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Abstract

The inclusion relations between the LP-Sobolev spaces and the modulation spaces is determined explic-
itly. As an application, mapping properties of unimodular Fourier multiplier ¢'IP1” petween LP-Sobolev
spaces and modulation spaces are discussed.
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1. Introduction

The modulation spaces M7 are one of the function spaces introduced by Feichtinger [6] in
1980’s to measure the decaying and regularity property of a function or distribution in a way
different from L”-Sobolev spaces L or Besov spaces B!"?. The precise definitions of these
function spaces will be given in Section 2, but the main idea of modulation spaces is to consider
the space variable and the variable of its Fourier transform simultaneously, while they are treated
independently in L?”-Sobolev spaces and Besov spaces.

Because of this special nature, modulation spaces are now considered to be suitable spaces
in the analysis of pseudo-differential operators after a series of important works [4,9—11,24,
25] and so on. “Modulation spaces and pseudo-differential operators” is still an active fields
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of research (see, for example, [5,12,13,17,23,28]). On the other hand, modulation spaces have
also remarkable applications in the analysis of partial differential equations. For example, the
Schrodinger and wave propagators, which are not bounded on neither L” nor BY*?, are bounded
on MP*? [2]. Modulation spaces are also used as a regularity class of initial data of the Cauchy
problem for nonlinear evolution equations, and in this way the existence of the solution is shown
under very low regularity assumption for initial data (see [30-32]).

In the last several years, many basic properties of modulation spaces are established. In par-
ticular, the inclusion relation between Besov spaces and modulation spaces has been completely
determined. Let us define the indices vi(p, ¢) and v2(p, g) for 1 < p, g < oo in the following
way:

0 if (1/p,1/q) € I}: min(1/p, 1/p’) > 1/q,
vi(p,q)=3 1/p+1/q—1 if(1/p,1/q) € I}: min(1/q,1/2) = 1/p’,
—1/p+1/q it (1/p,1/q) € I5: min(1/q,1/2) > 1/p,

0 it (1/p,1/q) € I;: max(1/p,1/p") <1/q,
wp,q)=11/p+1/q—1 if(1/p,1/q) € h: max(1/q,1/2) <1/p’,
=1/p+1/q it (1/p,1/q) € Iz: max(1/q,1/2) < 1/p,

where 1/p+1/p'=1=1/q + 1/q’. We remark v»(p, q) = —vi(p’, q).

1/q 1/q
1 1
I
I3 I3
1/2 1/2
I VE) If
0 1/2 1 I/p 0 1/2 1 1/p

Then the following result is known:

Theorem 1.1. (See Sugimoto and Tomita [22], Toft [25].) Let 1 < p,q < 0o and s € R. Then we
have

(1) BYI(R") — MP4(R") if and only if s > nvi(p, q);
(2) MP4@R") — BPUR") if and only if s < nva(p, q).

As for the inclusion relation between L?-Sobolev spaces and modulation spaces, the follow-
ing result (see also [27]) is immediately obtained from Theorem 1.1 if we notice the inclusion
property LY, < BY? < LT fore > 0 (see, [29, p. 97]):
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Corollary 1.2. Let 1 < p,qg < 00 and s € R. Then we have

(1) LPRY) — MP-4RY) if s > nvi(p,q). Conversely, if LPR™) — MP-9R"), then s >
ni(p, q);

2) MP4R") — LPRY) if s <nvy(p,q). Conversely, if MP1(R") — LY®R™), then s <
nv2(p,q).

But in Corollary 1.2, there still remains a question whether the critical case s = nvi(p, g) or
s =nv(p, q) is sufficient or not for the inclusion. The objective of this paper is to answer this
basic question and complete the picture of inclusion relations between the L”-Sobolev spaces
and the modulation spaces. The following theorems are our main results:

Theorem 1.3. Let 1 < p, g < oo and s € R. Then LY (R") < MP-4(R") if and only if one of the
following conditions is satisfied:

(1) g=p>1lands >nvi(p,q);

(2) p>qands>nvi(p,q);

3) p=1,g=o00,and s > nvi(l,00);
@) p=1,qg#oc0cands >nvi(l,q).

Theorem 1.4. Let 1 < p, g < oo and s € R. Then MP-4(R") — LY (R") if and only if one of the
following conditions is satisfied:

(1) g<p<ooands <nva(p,q);

(2) p<qgands <nva(p,q);

(3) p=00,q=1,and s <nvy(co, 1);
@) p=o0o,q#1,ands < nvy(o0, q).

