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Abstract

Let {Xν} be a sequence of analytic sets converging to some analytic set X in the sense of holomorphic chains. We introduce a
condition which implies that every irreducible component of X is the limit of a sequence of irreducible components of the sets from
{Xν}. Next we apply the condition to approximate a holomorphic solution y = f (x) of a system Q(x,y) = 0 of Nash equations by
Nash solutions. Presented methods allow to construct an algorithm of approximation of the holomorphic solutions.
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

Soit {Xν} une suite d’ensembles analytiques qui converge vers un ensemble analytique X au sens des cycles analytiques. Nous
introduisons une condition qui implique que chaque composante irréductible de X est limite d’une suite des composantes ir-
réductibles des ensembles de {Xν}. La condition est utilisée pour approcher des solutions analytiques y = f (x) d’un système
Q(x,y) = 0 d’équations de Nash par des solutions de Nash. Les méthodes que nous proposons permettent de construire un algo-
rithme d’approximation de solutions analytiques.
© 2008 Elsevier Masson SAS. All rights reserved.

Keywords: Analytic mapping; Analytic set; Nash set; Approximation

1. Introduction

Let K denote the field of complex or real numbers. The following approximation theorem is known to be true: every
K-analytic mapping f :Ω → Kk such that Q(x,f (x)) = 0 for x ∈ Ω , where Q is a K-Nash mapping (Ω described
below), can be uniformly approximated by a K-Nash mapping F :Ω → Kk such that Q(x,F (x)) = 0 for x ∈ Ω .

In the complex case the theorem was proved by L. Lempert (see [16], Theorem 3.2) for every holomorphically
convex compact subset Ω of an affine algebraic variety and in the real case it was proved by M. Coste, J. Ruiz and
M. Shiota (see [12], Theorem 1.1) for every compact Nash manifold Ω . The approximation theorem turned out to be
a very strong tool with many important applications (see [12,16]).

The proofs of the theorem presented in [12,16] rely on the solution to the M. Artin’s conjecture: a deep result from
commutative algebra for which the reader is referred to [1,17–20]. Such an approach enabled to reach the goal in an

✩ Research partially supported by the grant NN201 3352 33 of the Polish Ministry of Science and Higher Education.
* Tel.: +48 12 663 5230; fax: +48 12 632 4372.

E-mail address: marcin.bilski@im.uj.edu.pl.
0021-7824/$ – see front matter © 2008 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.matpur.2008.04.008

https://core.ac.uk/display/82641318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


M. Bilski / J. Math. Pures Appl. 90 (2008) 312–327 313
elegant and relatively short way. On the other hand, it seems to be very difficult to apply the proofs in order to find Nash
approximations for concrete analytic mappings hence it is natural to ask whether the theorem can be obtained directly.
The latter question is strongly motivated by the fact that approximating analytic objects by algebraic counterparts is
one of central techniques used in numerical computations. From this point of view it is important to develop theory of
approximation that could serve as a base for finding numerical algorithms.

In Section 3.2 of the present paper we give, using only some basic methods of analytic geometry, a proof of a
semi-global version of the theorem in the complex case (see Theorem 3.8). The proof allows to construct an algorithm
of approximation of the mapping f which is described in Section 3.2.4.

The following local version is an immediate consequence of Theorem 3.8.

Theorem 1.1. Let U be an open subset of Cn and let f :U → Ck be a holomorphic mapping that satisfies a system of
equations Q(x,f (x)) = 0 for x ∈ U . Here Q is a Nash mapping from a neighborhood Û in Cn × Ck of the graph of
f into some Cq . Then for every x0 ∈ U there are an open neighborhood U0 ⊂ U and a sequence {f ν :U0 → Ck} of
Nash mappings converging uniformly to f |U0 such that Q(x,f ν(x)) = 0 for every x ∈ U0 and ν ∈ N.

In the local situation the problem of approximation of the solutions of algebraic or analytic equations was investi-
gated by M. Artin in [2–4] and Theorem 1.1 can be derived from his results.

Our interest in Theorem 1.1 and its generalizations is partially motivated by applications in the theory of analytic
sets. In particular, papers [6–10] contain a variety of results on approximation of complex analytic sets by complex
Nash sets whose proofs can be divided into two stages: (i) preparation, where only direct geometric methods appear,
(ii) switching Theorem 1.1. Thus the techniques of the present article allow to obtain many of these results in a purely
geometric way. As an example let us mention the following main theorem of [9]. Let X be an analytic subset of pure
dimension n of an open set U ⊂ Cm and let E be a Nash subset of U such that E ⊂ X. Then for every a ∈ E there
is an open neighborhood Ua of a in U and a sequence {Xν} of complex Nash subsets of Ua of pure dimension n

converging to X ∩Ua in the sense of holomorphic chains such that the following holds for every ν ∈ N: E ∩Ua ⊂ Xν

and μx(Xν) = μx(X) for x ∈ (E ∩ Ua) \ Fν , where Fν is a nowhere dense analytic subset of E ∩ Ua . Here μx(X)

denotes the multiplicity of X at x (see [11,13] for the properties and generalizations of this notion).
In the proof of Theorem 3.8 we apply Theorem 3.1 from Section 3.1 which, being of independent interest, is the

first main result of this paper. The aim of Section 3.1 is to develop a method of controlling the behavior of irreducible
components of analytic sets from a sequence {Xν} converging in the sense of holomorphic chains to some analytic
set X. More precisely, we formulate conditions which guarantee that the numbers of the irreducible components of X

and of Xν are equal for almost all ν which in the considered context implies that every irreducible component of X is
the limit of a sequence of irreducible components of the sets from {Xν}.

Combining (the global version of) Theorem 1.1 with Theorem 3.1 one obtains a new method of algebraic ap-
proximation of analytic sets extending the approach of [6]. Namely, let X be an analytic subset of U × Ck of pure
dimension n with proper projection onto the Runge domain U ⊂ Cn. It is well known [24] that X is a subset of another
purely n-dimensional analytic set X′ given by:

X′ = {
(x, z1, . . . , zk) ∈ U × Ck: p1(x, z1) = · · · = pk(x, zk) = 0

}
,

where pi ∈ O(U)[zi] is unitary with non-zero discriminant, for i = 1, . . . , k. After replacing the coefficients of pi , for
every i, by their Nash approximations on U we obtain the set X̃′ approximating X′. Clearly, this does not mean that
some components of X̃′ automatically approximate X. Yet, by Theorem 3.1 there is a system of polynomial equations
satisfied by the coefficients of pi , i = 1, . . . , k, with the following property. Let Ũ be any open relatively compact
subset of U . If the Nash approximations of the coefficients (used to define X̃′) are close enough to the original coeffi-
cients and also satisfy the equations then X ∩ (Ũ × Ck) is approximated by some components of X̃′ ∩ (Ũ × Ck). The
existence of the Nash approximations of the coefficients satisfying the equations mentioned above in a neighborhood

of Ũ follows by the global version of Theorem 1.1.
Finally let us recall that the convergence of a sequence of analytic sets in the sense of chains, appearing in Theo-

rem 3.1, is equivalent to the (introduced in [15]) convergence of currents of integration over these sets in the weak-�
topology. The basic facts on holomorphic chains (and preliminaries on Nash sets and analytic sets with proper projec-
tion) are gathered in Section 2 below.
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2. Preliminaries

2.1. Nash sets

Let Ω be an open subset of Cn and let f be a holomorphic function on Ω . We say that f is a Nash func-
tion at x0 ∈ Ω if there exist an open neighborhood U of x0 and a polynomial P : Cn × C → C, P �= 0, such that
P(x,f (x)) = 0 for x ∈ U . A holomorphic function defined on Ω is said to be a Nash function if it is a Nash function
at every point of Ω . A holomorphic mapping defined on Ω with values in CN is said to be a Nash mapping if each of
its components is a Nash function.

A subset Y of an open set Ω ⊂ Cn is said to be a Nash subset of Ω if and only if for every y0 ∈ Ω there exists a
neighborhood U of y0 in Ω and there exist Nash functions f1, . . . , fs on U such that

Y ∩ U = {
x ∈ U : f1(x) = · · · = fs(x) = 0

}
.

We will use the following fact from [21], p. 239. Let π :Ω × Ck → Ω denote the natural projection.

Theorem 2.1. Let X be a Nash subset of Ω × Ck such that π |X :X → Ω is a proper mapping. Then π(X) is a Nash
subset of Ω and dim(X) = dim(π(X)).

The fact from [21] stated below explains the relation between Nash and algebraic sets.

Theorem 2.2. Let X be a Nash subset of an open set Ω ⊂ Cn. Then every analytic irreducible component of X is an
irreducible Nash subset of Ω . Moreover, if X is irreducible then there exists an algebraic subset Y of Cn such that X

is an analytic irreducible component of Y ∩ Ω .

