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Abstract Modification of the wax crystal habit practical interest during transportation processing

of lube oil at low temperature. Various pour point depressant (PPD) additives can facilitate this

modification by different mechanisms. Comb shaped polymer additives are known to depress the

pour point of lube oil by providing different nucleation sites for the precipitation of wax. This paper

describes performance based design, synthesis, characterization and evaluation of comb shaped

polymeric additives. Alkyl itaconates were prepared by the esterification of itaconic acid with dif-

ferent saturated alcohols C16/C18/NAFOL 20+A (Cav = 20)/NAFOL 1822 B (Cav = 22). The four

synthesized monomers were characterized and copolymerized with styrene in different molar ratios.

All the products were characterized by infra-red (FTIR), Nuclear Magnetic Resonance (NMR)

Spectroscopy and Gel permeation chromatography (GPC). Rheological properties of lube oil (with

and without additives) were studied by Brookfield viscometer. In this study the additives based on

itaconic acid were evaluated as good PPD and rheology modifiers.
ª 2012 Egyptian Petroleum Research Institute. Production and hosting by Elsevier B.V.
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1. Introduction

Lube oil and diesel are complex processes and highly depend
on chain length distribution of n-alkanes along with their sol-
ubilities in the medium. This solubility factor has many vari-

ables, it is a summation property of individual types of
molecules, for example iso-alkane, naphthenic and aromatics
[1–2]. Lube oil having wax content causes many problems dur-
ing production, storage and transportation. At low tempera-

ture, waxes separate out from the lube oil and deposit on the
wall of pipelines or tankers. Due to this, the effective diameter
hosting by Elsevier B.V. Open access under CC BY-NC-ND license.
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Table 1 Typical analysis of linear long-chain alcohol blends

(NAFOL).

Properties NAFOL

20+A

NAFOL

1822 B

Composition, wt%

C16AOH 0.9 0.2

C18AOH 24.3 15.0

C20AOH 24.4 14.8

C22AOH 38.2 69.8

C24AOH 9.9 0.2

C26AOH 2.3 –

Average carbon number (calculated) Cav = 20 Cav = 22

Density g/cm3 at 70 �C 0.803 0.802

Solidification point, �C 56–60 63–65

Ester no. mg KOH/g 9.9 0.16

Acid no. mg KOH/g 0.05 0.01

Water, wt% 0.06 0.04

Flash point, �C 208 204

Iodine no. mgL/100 mg 8.2 0.23

Table 2 Physicochemical properties of investigated lube oil.

Test Method Result

Density@15 �C Kg/L ASTM D1298 0.9083

Color ASTM D1500 5.5

Pour point �C ASTM D97 15

Flash point �C (PMC) ASTM D93 203

Kinematic viscosity@ 40 �C CST ASTM D445 243.59

Kinematic viscosity@ 100 �C CST ASTM D445 18.94

Viscosity index ASTM D445 87

Saybolt viscosity@ 100 �F SUS ASTM D445 96.8

X-ray (sulfur) wt% ASTM D4294 1.084

n-paraffins, wt% GLC 62.27

Iso-paraffin, wt% GLC 4.12

Total paraffins content, wt% Urea adduct 66.39

Average carbon number (n) GLC 28.56
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for flow of the lube oil through pipeline becomes less [3–6].
Therefore pressure drop between the two ends of the pipeline
increases. This results in the reduction of flow and extra bur-

den on the pumping system. Another major problem during
the handling of the lube oil is the reusing of the pipeline after
prolonged shut down period; the cooled oil slowly develops gel

structure which results in a high yield stress [7–10]. Wax crystal
modifier additives can minimize these problems. The designing
of better additives requires a good understanding of the crys-

tallization behavior of the paraffin molecules in hydrocarbon
fluids. Any additive which is as effective as PPD may be inef-
fective to reduce viscosity and yield stress and enhance the
flow. The following factors play an important role in the effi-

ciency of flow improvers and pour point depressants [11–16].
The number of pendant alkyl side chains and the length and
distance between them are important factors; the solubility

of the additives (which are generally polymers) in lube oil de-
pends on their average molecular weights. If the additive is a
copolymer, then monomer to monomer ratio should be taken

into consideration. Amorphous and crystalline parts of the
additive are very important in determining its efficiency and
its physical and chemical stability [17–20].