It should be mentioned that Kobayashi, Miyachi and Tomita [14] determines the inclusion
relation between modulation spaces M?*? and local Hardy spaces h” for 0 < p < 1. Our main
results extend this result to the case p > 1 since we have h” = LP? then. As a matter of fact, the
proof of Theorems 1.3 and 1.4 heavily depends on the results and arguments established in [14].

As an application of our main theorems, we also consider mapping properties of unimodu-
lar Fourier multiplier elP |a, a > 0, which is a generalization of wave (o« = 1) and Schrédinger
(o =2) propagators. See Corollaries 5.2 and 5.4 in Section 5. As Theorem A and Theorem B
there say, the operator Pl (0 < @ < 2) is bounded on modulation spaces while not on L?-
Sobolev spaces. Theorems 1.3 and 1.4 help us to understand what happen if we consider the
operator between L?”-Sobolev spaces and modulation spaces.

We explain the organization of this paper. After the next preliminary section devoted to the
definitions and basic properties of function spaces treated in this paper, we give a proof of
Theorem 1.4 in Sections 3 and 4. We remark that Theorem 1.3 is just the dual statement of Theo-
rem 1.4. In Section 5, we consider mapping properties of unimodular Fourier multipliers between
LP-Sobolev spaces and modulation spaces, as well as those of invertible pseudo-differential op-
erators.
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2. Preliminaries
2.1. Basic notation

The following notation will be used throughout this article. We write S(R") to denote the
Schwartz space of all complex-valued rapidly decreasing infinitely differentiable functions on
R" and S’ (R") to denote the space of tempered distributions on R”, i.e., the topological dual of
S(R"). The Fourier transform is defined by f &)= fR,, f(x)e™™*¢ dx and the inverse Fourier

transform by fV(x) = 27x)™" f(—x). We define

1/p
1 flle = (f\foc)\”dx)
Rn

for 1 < p <ooand || f| e =ess.sup,cgn | f(x)|. We also define the L”-Sobolev norm || - ||va
by '

A . 172
£l = (O FO) Y], with ()= (1+]-2)"
following the notation of Sogge [20] and Stein [21]. Let (X, || - || x) and (Y, || - ||y) be two Banach

spaces, which include S(R"), respectively. We say that an operator 7 from X to Y is bounded if
there exists a constant C > 0 such that |7 f|ly < C||f|x for all f € S(R"), and we set

IT I x—y =sup{IITflly | f € S(R"), I fllx =1}.

We use the notation I < J if I is bounded by a constant times J, and we denote I ~ J if I < J
and J < 1.

2.2. Modulation spaces

We recall the modulation spaces. Let 1 < p, g < 00, s € R and ¢ € S(R") be such that

suppp C[—1,1]" and > @ —k)=1 forall £ eR". (1)
kel

Then the modulation space M (R™) consists of all tempered distributions f € S'(R") such that
the norm

] q/p\ /4
1 f llygps = ( ) <k>W< /|go(D —k)f(x)|pdx> )
Rl‘l

keZ

is finite, yvith obvious modifications if p or ¢ = co. Here we denote (D — k) f(x) =
(= k) f(NY ().

We simply write M?9(R™) instead of Mép “4(R™). The space MY?(R") is a Banach space
which is independent of the choice of ¢ € S(R") satisfying (1) [6, Theorem 6.1]. If 1 < p,
g < oo, then S(R") is dense in Mf’q(R") [6, Theorem 6.1]. If 1 < p; < pp <00, 1 <
¢1 < g2 < oo and 51 > 53 then ME"1'(R") — MP»¥(R") [6, Proposition 6.5]. Let us de-
fine by M{?(R") the completion of S(R") under the norm | - [|,,ra. If 1 < p, g < oo, then
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MPURYY = MP9(R") [1, Lemma 2.2] and the dual of M4 (R") can be identified with

Mm? ;’q,(R”), where 1/p + 1/p' =1=1/q + 1/q’. Moreover, the complex interpolation the-
ory for these spaces reads as follows: Let 0 <6 < 1 and 1 < p1, p2,41,92 < 00, 51,52 € R.
Set 1/p=0—-0)/p1+6/p2, 1/g =10 —0)/q1 +0/q> and s = (1 — )51 + Os2, then
(MEPT . MEP) 9y = ME? ([6, Theorem 6.1], [30, Theorem 2.3]).

We recall the following lemmas.

Lemma 2.1. (See [6, Proposition 6.7].) Let 1 < p < oo, 1/p+1/p'=1ands € R. Then
Msp,min(p-,p’) (Rn) N Lf(R”) N Mgp,maX(p,p’)(Rn).