2.2. Analytic sets

Let U,U ′ be domains in Cn,Ck respectively and let π : Cn × Ck → Cn denote the natural projection. For any
purely n-dimensional analytic subset Y of U × U ′ with proper projection onto U by S(Y,π) we denote the set of
singular points of π |Y :

S(Y,π) = Sing(Y ) ∪ {
x ∈ Reg(Y ): (π |Y )′(x) is not an isomorphism

}
.

We often write S(Y ) instead of S(Y,π) when it is clear which projection is taken into consideration.
It is well known that S(Y ) is an analytic subset of U × U ′, dim(Y ) < n (cf. [11], p. 50), hence by the Remmert

theorem π(S(Y )) is also analytic. Moreover, the following hold. The mapping π |Y is surjective and open and there
exists an integer s = s(π |Y ) such that

(1) �(π |Y )−1({a}) < s for a ∈ π(S(Y )),
(2) �(π |Y )−1({a}) = s for a ∈ U \ π(S(Y )),
(3) for every a ∈ U \ π(S(Y )) there exists a neighborhood W of a and holomorphic mappings f1, . . . , fs :W → U ′

such that fi ∩ fj = ∅ for i �= j and f1 ∪ · · · ∪ fs = (W × U ′) ∩ Y .

Let E be a purely n-dimensional analytic subset of U × U ′ with proper projection onto a domain U ⊂ Cn, where
U ′ is a domain in C. The unitary polynomial p ∈ O(U)[z] such that E = {(x, z) ∈ U × C: p(x, z) = 0} and the
discriminant of p is not identically zero will be called the optimal polynomial for E.

Finally, for any analytic subset X of an open set Ũ ⊂ Cm let X(k) ⊂ Ũ denote the union of all irreducible compo-
nents of X of dimension k.

2.3. Convergence of closed sets and holomorphic chains

Let U be an open subset in Cm. By a holomorphic chain in U we mean the formal sum A = ∑
j∈J αjCj , where

αj �= 0 for j ∈ J are integers and {Cj }j∈J is a locally finite family of pairwise distinct irreducible analytic subsets
of U (see [22], cf. also [5,11]). The set

⋃
j∈J Cj is called the support of A and is denoted by |A| whereas the sets Cj



M. Bilski / J. Math. Pures Appl. 90 (2008) 312–327 315
are called the components of A with multiplicities αj . The chain A is called positive if αj > 0 for all j ∈ J . If all the
components of A have the same dimension n then A will be called an n-chain.

Below we introduce the convergence of holomorphic chains in U . To do this we first need the notion of the local
uniform convergence of closed sets (cf. [23]). Let Y,Yν be closed subsets of U for ν ∈ N. We say that {Yν} converges
to Y locally uniformly if:

(1l) for every a ∈ Y there exists a sequence {aν} such that aν ∈ Yν and aν → a in the standard topology of Cm,
(2l) for every compact subset K of U such that K ∩ Y = ∅ it holds K ∩ Yν = ∅ for almost all ν.

Then we write Yν → Y .
We say that a sequence {Zν} of positive n-chains converges to a positive n-chain Z if:

(1c) |Zν | → |Z|,
(2c) for each regular point a of |Z| and each submanifold T of U of dimension m − n transversal to |Z| at a such

that T is compact and |Z| ∩ T = {a}, we have deg(Zν · T ) = deg(Z · T ) for almost all ν.

Then we write Zν � Z. By Z · T we denote the intersection product of Z and T (cf. [22]). Observe that the chains
Zν · T and Z · T for sufficiently large ν have finite supports and the degrees are well defined. Recall that for a chain
A = ∑d

j=1 αj {aj }, deg(A) = ∑d
j=1 αj .

The following lemma from [22] will be useful to us.

Lemma 2.3. Let n ∈ N and Z,Zν , for ν ∈ N, be positive n-chains. If |Zν | → |Z| then the following conditions are
equivalent:

(1) Zν � Z,
(2) for each point a from a given dense subset of Reg(|Z|) there is a submanifold T of U of dimension m − n

transversal to |Z| at a such that T is compact, |Z| ∩ T = {a} and deg(Zν · T ) = deg(Z · T ) for almost all ν.

Let U ⊂ Cn be a domain and let π :U × Ck → U be the natural projection. Theorem 2.4 below, taken from [6],
will be applied in the proof of the main result (s(π |Y ) is defined in Section 2.2).

Theorem 2.4. Let Y,Yν , for ν ∈ N, be purely n-dimensional analytic subsets of U ×Ck with proper projection onto U

such that {Yν} converges to Y locally uniformly and s(π |Yν ) = s(π |Y ) for every ν. Moreover, assume that for every ν

the number of the irreducible components of Y does not exceed the number of the irreducible components of Yν . Then
for each irreducible component A of Y there is a sequence {Aν} converging to A locally uniformly such that every Aν

is an irreducible component of Yν and s(π |Aν ) = s(π |A) for almost all ν.

3. Approximation

3.1. Approximation of components of analytic sets

Our first main result is the following theorem. Let U ⊂ Cn be a domain and let π :U × Ck → U denote the natural
projection. Let X ⊂ U × Ck be an analytic subset of pure dimension n with proper projection onto U . Recall that
s(π |X) denotes the cardinality of the generic fiber in X over U .

Theorem 3.1. Let {Xν} be a sequence of purely n-dimensional analytic subsets of U × Ck with proper projection
onto U converging locally uniformly to X such that s(π |X) = s(π |Xν ) for ν ∈ N. Assume that {(π(S(Xν)))(n−1)}
converges to (π(S(X)))(n−1) in the sense of holomorphic chains. Then for every analytic subset Y of U × Ck of pure
dimension n such that Y ⊂ X and for every open relatively compact subset Ũ of U there exists a sequence {Yν} of
purely n-dimensional analytic subsets of Ũ × Ck converging to Y ∩ (Ũ × Ck) in the sense of holomorphic chains such
that Yν ⊂ Xν for every ν ∈ N.
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Remark 3.2. From the proof of Theorem 3.1 it follows that if Y ∩ (Ũ × Ck) is irreducible than Yν is irreducible as
well for almost all ν.

Proof of Theorem 3.1. First the theorem will be proved under the following extra hypotheses:

(1) U = U1 × U2 ⊂ Cn−1 × C where U1, U2 are open balls,
(2) π(S(X)) is with proper projection onto U1,
(3) there is a compact ball B in U2 such that (U1 × B) ∩ π(S(X)) = ∅.

This will be done in two steps. Step 1 is of preparatory nature. Here we specify several technical conditions which
may be assumed satisfied by X and Xν (for large ν) without loss of generality. These conditions are used in Step 2
the idea of which is to show that for almost all ν the number of the irreducible components of X ∩ (Ũ × Ck) does
not exceed the number of the irreducible components of Xν ∩ (Ũ × Ck) (in fact the numbers are equal). This is done
by constructing an injective mapping which assigns to every irreducible component of X ∩ (Ũ × Ck) an irreducible
component of Xν ∩ (Ũ × Ck). Then Theorem 2.4 from Section 2.3 may be applied which completes the proof (under
the hypotheses (1)–(3) above).

Finally we show (Step 3) that (1)–(3) are not necessary.

Step 1. Without loss of generality, we assume that X and Xν (for large ν) satisfy the conditions specified below.
Denote,

k̂ := max
{
�
(({x′} × U2

) ∩ (
π

(
S(X)

))
(n−1)

)
: x′ ∈ U1

}
.

Let Σ ′(X) be the subset of U1 of points x′ for which

�
(({x′} × U2

) ∩ (
π

(
S(X)

))
(n−1)

)
< k̂.

Put Σ(X) = Σ ′(X) ∪ ρ(π(S(X)) \ π(S(X))(n−1)), where ρ :U1 × U2 → U1 is the natural projection. (The closure
is taken in U1 × U2. Generally, in this paper, the topological structure on any analytic set is induced by the standard
topology of Cm in which the set is contained.)

Observe that Σ(X) is a nowhere dense analytic subset of U1 hence there are x′
0 ∈ U1 \ Σ(X) and compact balls

B1, . . . ,Bk̂
⊂ U2 such that B ∩ (

⋃k̂
i=1 Bi) = ∅ and Bi ∩Bj = ∅ for i �= j . Moreover, each Bi contains precisely one y

such that (x′
0, y) ∈ π(S(X))(n−1). Furthermore, since U may be replaced by its relatively compact subset containing

the fixed Ũ , we may assume that there is r > 0 such that for every

x ∈ (U1 × B) ∪ ({x′
0} × (

U2 \ (B1 ∪ · · · ∪ B
k̂
)
))

if (x,u), (x, v) ∈ X and u �= v, then ‖u − v‖Ck > r .
Next, by the fact that {π(S(Xν))(n−1)} converges to π(S(X))(n−1) in the sense of chains and again by the fact that

one may pass on to a relatively compact subset of U , the following is assumed for large ν: π(S(Xν)) is with proper
projection onto U1 and the cardinality of the generic fiber of π(S(Xν))(n−1) over U1 equals k̂. Moreover, in every Bi

there is precisely one y such that (x′
0, y) ∈ π(S(Xν))(n−1).