Flow improvers are generally ashless polymeric materials
which when added to lube oil show excellent function for low-
ering the pour point. Many different types of pour point
depressants have been used to overcome this problem e.g. con-

densation products of chlorinated paraffins and naphthalene
polyacrylates, polymethacrylate, copolymers of ethylene and
vinyl esters, copolymers of fumarates/maleates and vinyl ace-

tate, copolymers of a-olefins and maleates and poly-a-olefin
[21] All pour point depressants are structures so that a part
of the molecules is like the paraffin wax crystals. This part

functions by providing nucleation sites and co-crystallizing
with the paraffin waxes. While the other part of the structure,
dissimilar to the wax crystals, blocks the extensive growth of

the wax matrices. This enables the bulk stream to remain pum-
pable, pourable and filterable. Oil composition, particularly n-
paraffin’s, plays an important role in defining the response of
untreated and treated oils to flow improvers [22,23].

For evaluation of the improved operability of the treated
lube oil, determination of flow parameter via cloud point
and pour point tests are the most widely adopted methods.

Photo analysis is used also as a fast and simple supplementary
screening tool confirming other laboratory tests for evaluating
the cold flow properties of untreated/treated lube oil [24,25].

In the present work, polymeric additives based on itaconic
acid were synthesized in the laboratory and evaluated as pour
point depressants and flow improvers for lube oil. The rheo-
logical properties of lube oil (with and without additives) were

studied in terms of shear rate, shear stress and viscosity.

2. Experimental

2.1. Materials

The following chemicals were used, itaconic acid, hexadecyl
alcohol, Octadecyl alcohol, two linear saturated long chain
alcohol blends NAFOL 20+A and NAFOL 1822 B were sup-

plied from Condeu Chemical Company, the typical analysis is
listed in Table 1. P-toluene sulfonic acid, dibenzoyl peroxide,
styrene, toluene and other common chemicals used were of

laboratory grade reagents.
2.2. Lube oil composition

Lubrication oil is submitted from Suez Oil Processing Com-

pany (SOPC). The general physicochemical characteristics of
lube oil were shown in Table 2. The lube oil was used for eval-
uating the performance of the synthesized polymeric additives.
The n-paraffin content of lube composition is determined by

urea adduction [26]. The lube oil and its n-paraffin fraction
were then subjected to gas chromatographic analysis for deter-
mination of the average molecular weight expressed in terms of

average carbon number on the basis of carbon number distri-
bution as illustrated in Fig. 1.

2.3. Synthesis of n-alkyl itaconate

Itaconic acid (0.3 mol), was esterified with a series of n-alka-
nols which having increasing number of carbon atoms (hexa-

decyl alcohol C16, octadecyl alcohol C18, blend of alcohol
NAFOL 20+A (Cav = 20) and NAFOL 1822 B (Cav = 22)
(0.2 mol) in a round bottomed flask equipped with a Dean
and Stark trap to remove the water of reaction azeotropically

as it is formed. The reaction was conducted in the presence of
toluene (100 ml) as a solvent, at reflux temperature. P-toluene



Figure 1 Carbon number distribution of n-paraffin content of lube oil.
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sulfonic acid was used as a catalyst and hydroquinone as a
polymerization inhibitor. The four prepared monomers (hexa-
decyl itaconate, octadecyl itaconate, NAFOL 20+A itaconate,

and NAFOL 1822 B itaconate) were then purified by distilling
off the solvent at the end of esterification at reduced pressure.
The reaction mixture was then extracted with n-hexane,

washed with distilled water to remove the catalyst and any
unreacted acid until the washing becomes neutral, then separa-
tion of organic layer comes out.