Let U, : f(x) — f()x) be the dilation operator. Then the following dilation property of M?-4
is known.

Lemma 2.2. (See [22, Theorem 3.1].) Let 1 < p, q < 0o0. We have, for Cy, Cy > 0,

1. fllura < CMIPD| fllygra, VA1, Ve MPI(R"),
U fllsra = Con™ 2P D fllypa, VA >1, VfeMP4(R"),

where
—1/p if(1/p,1/q) € If: min(1/p, 1/p") = 1/q,
wi(p,q) =14 1/qg—1 if(1/p,1/q) € IJ: min(1/¢q,1/2) > 1/p’,
—2/p+1/q if(1/p,1/q) € I{: min(l/q,1/2) > 1/p,
-1/p if(1/p,1/q) € I;: max(1/p,1/p") <1/q,
u2(p,q) =1 1/g—1 if(1/p,1/q) € L: max(1/q,1/2) <1/p’,
=2/p+1/q if(1/p,1/q) € Iz: max(1/q,1/2) <1/p.

Let Iy, : f = ((-)% f(-))v, 50 € R. Then following lifting property of M*? is known.

Lemma 2.3. (See [25].) Let 1 < p,q < 00, s € R. Then Iy, maps M?P 1 (R"™) isomorphically onto
MP q (Rn)

s—50

2.3. Besov spaces

We recall the Besov spaces. Let 1 < p, g < oo and s € R. Suppose that ¥, ¥ € S(R") satisfy

supp Yo C {& | 161 <2}, suppyr C (£ | 1/2 < |§] < 2} and yo(§) + 252, ¥(§/2/) =1 for all
£ e R". Set;(-) = ¥ (-/27) if j > 1. Then the Besov space B (R") consists of all f € S’(R")
such that

00 1/q
1fllgra = (ZWH (FOv0)” ||‘;,,) < o0,

with usual modification again if ¢ = co.
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If 1 < p. g < oo, then the dual of B*?(R") can be identified with B”.¢ (R"), where 1/p +
I/p=1=1/g+1/q".

2.4. Local Hardy spaces

We recall the local Hardy spaces. Let 0 < p < oo, and let ¥ € S(R") be such that
fR” W (x)dx # 0. Then the local Hardy space h” (R") consists of all f € §’(R") such that

I fllne =

sup |l1/t>|<f|” < 00,
O<r<l Lr

where ¥, (x) = t~"W(x/t). We remark that h'(R") — L!(R") [7, Theorem 2], h?(R") =
LP(R") if 1 < p < oo [7, p. 30], and the definition of #”(R") is independent of the choice
of ¥ € S(R") with fRn ¥ (x)dx # 0 [7, Theorem 1]. The complex interpolation theory for these
spaces reads as follows: Let 1 < p1, pp <ocand0 <6 < 1.Setl/p=(1—-60)/p1 +6/p>, then
(hPY, hP2) 91 = hP [29, p. 45].

Lemma 2.4. (See [14].) Let 1 < g < o0 and s € R. Then h(R") — Msl’q(R”) if and only if
s < —n/q. However, in the case q # oo, L' (R") — Msl’q(R") onlyifs < —n/q.

3. Sufficient conditions
We prove the if part of Theorem 1.4. First we remark the following fact:

Lemma 3.1. Let 1 < p <2, p<qg<p and s <-n(/p+1/q —1). Then LP(R") —
MPYRM).

Proof of Lemma 3.1. We note that L2(R") = M 2’Z(R”) and, by Lemma 2.4,
1 Lg
h'(R") = M2 (R")
for 1 < g < 0o. The complex interpolation method yields
p.q
LP(R") — an(l/erl/qfl)(Rn)’

which gives the desired result. O

Proof of Theorem 1.4 (“if”” part). Suppose ¢ < p and s < nva(p, q). If ¢ < min(p, p’), then
s <nva(p,q) =0 and we have

MP (R”) N Mf,min(P-,p/) (Rn) <> LV (Rn)

by Lemma 2.1. If 2 < p < oo and p’ < g < p, then s < nva(p,q) =n(l/p+1/g — 1) and
we have L7’ (R") — MP 4 (R™), since P, q’, s satisfy the conditions of Lemma 3.1. Hence we
have M”77 (R") < LP(R") by duality and M?-9(R") < L} (R") by the lifting properties of
modulation spaces (Lemma 2.3) and L?”-Sobolev spaces (trivial by definition). Thus we have the
sufficiency of conditions (1) and (3). Conditions (2) and (4) are sufficient by Corollary 1.2. O
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4. Necessary conditions

We prove the only if part of Theorem 1.4. For the purpose, we prepare Lemmas 4.1-4.4 whose
proofs are repetitions of arguments in [14]:

Lemma 4.1. Let 1 < p,g < 00, p <gq and s € R If MI""(R") — LPR"), then
s>n(1/p—1/q).