Fix x0 ∈ U1 × B . Let A ⊂ U1 × B × Ck denote the fiber in X over x0. For every irreducible component Y of X

define AY := Y ∩ A. For every such Y , there is an arc

γY : [0,1] → ((
U \ (

π
(
S(X)

))) × Ck
) ∩ Y

connecting all the points in AY . Let

r0 = inf

{
‖u − v‖: (x, v), (x,u) ∈ X,u �= v, x ∈

⋃
Y

π
(
γY

([0,1]))}.

Then r0 > 0.
Pick any 0 < δ < min( r

3 ,
r0
3 ). We complete Step 1 by observing that for large ν the following may be assumed:(⋃

π
(
γY

([0,1]))) ∩ π
(
S(Xν)

) = ∅

Y
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and

dist
(({x} × Ck

) ∩ X,
({x} × Ck

) ∩ Xν

)
< δ

for every x ∈ U (the latter due to the fact that U may be replaced by its relatively compact subset). (Here dist denotes
the Hausdorff distance.)

Step 2. We show that if X and Xν satisfy the assumptions made in Step 1 (which holds for large ν) then the number
of the irreducible components of X does not exceed the number of the irreducible components of Xν . Therefore
by Theorem 2.4 for every irreducible component Y of X, there is a sequence of purely n-dimensional analytic sets
{Yν} converging to Y locally uniformly such that Yν ⊂ Xν and s(π |Y ) = s(π |Yν ) for almost all ν. Consequently, by
Lemma 2.3, {Yν} converges to Y in the sense of holomorphic chains as required.

To do this we need the following claim. Let F ⊂ (U1 × B × Ck) ∩ X be the graph of a holomorphic mapping
defined on U1 × B . (Note that, by (1) and (3), (U1 × B × Ck) ∩ X is the union of such graphs.) Put Σ = Σ(X).

Claim 3.3. Let X̃ = ⋃
a∈(U1\Σ) Xa , where for every a ∈ (U1 \ Σ) by Xa we denote the irreducible component of

({a} × U2 × Ck) ∩ X containing ({a} × B × Ck) ∩ F . Then X̃ is an analytic subset of ((U1 \ Σ) × U2 × Ck).

Proof. It is sufficient to check that for every a ∈ U1 \ Σ there is a ball B ′ ⊂ U1 \ Σ centered at a such that (B ′ ×
U2 × Ck) ∩ X̃ is an analytic subset of B ′ × U2 × Ck .

Fix a0 ∈ U1 \Σ and take a ball B ′ ⊂ U1 \Σ centered at a0. We check that (B ′ ×U2 ×Ck)∩X̃ equals the irreducible
component (denoted by X′) of (B ′ ×U2 ×Ck)∩X containing (B ′ ×B ×Ck)∩F . First note that (B ′ ×U2 ×Ck)∩X̃ ⊆
X′ (an immediate consequence of the fact that for every a ∈ B ′ the analytic set ({a} × U2 × Ck) ∩ X′ contains
({a} × B × Ck) ∩ F so it must contain Xa as well).

For the converse inclusion, suppose for a moment that X′ � (B ′ × U2 × Ck) ∩ X̃. Then there is (a, b) ∈ (B ′ × B)

such that the number of points in ({(a, b)}×Ck)∩X′ is strictly greater than the number of points in ({(a, b)}×Ck)∩X̃.
Since X′ is irreducible, there is an arc

γ : [0,1] → ((
(B ′ × U2) \ π

(
S(X)

)) × Ck
) ∩ X′

connecting all the points in ({(a, b)} × Ck) ∩ X′.
It is easy to see (at least when B ′ is small which we may assume) that there is a homeomorphic deforma-

tion H : (B ′ × U2) → (B ′ × U2), such that H({a′} × U2) ⊂ {a′} × U2 for every a′ ∈ B ′, after which the set
π(S(X)) ∩ (B ′ × U2) becomes the union of graphs of constant functions defined on B ′. Then the arc H̃ ◦ γ , where
H̃ = (H, idCk ) :B ′ × U2 × Ck → B ′ × U2 × Ck , can be deformed by shifting along Ẽ = H(π(S(X)) ∩ (B ′ × U2)) to
the arc

τ : [0,1] → ((({a} × U2
) \ Ẽ

) × Ck
) ∩ H̃ (X′).

Consequently, H̃−1 ◦ τ is an arc connecting all the points of ({(a, b)} × Ck) ∩ X′ whose image is contained in
((({a} × U2) \ π(S(X))) × Ck) ∩ X′. This means that ({a} × U2 × Ck) ∩ X′ is irreducible, hence({a} × U2 × Ck

) ∩ X̃ = ({a} × U2 × Ck
) ∩ X′,

because ({a}×B ×Ck)∩F is contained in both sets of the latter equation. On the other hand, these sets have different
number of points in generic fibers over {a} × U2, a contradiction.

Thus we have checked that (B ′ × U2 × Ck) ∩ X̃ = X′ which implies the analyticity and the proof is complete. �
Let us return to the proof of Theorem 3.1. For every irreducible component Y of X select one graph FY of a

holomorphic mapping defined on U1 × B such that FY ⊂ Y . Then, by Step 1, there is the uniquely determined graph
FY,ν of the holomorphic mapping defined on U1 × B such that FY,ν ⊂ Xν and such that

dist
(({x} × Ck

) ∩ FY ,
({x} × Ck

) ∩ FY,ν

)
< δ

for every x ∈ U1 × B (for δ picked in Step 1).
Now put Σν = Σ(Xν) and define Ỹν = ⋃

a∈U1\Σν
Ya,ν where Ya,ν is the irreducible component of ({a}×U2 × Ck)

∩Xν containing ({a}×B × Ck)∩FY,ν . By Claim 3.3, applied to Xν , Ỹν is an analytic subset of (U1 \Σν)×U2 × Ck
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(clearly, of pure dimension n with proper projection onto (U1 \Σν)×U2). Let Yν be the closure of Ỹν in U ×Ck . Note
that Yν is analytic as Σν × U2 is a nowhere dense analytic subset of U and Ỹν ⊂ Xν and Xν is with proper projection
onto U (so its fibers over U are locally bounded at every x ∈ Σν × U2). It is easy to see that Yν is an irreducible
component of Xν (otherwise ({a}×U2 × Ck)∩Yν would be reducible for some a ∈ U1 \Σν , a contradiction with the
definition of Ỹν ).

We show that the mapping which assigns to every irreducible component Y of X the set Yν described above
is injective, which completes the proof. To do this it is sufficient to check the following two facts for every fixed
irreducible component Y of X:

(a) s(π |Y ) = s(π |Yν ),
(b) for x0 ∈ U1 × B fixed in Step 1 and for every (x0, v) ∈ Y there is (x0, vν) ∈ Yν such that ‖v − vν‖ < δ.

Clearly, for every irreducible component Yν of Xν there is at most one Y satisfying (a) and (b).
Let us handle (a). Take x′

0 picked in Step 1. We may assume that x′
0 /∈ Σν (otherwise it can be replaced by a point

from an arbitrarily small neighborhood of x′
0 in U1 \ (Σ ∪Σν) satisfying all the conditions specified for x′

0 in Step 1).
Let CY ,CY,ν denote the irreducible components of ({x′

0} × U2 × Ck) ∩ Y , ({x′
0} × U2 × Ck) ∩ Xν respectively

containing ({x′
0} × B × Ck) ∩ FY , ({x′

0} × B × Ck) ∩ FY,ν , respectively.

Claim 3.4. The cardinalities of the generic fibers in CY and CY,ν over {x′
0} × U2 are equal.

Proof. Observe that the mapping,

G :
({x′

0} × (U2 \ B̃) × Ck
) ∩ Y → ({x′

0} × (U2 \ B̃) × Ck
) ∩ Xν,

where B̃ = B1 ∪ · · · ∪B
k̂
, given by G(x′

0, y,u) = (x′
0, y, v), where v is the unique vector in Ck such that ‖u− v‖ < δ,

is a biholomorphism onto its image. Moreover, since, by the choice of x′
0, the interior of every Bi contains precisely

one element from π(S(X)) and one from π(S(Xν)) and the intersection of every pair of distinct Bi ’s is empty, we
may apply the following claim.

