(v)\right)}$ as G_{j}^{\prime}, denote the sets $S_{\varphi\left(p^{j}(v)\right)}$ as S_{j}^{\prime}, and denote the walks $T_{\varphi\left(p^{j}(v)\right)}$ as T_{j}^{\prime}, for $j=\{1, \ldots, k\}$.

Due to property (iii) of a good 2-walk, we have:

$$
\begin{aligned}
& d_{G_{j}^{\prime}}\left(w_{j}\right)=3, \quad j=\{1, \ldots, k\} \\
& e_{T_{j}^{\prime}}\left(w_{j}\right)=1, \quad j=\{1, \ldots, k-1\} \\
& w_{j+2} \notin N_{G_{j}^{\prime}}\left(w_{j}\right), \quad j=\{1, \ldots, k-2\} .
\end{aligned}
$$

Since $e_{T_{k}^{\prime}}\left(w_{k}\right)=2$ and $e_{T_{k-1}^{\prime}}\left(w_{k-1}\right)=1$, there are three vertices in S_{k}^{\prime} of degree 3 in G_{k-1}^{\prime}. We will call the path v, w_{1}, \ldots, w_{k} a critical path (i.e., a critical path is a path starting at a vertex v, v satisfying the assumption of Subcase 4.2 or 5.2, and ending at a vertex $w_{k}, e_{T_{\varphi\left(w_{k}\right)}}\left(w_{k}\right)=2$, where $p\left(w_{i}\right)=w_{i+1}$). Now we consider two cases: (A) $\left|S_{k}^{\prime}\right|=3$ and (B) $\left|S_{k}^{\prime}\right|=4$.

Fig. 8. Example of three critical paths ending at vertex w_{k}; Case (A).
(A) If $\left|S_{k}^{\prime}\right|=3$, then all the vertices in S_{k}^{\prime} have degree 3 in G_{k-1}^{\prime}. Let $S_{k}^{\prime}=\left\{w_{k-1}, w_{k-1}^{\prime}, w_{k-1}^{\prime \prime}\right\}$ and let $N_{G_{k}^{\prime}}\left(w_{k}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$, $N_{G_{k-1}^{\prime}}\left(w_{k-1}\right)=\left\{w_{k}, x_{1}, x_{2}\right\}, N_{G_{k-1}^{\prime}}\left(w_{k-1}^{\prime}\right)=\left\{w_{k}, x_{1}, x_{3}\right\}, N_{G_{k-1}^{\prime}}\left(w_{k-1}^{\prime \prime}\right)=\left\{w_{k}, x_{2}, x_{3}\right\}$. Using Claim 2.1, we can choose another good 2-walk T_{k-1}^{*} such that either $e_{T_{k-1}^{*}}\left(w_{k-1}^{\prime}\right)=1$ or $e_{T_{k-1}^{*}}\left(w_{k-1}^{\prime \prime}\right)=1$. Clearly $e_{T_{k-1}^{*}}\left(w_{k-1}\right)=2$ and therefore, we cannot obtain any critical path starting at the vertex v in G_{i+1}. If not, then such a critical path would end at the vertex w_{k-1} at the latest, which is impossible due to our choice of T_{i}. We need to show that for such a T_{k-1}^{*} there exists a good 2 -walk T_{i}^{*} in G_{i}, i.e. we will not get any critical path ending at vertex w_{k} in some graph G_{ℓ}, for $1<\ell \leq i$. Recall that we can choose T_{k-1}^{*} in G_{k-1}^{\prime} such that either $e_{T_{k-1}^{*}}\left(w_{k-1}^{\prime}\right)=1$ or $e_{T_{k-1}^{*}}\left(w_{k-1}^{\prime \prime}\right)=1$.