Lemma4.2. Let 1 < p,q < oo and s € R. If MV (R") — LP(R"), then
S
et o < I{(+ 1) it o
for all finitely supported sequences {cy}rezn (that is, cx = 0 except for a finite number of k’s).

Proof of Lemma 4.2. Let n € S(R") \ {0} be such that suppn C [—1/2, 1/2]". For a finitely
supported sequence {c¢}oez, We set

fa)=) e —0).

LezZ”

Let ¢ € S(R") be satisfying (1). Since

F& = ceee b5 — o),

LeZ”
we see that
oD f (@) =7 D cee'l" / U0 — k)i — 0 k. )
T yasy /4 R"
Using

/(1 Flx—y) M) May S+ )Y,

where M > n, and

(x — O f SO (e — I)R(E — 0)d

R}’l
= Y Cam / O (97 9) (6 — k) (9727) (5 — 0) dE,
a)tory=a R"

we have

‘ /ei(x—o-é(p@ —k)A(E —0) dg‘ <Coy(+lx—e) N+ k—e)™ 3)
R"l
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forall N > 1. Let N be a sufficiently large integer. Then, by (2) and (3),

lcel

D—k <
oP=RIWIS L Ao
which provides
ICzl
LeZ
~ Z el
5 (+lk— ey

Then, since
1 e = {1+ 16D oD =) £ 1o} o

sl S gt ],

LeZn
(L4 €D |eel
<l 2w i)
b (14 [k —epN=Istf,
we have by Young’s inequality
1 gz S I+ 1€) ee} - )

On the other hand, since suppn(- —€) C £ +[—1/2,1/2]" for all £ € R", we see that
Z cee'tFn(x — 0)

P l/p
1 flle = (/ dx)
R" LeZr

/p
</Z|Ctzel“n(x—€)|de> = lInliee | {ce} |, (5)

el

for p # co. We have easily the same conclusion for p = co. By our assumption M/ ?(R") —
LP(R"™) and (4)—(5), we have

leet o SUANLe SN FNagra S T{A+10) ce}] o
The proof is complete. 0O

Proof of Lemma 4.1. Suppose M{?(R") < LP(R"). By Lemma 4.2, we have

(S i) sl wyall,

keZ"
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for all finitely supported sequences {ck}xecz». Setting ¢ = (1 + |k|)_“|dk|1/ P, we see that it is
equivalent to

2 (14 k)1l S e |

kel

for all finitely supported sequences {d }xcz~. Hence we have

Do (1) dk‘ <L

ke

{0+ 16D} oy = sup

where the supremum is taken over all finitely supported sequences {di}xez» such that
l{di}lpas» = 1. Note here that (q/p)’ < oo from the assumption p < g. Hence p,q,s must
satisfy sp(q/p)’ > n, thatis,s >n(1/p—1/q). O

Lemma 4.3. Let 1 < q < p <00 and s € R. If LP(R") — M["*(R"), then s < —n(1/p +
1/q —1).

Lemma4.4. Let 1 < p,q < oo and s € R. If LP(R") — M?*(R"), then

1 1
(n(1/p=D+s)q p avr /q< r v
D Ik DT el S e
k0

[kl /2< 11 <20k k#0
for all finitely supported sequences {cy}rezn\(0}-
Proof of Lemma 4.4.. Let 0 <8 < 1 and a € S(R™) be such that
suppa C [—58/8,8/8]", llallz= <1, and |a(§)|>C>0 onl§l<2

(see, for example, [14, Lemma 4.3]). For a finitely supported sequence {c¢}¢ezn\ (0}, we define
/€ SR by

F) =) crlePa(lelx - 0)).