Claim 3.5. Let D ⊂ C be a domain, ρ :D × Ck → D be the natural projection and let E ⊂ D × Ck be an irreducible
analytic curve such that ρ|E is proper. Finally, let K1, . . . ,Ks ⊂ D be compact balls, Ki ∩ Kj = ∅ for i �= j and let
�Ki ∩ ρ(S(E)) = 1 for every i = 1, . . . , s. Then E ∩ ((D \ ⋃s

i=1 Ki) × Ck) is irreducible.

Proof. Put:

Ẽ = E ∩
((

D \
s⋃

i=1

Ki

)
× Ck

)
.

It is sufficient to show that for every a, b ∈ Ẽ \ (ρ(S(E)) × Ck) there is an arc τ : [0,1] → Ẽ \ (ρ(S(E)) × Ck) such
that τ(0) = a, τ (1) = b.

Fix a, b ∈ Ẽ \ (ρ(S(E)) × Ck). Let K̂1, . . . , K̂s be compact balls in D, Ki � K̂i for i = 1, . . . , s, satis-
fying the hypotheses of the claim with a, b /∈ ⋃s

i=1 K̂i × Ck . Irreducibility of E implies that there is an arc
γ : [0,1] → E \ (ρ(S(E)) × Ck) such that γ (0) = a, γ (1) = b. Then τ can be obtained from γ as follows. For
every t ∈ [0,1] such that γ (t) /∈ (

⋃s
i=1 K̂i × Ck) put τ(t) = γ (t).

Take t ∈ [0,1] such that γ (t) ∈ K̂i × Ck for some i. By the hypothesis ρ(S(E)) ∩ K̂i = {g} for some g ∈ D. Let σ

be the segment passing through ρ(γ (t)), connecting g with the uniquely determined h(t) ∈ ∂K̂i . Then (σ × Ck) ∩ E

is the union of graphs of continuous functions defined on σ . Let f ⊂ (σ × Ck) be the one of these graphs for which
γ (t) ∈ f . Set τ(t) = (h(t), f (h(t))).

It is easy to check that τ defined as above is an arc connecting a and b in Ẽ \ (ρ(S(E)) × Ck). �
Proof of Claim 3.4 (end). We show that

G
(({x′

0} × (U2 \ B̃) × Ck
) ∩ CY

) = ({x′
0} × (U2 \ B̃) × Ck

) ∩ CY,ν,
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which clearly implies the assertion of the claim. To do this observe that, by Claim 3.5, ({x′
0} × (U2 \ B̃) × Ck) ∩ CY

is irreducible. Then G(({x′
0} × (U2 \ B̃) × Ck) ∩ CY ) is irreducible as well because G is a biholomorphism onto its

image. This implies that

G
(({x′

0} × (U2 \ B̃) × Ck
) ∩ CY

) = ({x′
0} × (U2 \ B̃) × Ck

) ∩ CY,ν

because ({x′
0}× (U2 \ B̃)×Ck)∩CY,ν is irreducible by Claim 3.5 and both sets contain ({x′

0}×B ×Ck)∩FY,ν (recall

that, by Step 1, B ∩ ⋃k̂
i=1 Bi = ∅). �

Proof of Theorem 3.1 (end). Now define Ỹ = ⋃
a∈U1\Σ Ya where Ya is the irreducible component of ({a} × U2 ×

Ck) ∩ Y containing ({a} × B × Ck) ∩ FY . By Claim 3.3, Ỹ is an analytic subset of (U1 \ Σ) × U2 × Ck (of pure
dimension n with proper projection onto (U1 \ Σ) × U2). Since Ỹ is contained in Y ∩ ((U1 \ Σ) × U2 × Ck) which is
irreducible and n-dimensional, it holds

Ỹ = Y ∩ (
(U1 \ Σ) × U2 × Ck

)
.

The latter fact implies that

Y ∩ ({x′
0} × U2 × Ck

) = CY

and, consequently, that the cardinalities of the generic fibers in Y over U and in CY over {x′
0}×U2 are equal (because

{x′
0} × U2 � π(S(X))).
Finally, observe that (in view of the fact that {x′

0} × U2 � π(S(Xν))) the cardinalities of the generic fibers in Yν

over U and in CY,ν over {x′
0} × U2 are equal because

Yν ∩ ({x′
0} × U2 × Ck

) = CY,ν

by the definition of Yν . Thus, in view of Claim 3.4, s(π |Y ) = s(π |Yν ) as required in (a).
Let us turn to (b). Consider the arc γY defined in Step 1. Note that for every γY (t) ∈ X, where t ∈ [0,1], there is

precisely one element (e(t), f (t)) ∈ Xν ⊂ U × Ck such that π(γY (t)) = e(t) and the distance between (e(t), f (t))

and γY (t) is smaller than δ. Since (π(γY ([0,1]))) ∩ π(S(Xν)) = ∅, then

τ : [0,1] � t �→ (
e(t), f (t)

) ∈ Xν

is an arc whose image is contained in one irreducible component of Xν . On the other hand, there is t0 such that
γY (t0) ∈ FY so τ(t0) ∈ FY,ν , which implies that the irreducible component containing τ([0,1]) contains FY,ν as well.
Thus this irreducible component must be Yν . To complete the proof observe that for every (x0, v) ∈ Y there is t ′ ∈ [0,1]
such that (x0, v) = γY (t ′), τ(t ′) = (x0, f (t ′)) ∈ Yν , ‖v − f (t ′)‖ < δ.

Thus we have proved the theorem under the extra hypotheses (1)–(3) formulated at the beginning.

Step 3. Let us show that (1)–(3) need not be assumed. Let {Xν} be a sequence of analytic sets satisfying the hypotheses
of Theorem 3.1 and let Y be an analytic subset of U × Ck of pure dimension n with Y ⊂ X. Fix an open set Ũ � U .

Cover Ũ by a finite number of domains E1, . . . ,Es ⊂ U , Ei � Ẽi ⊂ U such that for every i ∈ {1, . . . , s} there
is a polynomial automorphism Li : Cn → Cn with the following property. The conditions (1)–(3) are satisfied with
U,X replaced by Li(Ẽi), βLi

(X ∩ (Ẽi × Ck)) respectively, where βLi
: Cn × Ck → Cn × Ck is given by the formula

βLi
(x, z) = (Li(x), z).
By Step 2 for every i ∈ {1, . . . , s} there is a sequence {Yi,ν} of purely n-dimensional analytic subsets of Ei × Ck ,

Yi,ν ⊂ (Ei × Ck) ∩ Xν , converging to (Ei × Ck) ∩ Y in the sense of chains. Let us check that Yν = (
⋃s

i=1 Yi,ν) ∩
(Ũ × Ck) is, for large ν, an analytic subset of Ũ × Ck . One easily observes that this is the case as the convergence in
the sense of chains of {Xν} to X imply that for almost all ν and for every i, j it holds:

Yi,ν ∩ (
(Ei ∩ Ej) × Ck

) = Yj,ν ∩ (
(Ei ∩ Ej) × Ck

)
.

The latter equation also implies that {Yν} converges to Y ∩ (Ũ × Ck) in the sense of chains. Thus the proof of
Theorem 3.1 is complete. �
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3.2. Approximation of mappings

First let us note that in Theorem 1.1 (and in its generalizations) the space Cn containing U may be replaced by
an affine algebraic variety. In fact, in the global version of the approximation theorem (see [16], Theorem 3.2) the
domain of the approximated mapping is admitted to have singularities. Since this case is reduced to the one where the
mapping is defined on an open subset of some Cn and the reduction is of purely analytic geometric nature, we assume
here that U is an open subset of Cn.

Our aim is to give a direct geometric proof of Theorem 1.1, or more precisely, its semi-global version (Theo-
rem 3.8). The proof is organized as follows. First using Theorem 3.1 we prove in Section 3.2.1 the following:

Proposition 3.6. Let U be a domain in Cn and let f :U → Ck be a holomorphic mapping that satisfies a system of
equations Q(x,f (x)) = 0 for x ∈ U . Here Q is a Nash mapping from a neighborhood in Cn × Ck of the graph of f

into some Cq . Then there is R ∈ C[x, z1, . . . , zk] with R(x,f (x)) not identically zero such that the following holds.
If for some open Ũ ,U0 ⊂ U with U0 � Ũ there is a sequence {gν : Ũ → Ck} of Nash mappings converging locally
uniformly to f |

Ũ
such that {{x ∈ Ũ : R(x,gν(x)) = 0}} converges to {x ∈ Ũ : R(x,f (x)) = 0} in the sense of chains

then there is a sequence {f ν :U0 → Ck} of Nash mappings converging uniformly to f |U0 such that Q(x,f ν(x)) = 0
for x ∈ U0, ν ∈ N.