Assume otherwise, i.e., for both choices of T_{k-1}^{*} in G_{k-1}^{\prime} we obtain a critical path ending at the vertex w_{k}. If $e_{T_{k-1}^{*}}\left(w_{k-1}^{\prime}\right)=1$, then we denote this critical path $v^{\prime}, w_{1}^{\prime}, \ldots, w_{a}^{\prime}$, where $w_{a}^{\prime}=w_{k}$ and $w_{a-1}^{\prime}=w_{k-1}^{\prime}$. If $e_{T_{k-1}^{*}}\left(w_{k-1}^{\prime \prime}\right)=1$, then we denote the critical path $v^{\prime \prime}, w_{1}^{\prime \prime}, \ldots, w_{b}^{\prime \prime}$, where $w_{b}^{\prime \prime}=w_{k}$ and $w_{b-1}^{\prime \prime}=w_{k-1}^{\prime \prime}$. Observe that all the vertices $v^{\prime}, w_{1}^{\prime}, \ldots, w_{a-1}^{\prime}$ lie inside the triangle w_{k}, x_{1}, x_{3} and the vertex v^{\prime} is adjacent to w_{1}^{\prime}, x_{1} and x_{3} in $G_{\varphi\left(v^{\prime}\right)}$. Similarly, all the vertices $v^{\prime \prime}, w_{1}^{\prime \prime}, \ldots, w_{b-1}^{\prime}$ lie inside the triangle w_{k}, x_{2}, x_{3} and the vertex $v^{\prime \prime}$ is adjacent to $w_{1}^{\prime \prime}, x_{2}$ and x_{3} in $G_{\varphi\left(v^{\prime \prime}\right)}$. Recall that the original critical path v, w_{1}, \ldots, w_{k} lies inside the triangle w_{k}, x_{1}, x_{2} and the vertex v is adjacent to w_{1}, x_{1} and x_{2} in G_{i}.

Now we show that G_{i+1} must have toughness less than or equal to $\frac{3}{4}$. We define a set of vertices X as follows. $X=$ $N_{G_{k}^{\prime}}\left(w_{k}\right) \cup\left\{v, v^{\prime}, v^{\prime \prime}\right\}$. If v satisfies the assumptions of Subcase 5.2 , add the vertex w_{1} into the set X. If v^{\prime} or $v^{\prime \prime}$ satisfy the assumptions of Subcase 5.2 , add the vertex w_{1}^{\prime} or $w_{1}^{\prime \prime}$ into the set X. If we remove X from G, then the number of components of $G-X$ will be greater than $\frac{4}{3}|X|$, which contradicts the toughness of G (see Fig. 8). Hence, we can obtain at most two critical paths ending at the vertex w_{k}. Therefore we can choose T_{k-1}^{*} in G_{k-1}^{\prime} such that in the graph G_{i} there exists a good 2-walk T_{i}^{*} with $e_{T_{i}^{*}}(v)=2$.
(B) If $\left|S_{k}^{\prime}\right|=4$. Let $N_{G_{k}^{\prime}}\left(w_{k}\right)=\left\{p\left(w_{k}\right), x_{2}, x_{3}\right\}$ and $N_{G_{k-1}^{\prime}}\left(w_{k-1}\right)=\left\{p\left(w_{k}\right), w_{k}, x_{2}\right\}$. First we show that v satisfies only the assumption of Subcase 4.2.

Assume otherwise, i.e., v satisfies the assumption of Subcase 5.2. We define a set X as follows : $X=N_{G_{k}^{\prime}}\left(w_{k}\right) \cup\left\{w_{k}, v, w_{1}\right\}$. Then $|X|=6$ because w_{k} is a simplicial vertex of degree 3 in G_{k}^{\prime}. Graph $G_{i+1}-X$ must have at least eight components, namely isolated vertices from S_{i}, three components, each containing a vertex from S_{k}^{\prime}, and the rest of the graph. This contradicts the toughness assumption.

There are two possible ends of the critical path at vertex w_{k}. One possible end is that $\left(w_{k-1}\right)_{T_{k-1}^{\prime}}^{-}=w_{k}$. The second is that $\left(w_{k-1}\right)_{T_{k-1}^{\prime}}^{-}=p\left(w_{k}\right)$ (see Fig. 9).