(0
We first estimate || f||z». Since

suppa(|e](- — £)) C e+ [—5/(8lel).8/(81¢1)]".

we have
p
||f||€p=/ > clePa(lelx - 0)| dx
Rn | (A0
= [ S terier aeit - )| dx = lallf, 3 el
Rre t#0 £5£0

Next, we estimate || f || M- We note the following facts:
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Fact 1. Let ¥ € S(R") be such that ¥ =1 on [—3/4,5/4]", supp¥ C [—35/8,35/8]", and
|¥| > C > 0on[—2,2]". Then we have

1/q
1 pgra ~ ( Do (LK) f = WN)H‘L) 7

keZn
where MW (x) = e*F @ (x).
Fact 2. For all £ # 0, we have
suppa([€|(- — 0)) C £+ [—58/8¢],8/81¢|]" C € +[—8/8,8/81".
Fact 3. For all x e m +[—§/8, /81", m € Z", we have
supp¥(x —-) Cx +[—36/8,38/81" C m +[—68/2,8/2]".
From these facts, we have
|t = 717,

> [ o« s ax

meZ”A(m,E)
. P
= RN (x — cell|Pa(ll|(y —0))dy| dx
> (x—y) ) _cclelra(lel(y — ) dy
meZl Ay 5) RP &0

p
dx,

=Y [ | [ wi—edmiiagmio - m)dy
MEOA n.5) R”

where we set A(m,8) =m+[—6/8,5/8]". If x e m +[—6/8,5/8]" and y € suppa(|m|(- —m)),
then

x—ye(m+[-58/8,8/8]") — (m+[—5/8,8/81") =[—8/4,5/4]",

and so ¥ (x — y) = 1. Hence,

R

. . P
>3 ‘ e YW (x — y)ewlm| P a(m|(y —m)) dy| dx
MEOA (1n,5) R
. n p
= Z ef’k'ycm|m|5a(|m|(y—m))dy dx

MEOA (n,5) R

8 n
= (Z) > lemlPm )"

m#0

p

()
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Moreover, using |a(&)| > C > 0 for all 1/2 < |§| < 2, we obtain
My P> (8/4)" Pim|"~P"|a(k P
|Mew) s £7, = @6/H" Y lemlPImI"=P" |a(k/Iml)]

m#0

>@/4" D lenl?Im P |a(k/Iml)|”

k1/2<1m|<2|k|

Z > lewlPm P kT Y eml?

[k1/2< |m|<2[k] k1/2<m|<2|k|

for all k # 0. Then

] 1/q
1 | ygpa ( Yo (1K) M) *fil‘ip)

keZ?

R { > o(1+ Ikl)s"< kY |Cm|p>q/z'}1/q

70 Ikl/2<Im <21k

q/py1/4q

Z{Zlkl(”““’”“”( )3 |cm|1’> } .
0 kl/2<lm <21k

Therefore, by our assumption L” (R") < M!*?(R"), we have

q/py1/q
{ Z|k|(n(1/P—1)+S)q( Z |Cm|l7> }

k70 [kl/2< |m|<2[k]
1/p
Sllflleﬂ§||f||LP§<Z|Ce|p> . O
££0

Proof of Lemma 4.3. Suppose that s > —n(1/p + 1/g — 1) contrary to our claim. Noting that
q/p < 1 from the assumption ¢ < p, take £ > O such that (1+¢&)q/p < 1 and define {cg}rezm\(0)
by

o = {|k|—"/1’(log|k|>-<1+£>/ﬁ if [k] > N,
““lo if k| < N,

where N is sufficiently large. Note also that {|k|_”/’(log|k|)_“/’}|k|>N el if « > 1, and
{|k|_"/’(10g|k|)_“/’}‘k|>N ¢ ¢ if o < 1, where r < oo (see, for example, [23, Remark 4.3]).
Thus

<Z|Ck|p)l/p :{ Z (|k|n/p(10g|k|)(1+s>/p)p}1/p < 0.

k#£0 k| =N

On the other hand, since n(1/p — 1) +s > —n/q and (1 + ¢€)q/p < 1, we see that
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q/py1/q
{ Z|k|(n(1/P1)+S)tI< Z |C£|p> }

k#0 k1/2<1€1<21k|

q/py1/q
>l ¥ |k|(n(1/p—1)+s)q< 3 (|£|_"/p(log|£|)_(1+8)/”)p> }

k| >2N lkl/2< €1 <21k|
Ite) 1/q
>y k| /P= 1404 (jog [k]) ~O q/p}
k| >2N

1/q
2 Z(lk|"/‘f(10g|k|)“‘”)‘”””")"} =0,
|k|=2N

This contradicts Lemma 4.4. O

Proof of Theorem 1.4 (‘“only if” part). Suppose M?4(R") — LP?(R™). Then we have s <
nv2(p,q) by Corollary 1.2. Particularly in the case p < g, we have s < —n(1/p — 1/q) =
nvy(p,q) for p <2 by Lemma 4.1, and s < —n(l/p' + 1/¢' — ) =n(l/p+ 1/qg — 1) =
nvy(p, q) for 2 < p by the dual statement of Lemma 4.3. In the case p = co, we must have
L' (R") < M"4'(R"), since otherwise the fact S(R") is dense in both L'  (R") and M4 (R")
implies that M°>4(R") ¢ L3°(R"), contrary to the assumptions. Hence L'(R") — MS1 ’q/(R”).
Then we have s < —n/q’ =n(1/q — 1) = nvy(00, q) for g # 1 by Lemma 2.4. All of these
results yields the necessity of conditions (1)-(4). O