Next in Section 3.2.2 for any holomorphic mapping f :U → Ck , f = f (x), and any R ∈ C[x, z1, . . . , zk] such that
R(x,f (x)) is not identically zero, we construct a family Uf,R of open subsets of U such that the following holds.

Proposition 3.7. Let f :U → Ck be a holomorphic mapping, where U is a domain in Cn, let R ∈ C[x, z1, . . . , zk] be
such that R(x,f (x)) is not identically zero on U and let U0 ∈ Uf,R . Then there are an open Ũ ⊂ Cn with U0 � Ũ

and a sequence {f ν : Ũ → Ck} of Nash mappings converging uniformly to f |
Ũ

such that {{x ∈ Ũ : R(x,f ν(x)) = 0}}
converges to {x ∈ Ũ : R(x,f (x)) = 0} in the sense of chains.

Proposition 3.7 is proved in Section 3.2.3. One of the main results of this paper is the following semi-global version
of the approximation theorem.

Theorem 3.8. Let U be a domain in Cn and let f :U → Ck be a holomorphic mapping that satisfies a system of
equations Q(x,f (x)) = 0 for x ∈ U . Here Q is a Nash mapping from a neighborhood in Cn × Ck of the graph of f

into some Cq . Let R be any polynomial obtained by applying Proposition 3.6 with f,Q. Then for every U0 ∈ Uf,R

there is a sequence {f ν :U0 → Ck} of Nash mappings converging uniformly to f |U0 such that Q(x,f ν(x)) = 0 for
x ∈ U0 and ν ∈ N.

Proof. In view of the fact that R satisfies the assertion of Proposition 3.6, it is sufficient to apply Proposition 3.7. �
In order to characterize those U0 for which the presented methods work we need an insight into Uf,R . Here let us

just mention two special cases which directly follow by Section 3.2.2

Corollary 3.9.

(a) Let U be a domain in C. Then for every holomorphic mapping f :U → Ck and every R ∈ C[x, z1, . . . , zk],
R(x,f (x)) not identically zero, the family Uf,R contains every open set U0 for which there is a Runge domain Ũ

with U0 � Ũ ⊂ U . Consequently, if f depends on one variable we have the global version of Theorem 1.1, first
proved by van den Dries in [14].

(b) Let U be a domain in Cn. Then for every holomorphic mapping f :U → Ck , every R ∈ C[x, z1, . . . , zk],
R(x,f (x)) not identically zero, and x0 ∈ U there is an open neighborhood Ũ of x0 such that Ũ ∈ Uf,R , which
implies Theorem 1.1.
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3.2.1. Proof of Proposition 3.6
Proposition 3.6 is a consequence of the following:

Proposition 3.10. Let U,V be a domain in Cn and an algebraic subvariety of Cm̂, respectively. Let F :U → V be
a holomorphic mapping. Then there is a polynomial R in m̂ variables with R ◦ F not identically zero such that the
following holds. If for some open Ũ ,U0 ⊂ U with U0 � Ũ there is a sequence {Gν : Ũ → Cm̂} of Nash mappings
converging locally uniformly to F |

Ũ
such that {{x ∈ Ũ : (R ◦ Gν)(x) = 0}} converges to {x ∈ Ũ : (R ◦ F)(x) = 0} in

the sense of chains then there is a sequence {Fν :U0 → V } of Nash mappings converging uniformly to F |U0 .

First let us check that Proposition 3.10 implies Proposition 3.6. Let f :U → Ck be the holomorphic mapping
from Proposition 3.6. Put F(x) = (x, f (x)) and m̂ = n + k. Let V be the intersection of all algebraic subvarieties of
Cm̂ containing F(U). Then by Proposition 3.10 there is R ∈ C[x1, . . . , xn, z1, . . . , zk] satisfying the assertion of this
proposition. Next fix U0, Ũ as in Proposition 3.6, assume (without loss of generality) that U0 is connected and take
an open connected U1 with U0 � U1 � Ũ . Now let gν : Ũ → Ck be a sequence of Nash mappings converging locally
uniformly to f |

Ũ
such that {{x ∈ Ũ : R(x,gν(x)) = 0}} converges to {x ∈ Ũ : R(x,f (x)) = 0} in the sense of chains.

Set Gν(x) = (x, gν(x)). Then by Proposition 3.10 there is a sequence {Fν :U1 → V } of Nash mappings converging
uniformly to F |U1 .

We need to show that the first n components of Fν may be assumed to constitute the identity and that Q ◦ Fν = 0
for sufficiently large ν. To this end denote Y = {(x, v) ∈ Û ⊂ Cn × Ck: Q(x,v) = 0}, where Û is the domain of Q.
Clearly, we may assume that Fν(U1) ⊂ Û for almost all ν. Next observe that Fν(U1) ⊂ Y for almost all ν. Indeed,
take ẑ ∈ F(U1)∩ Reg(V ) (the intersection is nonempty as F(U1) ⊂ Sing(V ) implies, by the connectedness of U , that
F(U) ⊂ Sing(V ) � V ). Let B be an open neighborhood of ẑ in Cn × Ck such that B ∩V is a connected manifold and
let U2 be a nonempty open subset of U1 such that F(U2),F

ν(U2) ⊂ B for almost all ν. Then B ∩ V ⊂ Y (otherwise
F(U2) ⊂ Ṽ where Ṽ is an algebraic subvariety of Cn × Ck with dim(Ṽ ) < dim(V )). This implies that Fν(U2) ⊂ Y

for almost all ν hence Fν(U1) ⊂ Y because U1 is connected.
Let F̃ ν :U1 → Cn, for ν ∈ N, be the mapping whose components are the first n components of Fν . Since {F̃ ν}

converges uniformly to the identity on U1 and U0 � U1 there is a sequence Hν :U0 → U1 of Nash mappings such that
F̃ ν ◦Hν = idU0 if ν is large enough. Consequently, Fν ◦Hν(x) = (x, f ν(x)) for x ∈ U0 and {f ν :U0 → Ck} satisfies
the assertion of Proposition 3.6.

Proof of Proposition 3.10. First observe that we may assume F(U) � Sing(V ) as otherwise V may be replaced by
Sing(V ). Next, since U is connected, F(U) is contained in one irreducible component of V so we may assume that
V is of pure dimension, say m.

We may also assume that V ⊂ Cm̂ ≈ Cm × Cs is with proper projection onto Cm. Indeed, there is a C-linear
isomorphism J : Cm+s → Cm+s such that J (V ) is with proper projection onto Cm. Thus if there exists a sequence
Hν :U0 → J (V ) of Nash mappings converging to J ◦ F |U0 then the sequence {J−1 ◦ Hν} satisfies the assertion of
the proposition.

To complete the preparations, by ρ : Cm × Cs → Cm, ρ̃ : Cm × C → Cm denote the natural projections. Passing
to the image of V by a linear isomorphism arbitrarily close to the identity, if necessary, we assume (in view of
F(U) � Sing(V )) that ρ(F (U)) � ρ(S(V )). Now the polynomial R is constructed as follows. Any C-linear form
L : Cs → C determines the mapping ΦL : Cm × Cs → Cm × C by ΦL(u, v) = (u,L(v)). Since V is an algebraic
subset of Cm × Cs with proper projection onto Cm then ΦL(V ) is an algebraic subset of Cm × C also with proper
projection onto Cm for every form L. Take a form L such that the fibers of the projections of ΦL(V ) and V onto
Cm have generically the same cardinality and ρ(F (U)) � ρ̃(S(ΦL(V ))). The set ΦL(V ) is described by the unitary
polynomial in one variable (corresponding to the last coordinate of Cm × C) whose coefficients are polynomials in m

variables and whose discriminant is non-zero. The discriminant, denoted by R, is the polynomial we look for. In fact,
after the preparations, R depends only on m � m̂ variables (the last s = m̂ − m variables are dummy).

Let us show that R indeed has all the required properties. First R ◦ F is not identically zero as ρ(F (U)) �
ρ̃(S(ΦL(V ))). Next take U0, Ũ and Gν as in Proposition 3.10. We need the following notation. For any holomorphic
mapping H :E → Cm, where E,E′ are open subsets of Cn, E′ ⊂ E, and any algebraic subvariety X of Cm × Cs

denote:

V(X,E′,H) = {
(x, v) ∈ E′ × Cs :

(
H(x), v

) ∈ X
}
.
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The mappings F,Gν are of the form F = (F̃ , F̂ ), Gν = (G̃ν, Ĝν), for some holomorphic F̃ :U → Cm, G̃ν : Ũ → Cm,
F̂ :U → Cs , Ĝν : Ũ → Cs .