The first case is similar to case (A) (i.e., $\left|S_{k}^{\prime}\right|=3$), hence the proof is also similar (just instead of using Claim 2.1 we use Claim 2.2). Consider the second case. Since $d_{G_{k-1}^{\prime}}\left(w_{k}\right)=3$ and $\left(w_{k-1}\right)_{T_{k-1}^{\prime}}^{-}=p\left(w_{k}\right)$, we can use Claim 2.3. Therefore, there exists another good 2-walk T_{k-1}^{*} in G_{k+1}^{\prime}, different from T_{k-1}^{\prime}. Clearly $e_{T_{k-1}^{*}}\left(w_{k-1}\right)=2$ and therefore, we cannot obtain any critical path starting at the vertex v in G_{i+1}. Otherwise, such a critical path would end at the vertex w_{k-1} at the latest, which is impossible due to our choice of T_{i}. We need to show that for such T_{k-1}^{*} there exists a good 2-walk T_{i}^{*} in G_{i}, i.e., that we will not get any critical path ending at vertex w_{k} in some graph G_{ℓ}, for $1<\ell \leq i$.

Assume otherwise, i.e., for the good 2-walk T_{k-1}^{*} in G_{k-1}^{\prime} we obtain a critical path ending at w_{k} in the graph G_{ℓ}. Let $v^{\prime}, w_{1}^{\prime}, \ldots, w_{a}^{\prime}$ be this critical path, where $w_{a}^{\prime}=w_{k}$, and $w_{a-1}^{\prime}=w_{k-1}^{\prime}$. Similarly as for v, v^{\prime} satisfies only the assumption of Subcase 4.2. Observe that all the vertices $v^{\prime}, w_{1}^{\prime}, \ldots, w_{a-1}^{\prime}$ lie inside the triangle $w_{k}, p\left(w_{k}\right), x_{3}$ and the vertex v^{\prime} is adjacent to w_{1}^{\prime}, w_{k} and x_{3} in $G_{\varphi\left(v^{\prime}\right)}$. Recall that the original critical path v, w_{1}, \ldots, w_{k} lies inside the triangle $w_{k}, p\left(w_{k}\right), x_{2}$ and the vertex v is adjacent to w_{1}, w_{k} and x_{2} in G_{i}.

Fig. 9. Examples of two different critical paths in Case (B).

Fig. 10. Two critical paths ending at vertex w_{k}; Case (B).
Note that the graph $G-\left\{v^{\prime}, w_{k}, x_{3}\right\}$ has four components, namely two isolated vertices from the set S_{ℓ}, one isolated vertex from the set S_{k}^{\prime} and the rest of the graph - a contradiction with the toughness assumption (see Fig. 10). Hence, we cannot obtain a critical path ending at the vertex w_{k}. Therefore, for the good 2-walk T_{k-1}^{*} in G_{k-1}^{\prime}, there exists a good 2 -walk T_{i}^{*} in G_{i} with $e_{T_{i}^{*}}(v)=2$.

At this stage we have finished the proof of Subcases 4.2 and Subcase 5.2. It follows that we have finished the proof of Lemma 2.3, since we have discussed all possible sets S_{i}.

Since the graph K_{3} has a 2-walk, proof of Theorem 1.4 follows immediately from Lemma 2.3.

References

[1] T. Böhme, J. Harant, M. Tkáč, More than one tough chordal planar graphs are hamiltonian, J. Graph Theory 32 (1999) 405-410.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[3] G. Chen, M.S. Jacobson, A.E. Kézdy, J. Lehel, Tough enough chordal graphs are hamiltonian, Networks 31 (1997) 29-38.
[4] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973) 215-228.
[5] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76.
[6] Z. Dvořák, D. Král', Teska: Toughness threshold for the existence of 2-walks in K_{4}-minor free graphs, preprint (2006).
[7] M.N. Ellingham, X. Zha, Toughness, trees, and walks, J. Graph Theory 33 (2000) 125-137.
[8] B. Jackson, N.C. Wormald, k-walks of graphs, Australas. J. Combin. 2 (1990) 135-146.

[^0]: The research was partially supported by grant No. 1M0545 of the Czech Ministry of Education.

 * Corresponding address: Department of Mathematics, University of West Bohemia and Institute for Theoretical Computer Sciences, Univerzitní 8, 306

 14 Plzeň, Czech Republic.
 E-mail address: teska@kma.zcu.cz.
 0012-365X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2008.11.027