5. Applications

We consider the unimodular Fourier multiplier ¢//°1“| o > 0, defined by

e”D"”f(x)=/e“f'“f(s)e”'f dg,  feS(RY).
Rn

The operator ¢/!P“ has an intimate connection with the solution u (¢, x) of initial value problem
for the dispersive equation

{ i0u 4 |A|1*%u =0,
u(0,x) = f(x),
(¢, x) € R x R". The boundedness of ¢! I on several function spaces has been studied exten-

sively by many authors. Concerning the L”-Sobolev spaces L’ and the modulation spaces M7,
the following theorems are known.

Theorem A. (See Miyachi [15].) Let 1 < p < 00,s € Rand o > 1. Then €'P* is bounded from
LY (R™) to LP(R") if and only if s > an|1/p — 1/2|.

Theorem B. (See Bényi, et al. [2].) Let 1 < p,q <00 and 0 < a < 2. Then P is bounded
from MP-9(R"™) to MP-9(R").
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The boundedness of ¢!!°1 with 0 < o < 2 on weighted modulation spaces M. P-4 (R™) follows
from Theorem B and the lifting property of modulation spaces (Lemma 2.3). Indeed, since the
operator T = ¢' IDI* is translation invariant, it commutes with I; and we have

ITf N pgra = WIsT fllmapa 2N T Ls fllmra

S s flimra =\ fllpras

which means the boundedness of 7 on M?"9.

We remark that Theorem B with o = 2 is established in a more general form by [26]. We also
remark that Bényi and Okoudjou [3] extends Theorem B to the case 1 < p < 00, 0 < g < o0,
O0<a<2andthecasen/(n+1)<p<1,0<qg<oo,aa=1,2. For o > 2, we have a different
type of boundedness:

Theorem C. (See Miyachi, et al. [16].) Let 1 < p,q < 00,5 € R and o > 2. Then NP g
bounded from MP* (R™) to MP-4(R") if and only if s > (e — 2)n|1/p — 1/2|.
Theorem A says that the operator ¢!!°“ is not bounded on L?(R"), and we have generally a
loss of regularity of the order up to an|l/p — 1/2|. Theorems B and C describe an advantage
of modulation spaces because we have no loss in the case 0 < o < 2 or smaller loss in the case
a > 2 if we consider the operator ¢!!PI on these spaces.

Then what is the exact order of the loss when we consider the operator e between LP
spaces and modulation spaces. We can answer this question by using our main theorem. The
case 0 < o < 2 is rather simple, and we have the following results:

i\D|*

Theorem 5.1. Let 1 < p,qg <00, s € Rand 0 < o < 2. Then el1P1" s bounded from MPLR™
to LP(R") if and only if MP"? (R") < LP(R").

Proof. Assume that ¢/!P!” is bounded from M9 (R") to LP(R"):
|e"PF 1o SIS Uppa

Note that e ~*PI” is also bounded from M ¢ (R") to L?(R"). Then by taking f = e‘”D'ug we
have

lgller < e gl yypa < lglpgpa-

which means that M4 (R") < LP(R") by the equation ¢/!PI* f = ¢~/IPI" f Conversely assume
that MP?(R") — LP(R"). Since ¢!'PI* is bounded on M7 (R") by Theorem B, we have

”eilDlafHLp < ”eilDlafHMsp"’ < ”f”MSp,q7
which means that ¢//P“ is bounded from M”?(R") to L?(R"). O

The following corollary is straightforwardly obtained from Theorem 5.1 and Theorem 1.4.
The second part is just the dual statement of the first part:
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Corollary 5.2. Let 1 < p,q < 00, s € Rand 0 < o < 2. Then &'\PI" is bounded from M (R")
to LP (R™) if and only if one of the following conditions is satisfied:

(1) g< p<ooands > —nvap,q);

(2) p<qgands>—nv(p,q);

(B) p=oo,g=1,ands > —nvy(co, 1);
4) p=oo,q#1,ands > —nvy(c0, q),

and from LY (R") to MP-4(R") if and only if one of the following conditions is satisfied:

®) g=p>1lands >nvi(p,q);

(6) p>qands>nvi(p,q);

(7) p=1,qg=o00, and s >nvi(1,00);
®) p=1,qg#oc0ands>nvi(l,q).