In order to prove Proposition 3.10 it is sufficient to prove the following:

Claim 3.11. For every irreducible component Y of V(V ,U0, F̃ ) there is a sequence {Yν} of analytic subsets of U0 ×Cs

converging to Y in the sense of chains such that Yν is an irreducible component of V(V ,U0, G̃
ν) for every ν.

For the notion of the convergence of holomorphic chains see Section 2.3. Let us check that Proposition 3.10 indeed
follows by Claim 3.11. To this end note that graph(F̂ ) ⊂ V(V ,U0, F̃ ). Since there is a sequence {Yν} of analytic
sets converging to graph(F̂ ) in the sense of chains then Yν = graph(Hν) for almost all ν, where Hν :U0 → Cs is a
holomorphic mapping. In fact, since Yν is an irreducible component of V(V ,U0, G̃

ν) which is a Nash set then Yν

is a Nash set as well. Consequently Hν is a Nash mapping. Obviously, Hν converges to F̂ so (G̃ν,Hν) :U0 → V

converges to F |U0 as required.
Let us turn to the proof of Claim 3.11. First let us show that it is sufficient to prove this claim in the case where

V is replaced by ΦL(V ) where L : Cs → C is the linear form which has been used to define R. By analogy to the
definition of ΦL put ΨL(x, v) = (x,L(v)) for any x ∈ Cn, v ∈ Cs . Let π̃ : Cn × C → Cn, π : Cn × Cs → Cn denote
the natural projections. We need the following obvious:

Remark 3.12. Let Z ⊂ E × Cs be an analytic subset of pure dimension n with proper projection onto a domain
E ⊂ Cn such that s(π |Z) = s(π̃ |ΨL(Z)). Then for every irreducible analytic component Σ of ΨL(Z) there exists an
irreducible analytic component Γ of Z such that ΨL(Γ ) = Σ and s(π |Γ ) = s(π̃ |Σ).

Assume that Claim 3.11 holds with ΦL(V ) taken instead of V (s = 1). We check that it also holds with V . First
observe that V(ΦL(V ),U0, F̃ ) = ΨL(V(V ,U0, F̃ )) and V(ΦL(V ),U0, G̃

ν) = ΨL(V(V ,U0, G̃
ν)) for ν ∈ N and fix an

irreducible component Y of V(V ,U0, F̃ ). Then there are irreducible components Θν of ΨL(V(V ,U0, G̃
ν)), for ν ∈ N,

such that {Θν} converges to ΨL(Y ) in the sense of holomorphic chains.
Next note that the fact that F̃ (U0) � ρ̃(S(ΦL(V ))) and the way L has been chosen imply that the cardinalities of

the generic fibers in ΨL(V(V ,U0, F̃ )), V(V ,U0, F̃ ), ΨL(V(V ,U0, G̃
ν)) and in V(V ,U0, G̃

ν) over U0 are equal for
large ν. Therefore, by Remark 3.12, for almost all ν there is an irreducible component Yν of V(V ,U0, G̃

ν) such that
ΨL(Yν) = Θν and s(π |Yν ) = s(π |Y ). Thus it remains to check, in view of Lemma 2.3, that {Yν} converges to Y locally
uniformly. Observe that otherwise there would be a subsequence {Yνμ} of {Yν} converging to a purely n-dimensional

analytic set Z �= Y . But then, by the fact that ΨL preserves the cardinality of the generic fiber in V(V ,U0, F̃ ), it holds
ΨL(Z) �= ΨL(Y ) which contradicts the fact that {ΨL(Yν)} converges to ΨL(Y ).

Now we turn to the proof of Claim 3.11 with V replaced by ΦL(V ). It holds

ΦL(V ) = {
(y, z) ∈ Cm × C: P(y, z) = 0

}
,

where

P(y, z) = zt + zt−1c1(y) + · · · + ct (y) ∈ (
C[y])[z],

for some t ∈ N. We may assume that P treated as a polynomial in z has a non-zero discriminant. Let us recall that the
polynomial R is, by definition, this discriminant.

To complete the proof put:

Xν = V
(
ΦL(V ), Ũ , G̃ν

) = {
(x, z) ∈ Ũ × C: P

(
G̃ν(x), z

) = 0
}

and

X = V
(
ΦL(V ), Ũ , F̃

) = {
(x, z) ∈ Ũ × C: P

(
F̃ (x), z

) = 0
}
.

Then

π̃
(
S(Xν)

) = {
x ∈ Ũ : R

(
G̃ν(x)

) = 0
}

and

π̃
(
S(X)

) = {
x ∈ Ũ : R

(
F̃ (x)

) = 0
}
,
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hence by the hypothesis the sequence {π̃(S(Xν))} converges to π̃(S(X)) in the sense of holomorphic chains. Now
it is sufficient to apply Theorem 3.1 and the proof of Claim 3.11 is complete. Consequently, we have also proved
Propositions 3.10 and 3.6. �
3.2.2. Construction of Uf,R

Put x = (x1, . . . , xn), x′ = (x1, . . . , xn−1) and π(x) = x′. Let f :U → Ck , f = f (x), be a holomorphic mapping
where U is a domain in Cn and let R ∈ C[x, z1, . . . , zk] be such that R(x,f (x)) is not identically zero. We construct
the family Uf,R . The construction is recursive with respect to the number n of the variables f depends on.

Let U0 be an open subset of C, n = 1. Then U0 ∈ Uf,R iff U0 is a relatively compact subset of some open simply
connected subset of U (hence in this case Uf,R depends only on U ).

Now assume that U0 is an open subset of Cn for n > 1. Then U0 ∈ Uf,R iff there is a biholomorphism
φ : Ǔ → Û ⊂ U , where Û , Ǔ are a domain and a Runge domain respectively in Cn with U0 � Û , and there is a
domain Ǔ1 ⊂ Cn−1 with Ǔ ⊂ Ǔ1 × C such that the following hold:

(1) R(φ(x), f (φ(x))) = H̃ (x)W(x), x ∈ Ǔ , for some H̃ ∈O(Ǔ ) non-vanishing on φ−1(U0) and some unitary poly-
nomial W ∈ O(Ǔ1)[xn] such that W−1(0) ⊂ Ǔ ,

(2) π(φ−1(U0)) ∈ Ug,S for some holomorphic mapping g : Ǔ1 → Cs , g = g(x′), and some S ∈ C[x′, z1, . . . , zs] de-
termined by f,R,φ,W below.

Given f,R,φ,W we obtain g,S as follows. Put f̃ = f ◦ φ. Then f̃ , φ are of the form f̃ = (f1, . . . , fk), φ =
(φ1, . . . , φn) for some fj ,φi ∈ O(Ǔ) for j = 1, . . . , k, i = 1, . . . , n. By (1) we have:

fj (x) = W(x)Hj (x) + rj (x),

φi(x) = W(x)Ȟi(x) + ři (x),

for x ∈ Ǔ , where rj (x), ři (x) ∈ O(Ǔ1)[xn] satisfy deg(rj ),deg(ři ) < deg(W) and Hj , Ȟi ∈ O(Ǔ) for j = 1, . . . , k,
i = 1, . . . , n.

Next, there are optimal polynomials (for the definition consult Section 2.2) W1, . . . ,Wŝ ∈ O(Ǔ1)[xn] such that
W = W

k1
1 · · · · · W

kŝ

ŝ
and dim(W−1

i (0) ∩ W−1
j (0)) < n − 1 for every i �= j . Put d = deg(W). For l = 1, . . . , ŝ,

j = 1, . . . , k, i = 1, . . . , n, the polynomials Wl, rj , ři are of the form:

Wl(x) = x
pl
n + x

pl−1
n al,1(x

′) + · · · + al,pl
(x′),

rj (x) = xd−1
n bj,0(x

′) + xd−2
n bj,1(x

′) + · · · + bj,d−1(x
′),

ři (x) = xd−1
n ci,0(x

′) + xd−2
n ci,1(x

′) + · · · + ci,d−1(x
′).

Let s denote the number of all the coefficients of Wl, rj , ři for all admissible l, j, i. The mapping g : Ǔ1 → Cs is
defined by:

g = (A1, . . . ,Aŝ,B1, . . . ,Bk,C1, . . . ,Cn),

where Al = (al,1, . . . , al,pl
), Bj = (bj,0, . . . , bj,d−1), Ci = (ci,0, . . . , ci,d−1) again for all admissible l, j, i.

Let us turn to determining S. Replacing the holomorphic coefficients

al,1, . . . , al,pl
, bj,0, . . . , bj,d−1, ci,0, . . . , ci,d−1,

for all l, j , i in Wl, rj , ři by new variables denoted by the same letters we obtain polynomials Pl,wj , w̌i , respectively.