For o > 2, we have the following results:

Theorem 5.3. Let 1 < p,g < 00, s € R and o > 2. Then ¢'PI"

Ms”f(a_m'l/p_ml(R") to LP(R") if MY (R") < LP(R").

is bounded from

Proof. Assume that MP”9(R") < LPR"). Since ¢€'PI is bounded from
Mp—;—za—Z)n|l/p—l/2|(Rn) to MY (R") by Theorem C, we have

N

1e2F £l SN £llypa S YR

: i|D|* p.q ;
which means that ¢//°* is bounded from Mx+(a—2)n|1/p—1/2|(Rl) to LP(R"). O

The following corollary is obtained from Theorem 5.3, Theorem 1.4 and the duality argument
again:

Corollary 5.4. Let 1 < p,q < 0o, s € R and o > 2. Then ¢''°" is bounded from MF? (R") to
LP(R") if one of the following conditions is satisfied:

(D) g<p<ooands>—nva(p,q)+ (@ —2)n|l/p—1/2]|;
(2) p<qgands>—nv(p,q)+ (a—2n|l/p—1/2[;

(3) p=oo,g=1,ands > —nvy(c0, 1) + (¢ — 2)n|1/p — 1/2|;
4) p=00,q#1,ands > —nvy(c0,q)+ (@ —2)n|l/p—1/2|,

and from LY (R") to MP-4(R") if one of the following conditions is satisfied:

(5) g=zp>1lands=nvi(p,q)+ (a—2)n|l/p—1/2|;

(6) p>qands>nvi(p,q)+(«—2n|l/p—1/2];

7 p=1,g=00,ands =2 nvi(1,00) 4+ (¢ —2)n|l/p — 1/2];
®) p=1,g#oocands>nvi(l,q)+ (¢—2)n|l/p—1/2|.
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Remark 5.5. For pseudo-differential operators

1 .
Q)" K (x er x $>el(x_y)§f(y) e
R2n

with the symbol o € M1 (R?"), it is well known that it is bounded on each M”4(R") [8,
Theorem 14.5.2] (see also [18]). Furthermore, this class of pseudo-differential operators is a
Wiener algebra, meaning that if in addition o (X, D) is invertible on L2(R") = M%2(R"), then
its inverse is of the form % (X, D) with T € M* 1 (R?") (see [9,19]). From these observation it
follows if s € R and 0 € M1 (R?"), then the following is true:

oV (X,D)f(x) =

(1) If MP9(R") — LP(R"), then 0" (X, D) is bounded from M?-4(R") to LY (R").
(2) Suppose that o (X, D) is invertible on L2(R"). If " (X, D) is bounded from M?-4(R")
to LY (R"), then MP4(R") < LY (R").

We may now combine (1) and (2) with Theorem 1.4 to obtain similar results to Corollaries 5.2
and 5.4. We omit the details.

Although the converse of Theorem 5.3 is not true, we believe that the converse of Corollary 5.4
is still true. In fact we have at least the following result:

Theorem 5.6. Let 1 < p,g < oo, s e Rand o > 2.

(1) Suppose that &P g bounded from MPLR") to LP(RY). Then we have s > —nw(p,q) +
(@—2nll/p—1/2]

(2) Suppose that ¢''P" is bounded from LYR"™) to MP4(R") instead. Then we have s >
nvi(p,q) + (¢ —2)n|l/p —1/2].

To prove Theorem 5.6, we use the following lemma.
Lemma 5.7. Let 1 < p,q <00, s e Rand o > 0. Then

sup (k)™ [ p(D — ke
keZn

HLP—)LP < ”ei‘Dla I MP9Lpo (6)

where ¢ is a function satisfying (1).

Proof. Let N be a positive integer such that

o=k =" ¢(—ke(-— (k+0)

[I<N
for all k € Z". Then we have

lo(D =k 1|,

<[ o, 1o lle@ = f | yypa



3204 M. Kobayashi, M. Sugimoto / Journal of Functional Analysis 260 (2011) 3189-3208

e ' 1/q
= [e'?! HM;vuLp( > m)* (D —m)p(D —k>f||‘ip)

meZ
o 1/q
=1 o X 00D = e+ )0 -0, )
[N

5 <k)s |ei|D|a

lygra ol Fllee

for f € S(R") and g # co. We have easily the same conclusion for ¢ = co. Hence, we obtain
the desired result. O

Remark 5.8. We remark that since

i|D|

e HLP—)LP

|y agpa = Sup ()™ (D — k)e!1P¥
! kezr

for 1 < p,qg < oo,s € R(see [16, Lemma 2.2]), we have

C P

MPIpmpd ~S ” MPILp

forall1 < p,q,g <

Now, we prove Theorem 5.6.

Proof of Theorem 5.6. Since the latter is just the dual statement of the former, we prove only
the former. Suppose that ¢! I is bounded from M9 (R") to L? (R"):

11PF o SUfllypa.  f €S(RY). (7)
(i) Let ¢ < min(p, p’). By the necessary condition of Theorem C and Remark 5.8, we have
> (¢ —2)n|1/p — 1/2]. Since vz(p q) = 0, we obtain the desired result.
(i) Let 1 < p <2and p < ¢ < p'. Note that inequality (7) can be written as

1Dy f,» SN flmra,  feSRY) (8)

by the lifting property. Here, we denote (D) ~* f = ({-) ¢ f(-))v for s € R.
Let g € S(R") be such that

suppg C {& 27! <&l <2} and §(&)=1 on{g|27'2 <|g| <2!2}, 9)
and test (8) with a specific f = U, g, > > 1. Since
¢'P(D) T Urg = Un (P (AD)g),
it follows from Theorem 2.2 that

n/l’“elMDVX AD)~ g”Ll’ < pni(p, q)”g”MP‘I
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On the other hand, by the change of variable x > A%x and the method of stationary phase,
we obtain

|2 D) g, = H / e EHIE () 5 (8) d
LP
Rn

z)\an/p

L?

[ e e g ae
Rn
> )Lom/p—om/Z—s.
Combining these two estimates, we get
)Lnul(p,q)+n/p—an/p+an/2+s Z 1

for all A > 1. Letting A — oo yields the necessary condition

s>—-n(l/g—1)—n/p+an/p—an/2
=(@=2n(/p—=1/2)+n/p—n/q
= (e —=2)n|1/p—1/2| —nv2(p, q),

since n1(p,q) =1/g —land va(p,q) =—1/p+1/q.
(iii) Let 2 < p < o0 and p’ < ¢ < p. By duality, we have

—i|D|%
”e i|D| f||u7/ < ||f||ME;q,, feS(RY).
So, we have only to prove the following lemma.

Lemma 5.9. Let 1 < p' <2,p' <q' < p and s € R. If ¢\ is bounded from Lf,(R”) to
MP-1(R"), then s > (o —2)n|1/p — 1/2] — nv2(p, q).

Proof of Lemma 5.9. Set f = U, g, » > 1, where g is a function satisfying (9). Then, by
Lemma 2.2, we have

”eilDlaf”MP’»q’ = ”eilDla ngHMp/,q/
U0

> Al a) | DI

H mr'd

8 ” mpa-

In the same way as (ii), we obtain, by the change of variable x — A%x and the method of station-
ary phase,
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/

. o i “ ' l/q
e gy = (3 o0 =02 g7, )

keZ!

LY

> H / (&) EHIME 55y dg
RH

— )Lom/p’

L

[ e ey s
Rn
> kazz/p’—an/Z.

Hence, we have

|12 £ 2 AT 01/ =172

On the other hand, we have

£, = U8l 27750

L?
Combining these two estimates, we obtain

aSs—n/ P —nua(plq—an(1/p'=1/2) > |

for all A > 1. Letting A — oo yields the necessary condition

s>an(1/p'—1/2)+n/p' +n(-2/p"+1/q’)
=(—2n(1/p' —1/2) +2n(1/p' = 1/2) +n/p" +n(=2/p" + 1/¢)
= (a—2n(1/p' = 1/2)+n(1/p' +1/q' —1)
=@ —-2n1/2-1/p)+n(1—-1/p—1/q)

= (@ =2)n|1/p = 1/2] =nva(p.q),

since o (p',q') =—=2/p'+1/q" and va(p,q) =1/p+1/g—1. O

(iv) Let 2 < p < oo and p < q. Contrary to our claim, suppose that there exists € > 0 such that
s=(a—2)n|l/p—1/2] —nva(p, q) — ¢ implies (7). Then, by interpolation with the estimate
for a point Q(1/p1,1/q1) with 2 < p; < o0, p/1 <qy<prand s = (¢ —2n|l/p —1/2| —
nv2(p1, q1) (which holds by Corollary 5.4), one would obtain an improved estimates of the
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segment joining P(1/p,1/q) and Q(1/p1, 1/q1), which is not possible. In the same way as
above, we can treat the case 1 < p <2 and p’ < g, and we have the conclusion.

1/q
1
12| o
P
O
0 1/2 1 1/p
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