Put P = P
k1
1 · · · · · P kŝ

ŝ
and define:

αj = PSj + wj , βi = P Ši + w̌i

for j = 1, . . . , k and i = 1, . . . , n, where Sj , Ši are new variables. Now divide R(β1, . . . , βn,α1, . . . , αk) by P (treated
as a polynomial in xn with polynomial coefficients) to obtain:

R(β1, . . . , βn,α1, . . . , αk) = W̃P + xd−1
n T1 + xd−2

n T2 + · · · + Td, (∗)
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where W̃ , T1, . . . , Td are polynomials such that T1, . . . , Td depend only on the tuple of variables u, where

u = (A1, . . . ,Aŝ,B1, . . . ,Bk,C1, . . . ,Cn)

and Al = (al,1, . . . , al,pl
), Bj = (bj,0, . . . , bj,d−1), Ci = (ci,0, . . . , ci,d−1) for all admissible l, j, i.

Finally, put T (u) = (T1(u), . . . , Td(u)) and observe that T (g(x′)) = 0 for x′ ∈ Ǔ1. By Proposition 3.6 there is
S ∈ C[x′, z1, . . . , zs] satisfying the assertion of Proposition 3.6 with g,T ,S taken in place of f,Q,R. Any such S is
suitable for our recursive definition.

Remark 3.13. For every holomorphic mapping f : Cn ⊃ U → Ck , polynomial R ∈ C[x, z1, . . . , zk] with R(x,f (x))

not identically zero and every x0 ∈ U the following holds. There is a neighborhood E of x0 in U such that
{x ∈ E: R(x,f (x)) = 0} is either empty or with proper projection onto an open subset of some affine (n − 1)-di-
mensional subspace of Cn. This fact, applied recursively in the construction above, immediately implies that there is
an open neighborhood Ũ of x0 in U such that Ũ ∈ Uf,R .

3.2.3. Proof of Proposition 3.7
The proposition is proved by induction on n (the number of the variables f depends on). First suppose that U ⊂ C

(i.e. n = 1) and fix f,R satisfying the assumptions of the proposition. Let U0 be any open relatively compact subset
of some open simply connected Ũ ⊂ U . Then

R
(
x,f (x)

) = (x − x0)
α0 · · · · · (x − xm)αmg(x),

for some m,α0, . . . , αm ∈ N, g ∈O(U) such that g(x) �= 0 for x ∈ U0.
Put W(x) = (x − x0)

α0 · · · · · (x − xm)αm . The mapping f is of the form f = (f1, . . . , fk) for some fj ∈ O(U),
j = 1, . . . , k. It holds

fj (x) = W(x)Hj (x) + rj (x), x ∈ U,

where Hj ∈ O(U), rj ∈ C[x] for j = 1, . . . , k. Now define f ν = (f ν
1 , . . . , f ν

k ) on Ũ by f ν
j (x) = W(x)Hj,ν(x) +

rj (x), ν ∈ N. Here {Hj,ν} is a sequence of polynomials converging locally uniformly to Hj on Ũ . It is clear that
R(x,f ν(x)) = W(x)gν(x), for some gν ∈ O(Ũ). The function g is non-vanishing on U0 therefore shrinking Ũ , if
necessary, we complete the proof for n = 1.

Now suppose that n > 1. Let f,R be a holomorphic mapping and a polynomial respectively satisfying the hy-
potheses of the proposition. Fix U0 ∈ Uf,R . By the definition of Uf,R there exists a biholomorphism φ : Ǔ → Û ,
where Ǔ ⊂ Cn is a Runge domain, U0 � Û and Ǔ ⊂ Ǔ1 × C for some open connected Ǔ1 ⊂ Cn−1, such that (1) and
(2) of Section 3.2.2 are satisfied.

Next observe that to complete the proof it is sufficient to show that there is an open E with φ−1(U0) � E ⊂ Ǔ and
there are sequences {f̃ ν}, {φν} of Nash mappings converging locally uniformly on E to f̃ = f ◦ φ,φ respectively in
such a way that {{x ∈ E: R(φν(x), f̃ ν(x)) = 0}} converges in the sense of chains to {x ∈ E: R(φ(x), f̃ (x)) = 0}.
Indeed, given such sequences we may assume, shrinking E if necessary, that φν |E is invertible for almost all ν.
Moreover, there is an open Ũ ⊂ φ(E) such that U0 � Ũ ⊂ φν(E) for almost all ν. Consequently, {{x ∈ Ũ : R(x, f̃ ν ◦
(φν)−1(x)) = 0}} converges to {x ∈ Ũ : R(x,f (x)) = 0} and we may set f ν = f̃ ν ◦ (φν)−1.

Before approximating f̃ , φ we show that there are Nash mappings

Aν
l = (

aν
l,1, . . . , a

ν
l,pl

)
, Bν

j = (
bν
j,0, . . . , b

ν
j,d−1

)
, Cν

i = (
cν
i,0, . . . , c

ν
i,d−1

)
,

for l = 1, . . . , ŝ, j = 1, . . . , k, i = 1, . . . , n, ν ∈ N, defined on some open set E1 ⊂ Cn−1 with π(φ−1(U0)) � E1 ⊂ Ǔ1
such that the following hold. The sequence {gν :E1 → Cs}, where gν = (Aν

1, . . . ,A
ν
ŝ
,Bν

1 , . . . ,Bν
k ,Cν

1 , . . . ,Cν
n), con-

verges uniformly to g|E1 and T1 ◦ gν = · · · = Td ◦ gν = 0 for ν ∈ N. Here g is the mapping from the condition (2) and
T1, . . . , Td are polynomials given by Eq. (∗) of Section 3.2.2.

To this end, observe that by (2) it holds π(φ−1(U0)) ∈ Ug,S , where the polynomial S is described in the previous
subsection. By the properties of S it is sufficient to show that there is a sequence {hν : Ẽ1 → Cs} of Nash map-
pings converging locally uniformly to g|

Ẽ1
, where π(φ−1(U0)) � Ẽ1 ⊂ Ǔ1, such that {{x′ ∈ Ẽ1: S(x′, hν(x′)) = 0}}

converges to {x′ ∈ Ẽ1: S(x′, g(x′)) = 0} in the sense of chains (then E1 may be taken to be any open set with
π(φ−1(U0)) � E1 � Ẽ1). This in turn is immediate by the induction hypothesis.
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Using the components of Aν
l ,B

ν
j ,Cν

i define on E = (E1 × C) ∩ Ǔ the following functions:

Wν
l (x) = x

pl
n + x

pl−1
n aν

l,1(x
′) + · · · + aν

l,pl
(x′),

rν
j (x) = xd−1

n bν
j,0(x

′) + xd−2
n bν

j,1(x
′) + · · · + bν

j,d−1(x
′),

řν
i (x) = xd−1

n cν
i,0(x

′) + xd−2
n cν

i,1(x
′) + · · · + cν

i,d−1(x
′),

for l = 1, . . . , ŝ, j = 1, . . . , k, i = 1 . . . , n. Next put Wν = (Wν
1 )k1 · · · · · (Wν

ŝ
)kŝ , where kj is the multiplicity of the

factor Wj of W (see Section 3.2.2). Now define f̃ ν = (f ν
1 , . . . , f ν

k ), φν = (φν
1 , . . . , φν

n) by:

f ν
j = WνHν

j + rν
j , φν

i = WνȞ ν
i + řν

i

for j = 1, . . . , k, i = 1, . . . , n. Here {Hν
j }, {Ȟ ν

i }, are any sequences of polynomials converging locally uniformly on

E to Hj, Ȟi , respectively. (Recall that Hj , Ȟi are obtained in Section 3.2.2 dividing fj ,φi by W . The existence of
{Hν

j }, {Ȟ ν
i } follows by the fact that Ǔ is a Runge domain.) Clearly, {f̃ ν}, {φν} converge locally uniformly to f̃ |E,φ|E ,

respectively.
Finally, Eq. (∗) from Section 3.2.2, in view of the fact that T1 ◦gν = · · · = Td ◦gν = 0, implies R(φν(x), f̃ ν(x)) =

H̃ ν(x)Wν(x) for every x ∈ E, where H̃ ν ∈ O(E). Since {Wν
l |E} converges to Wl |E locally uniformly, for l = 1, . . . , ŝ

(where W1, . . . ,Wŝ are optimal polynomials such that W = W
k1
1 · · · · · Wkŝ

ŝ
and dim(W−1

i (0) ∩ W−1
j (0)) < n − 1 for

every i �= j ) it holds: {{x ∈ E: Wν(x) = 0}} converges to {x ∈ E: W(x) = 0} in the sense of chains. The function H̃

given by (1) is non-vanishing on φ−1(U0) therefore shrinking E if necessary we obtain the required claim. �
3.2.4. Algorithm

Based on the proof of Theorem 3.8, we present a recursive algorithm of Nash approximation of a holomorphic
mapping f :U → V ⊂ Cm̂, where U is a domain in Cn and V is an algebraic variety. For ν ∈ N, the approximating
mapping f ν = (f ν

1 , . . . , f ν
m̂
) :U0 → V , returned as the output of the algorithm, is represented by m̂ non-zero polyno-

mials P ν
i (x, zi) ∈ (C[x])[zi ], i = 1, . . . , m̂, such that P ν

i (x, f ν
i (x)) = 0 for x ∈ U0. For simplicity we restrict attention

to the local case, i.e. U0 is an open neighborhood of a fixed x0 ∈ U . More precisely, we work with the following data:

Input: a holomorphic mapping f = (f1, . . . , fm̂) :U → V ⊂ Cm̂, f = f (x), where U is an open neighborhood of
0 ∈ Cn and V is an algebraic variety.

Output: P ν
i (x, zi) ∈ (C[x])[zi], P ν

i �= 0 for i = 1, . . . , m̂ and ν ∈ N, with the following properties:

(a) P ν
i (x, f ν

i (x)) = 0 for every x ∈ U0, where f ν = (f ν
1 , . . . , f ν

m̂
) :U0 → V is a holomorphic mapping such that

{f ν} converges uniformly to f on an open neighborhood U0 of 0 ∈ Cn,
(b) P ν

i is a unitary polynomial in zi of degree independent of ν whose coefficients (belonging to C[x]) converge
uniformly to holomorphic functions on U0 as ν tends to infinity.

Before going into detail let us comment on the notation and the idea of the algorithm. First, the meaning of the
symbols V(m), S(V ) and the notion of the optimal polynomial used below can be found in Section 2.2. Next, in Steps 2
and 5 we apply linear changes of the coordinates. Having approximated the mapping Ĵ ◦ f ◦ J |J−1(U) :J−1(U) →
Ĵ (V ), where Ĵ : Cm̂ → Cm̂, J : Cn → Cn are linear isomorphisms, one can obtain the output data for f following
standard arguments. (Composing f and J does not lead to any difficulties. As for Ĵ , it is sufficient to use the fact
that the integral closure of a commutative ring in another commutative ring is again a ring.) Therefore, when the
coordinates are changed, we write what (as a result) may be assumed about the mapping f , but the notation is left
unchanged.

The aim of Steps 1–3 is to prepare the variety V so that the polynomial R calculated in Step 4 satisfies the assertion
of Proposition 3.10 (cf. the proof of Proposition 3.10). Steps 5–9 are responsible for the fact that for f ν

1 , . . . , f ν
m de-

fined in Step 10 the sequence {{R(f ν
1 (x), . . . , f ν

m(x)) = 0}} converges to {R(f1(x), . . . , fm(x)) = 0} in the sense
of chains, in a neighborhood of 0 ∈ Cn, as ν tends to infinity. This property implies (cf. the proof of Proposi-
tion 3.10) that there is an open neighborhood U0 of 0 ∈ Cn such that for ν large enough the set {(x, zm+1, . . . , zm+s) ∈
U0 × Cs : (f ν(x), . . . , f ν

m(x), zm+1, . . . , zm+s) ∈ V } contains a graph of the mapping x �→ (f ν (x), . . . , f ν
m+s(x))
1 m+1
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approximating the mapping x �→ (fm+1(x), . . . , fm+s(x)) (here m̂ = m + s). The latter fact is used in Step 11 to
calculate P ν

m+1, . . . ,P
ν
m+s . As for P ν

1 , . . . ,P ν
m, these polynomials are obtained in Step 10 by applying the results of

the algorithm switched for the lower dimensional case in Step 9.

Algorithm 1.

1. If f (U) ⊆ Sing(V ) then repeat replacing V by Sing(V ) until f (U) � Sing(V ). Next replace V by V(m) such that
f (U) ⊂ V(m).

2. Apply a linear change of the coordinates in Cm̂ after which ρ|V is a proper mapping and ρ(f (U)) � ρ(S(V )),
where ρ : Cm × Cs ≈ Cm̂ → Cm is the natural projection.

3. Choose a C-linear form L : Cs → C such that the generic fibers of ρ|V and ρ̃|ΦL(V ) over Cm have the same
cardinalities and ρ(f (U)) � ρ̃(S(ΦL(V ))). Here ρ̃ : Cm × C → Cm is the natural projection and ΦL(y, v) =
(y,L(v)) for (y, v) ∈ Cm × Cs .

4. Calculate the discriminant R ∈ C[y] of the optimal polynomial P(y, z) ∈ (C[y])[z] describing ΦL(V ) ⊂
Cm

y × Cz.

5. Apply a linear change of the coordinates in Cn after which R(ρ(f (x))) = H̃ (x)W(x) in some neighborhood of
0 ∈ Cn, where H̃ is a holomorphic function, H̃ (0) �= 0 and W is a unitary polynomial in xn with holomorphic
coefficients depending on x′ = (x1, . . . , xn−1) each of which vanishes at 0 ∈ Cn−1. Put d = deg(W).

6. Divide fi by W to obtain fi(x) = W(x)Hi(x) + ri(x) in some neighborhood of 0 ∈ Cn, i = 1, . . . ,m. Here Hi is
a holomorphic function and ri is a polynomial in xn, deg(ri) < d , with holomorphic coefficients depending on x′.

7. Find optimal polynomials W1, . . . ,Wŝ in xn with holomorphic coefficients depending on x′ such that W = W
k1
1 ·

· · · · Wkŝ

ŝ
and dim(W−1

i (0) ∩ W−1
j (0)) < n − 1 for every i �= j .

8. Treating Hi , i = 1, . . . ,m, and all the coefficients of W1, . . . ,Wŝ, r1, . . . , rm as new variables (except for the
coefficient 1 standing at the leading terms of W1, . . . ,Wŝ ) apply the division procedure for polynomials to obtain:
R(WH1 +r1, . . . ,WHm +rm) = W̃W +xd−1

n T1 +xd−2
n T2 +· · ·+Td . Here T1, . . . , Td are polynomials depending

only on the variables standing for the coefficients of W1, . . . ,Wŝ , r1, . . . , rm. Moreover, T1(g) = · · · = Td(g) = 0,
where g is the holomorphic mapping whose components are these coefficients (cf. Section 3.2.2).

9. If g is not constant (i.e. it depends on n − 1 � 1 variables) then apply the algorithm with f,V replaced by g

and {u ∈ Cd̂ : T1(u) = · · · = Td(u) = 0} respectively, where d̂ is the number of the components of g. As a result,
for every c(x′) which is a coefficient of some of W1, . . . ,Wŝ , r1, . . . , rm one obtains a sequence {Qν

c(x
′, tc)} of

unitary polynomials satisfying (a) and (b) above with x, zi , {f ν} replaced by x′, tc, {gν}, respectively. Here {gν}
is a sequence of Nash mappings converging to g in some neighborhood of 0 ∈ Cn−1 such that T1 ◦ gν = · · · =
Td ◦ gν = 0 for every ν ∈ N (cf. Section 3.2.3). If g is constant then it is its own approximation yielding the Qν

c ’s
immediately.

10. Approximate Hi , for i = 1, . . . ,m, by a sequence {Hν
i } of polynomials. Let Wν

1 , . . . ,Wν
ŝ
, rν

1 , . . . , rν
m, for every

ν ∈ N, be the polynomials in xn defined by replacing the coefficients of W1, . . . ,Wŝ , r1, . . . , rm by their Nash
approximations (i.e. the components of gν ) determined in Step 9. Using Qν

c (for all c) and Hν
i one can calculate

P ν
i ∈ (C[x])[zi], for i = 1, . . . ,m, satisfying (b) and (a) with f ν

i = Hν
i (Wν

1 )k1 · · · · · (Wν
ŝ
)kŝ + rν

i being the ith
component of the mapping f ν (whose last m̂ − m components are determined by P ν

m+1, . . . ,P
ν
m̂

obtained in the
next step). To calculate P ν

1 , . . . ,P ν
m one can follow the standard proof of the fact that the integral closure of a

commutative ring in another commutative ring is again a ring.
11. Put V ν = {(x, z) ∈ Cn

x × Cm+s
z : z ∈ V,P ν

i (x, zi) = 0 for i = 1, . . . ,m}, where z = (z1, . . . , zm, zm+1, . . . , zm+s).
For i = 1, . . . , s and ν ∈ N take P ν

m+i ∈ (C[x])[zm+i] to be the optimal polynomial describing the image of the
projection of V ν onto Cn

x × Czm+i
.
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