2.4. Copolymerization of n-alkyl itaconate monomers and

styrene

Free radical solution copolymerization of each of the four
hexadecyl/octadecyl/NAFOL 20+A/NAFOL 1822 B itaco-
nate monomers and styrene in different molar ratios
(25%:75%), (50%:50%) and (75%:25%) was carried out in

a four-necked round bottomed flask fitted with a mechanical
stirrer, a condenser, a temperature controller and a nitrogen
controlled inlet valve. Toluene was used as a solvent. Diben-

zoyl peroxide (0.5 wt%), as an initiator, was dissolved in tolu-
ene then added to the reaction mixture in equal metered
portions every 0.5 h during the course of the reaction. At the
Table 3 Characteristization of the synthesized polymeric additives.

Additive designation Composition Mol

itaco

PPD 1

PPD 2

PPD 3

Poly (hexadecyl itaconate-styrene) 25:7

50:5

75:2

PPD 4

PPD 5

PPD 6

Poly (octadecyl itaconate-styrene) 25:7

50:5

75:2

PPD 7

PPD 8

PPD 9

Poly (NAFOL 20+A itaconate- styrene) 25:7

50:5

75:2

PPD 10

PPD 11

PPD 12

Poly (NAFOL 1822 B itaconate styrene) 25:7

50:5

75:2
beginning of polymerization, the reaction mixture was sub-
jected to nitrogen flushing for twenty minutes then heated
gradually to reflux temperature, under nitrogen blanket, while

adding the first portion of initiator and applying vigorous stir-
ring. The reaction was continued for 6h. The twelve prepared
copolymers designated as PPD1–PPD12 are illustrated In Ta-

ble 3. They were purified by precipitation in an excess volume
of methanol then filtered. Further purification was carried out
by dissolution in toluene and reprecipitation with methanol,

filtration and vacuum drying at 40 �C.

2.5. Characterization of copolymers

The structures of the prepared mono-esters alkyl itaconate and
copolymers with styrene were confirmed by using Infrared (IR)
spectroscopic analysis in technology laboratory, petrochemical
department. Egyptian petroleum Research Institute (EPRI).

The infrared spectra were measured by using model Genesis
series (USA) infrared spectro-photometer adopting KBr tech-
nique. The structure of the prepared mono-esters alkyl itaco-

nate, and copolymers with styrene was also confirmed by
using Nuclear Magnetic Resonance Spectroscopic analysis at
the Chemistry Department, Faculty of Science (Cairo Univer-
ar ratio alkyl

nate-styrene (%)

Average side

carbon length (Cav)

M.wt. Poly dispersity

index

5

0

5

16 40313

45411

38513

1.68

1.70

1.50

5

0

5

18 40933

48415

41513

1.70

1.72

1.62

5

0

5

20 58298

35026

28858

1.57

1.50

1.31

5

0

5

22 60096

37710

30512

1.58

1.55

1.20
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Scheme 1 Synthesis of alkyl itaconate monomer, and alkyl

itaconate styrene copolymer.
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sity). The 1H NMR spectra were recorded on a Varian Mer-

cury VX-300 NMR spectrometer (USA) 1H NMR spectra
were run at 300 MHz in deuterated chloroform (CDCl3).

The copolymers of different alkyl itaconate with styrene
were abbreviated as PPD1–PPD3 (C16), PPD4–PPD6 (C18),

PPD7–PPD9 (C20), PPD10–PPD12 (C22). The esterification
and copolymerization are shown in Scheme 1. The character-
ization of the prepared copolymers is illustrated in Table 3.

The molecular weight was determined using Gel permeation
chromatography (GPC) in technology laboratory, petrochem-
ical department, Egyptian petroleum Research Institute

(EPRI) includes Waters 515 HPLC pump, Waters temperature
control module and 2410 refractive index detector from Water
company. And further supplement using viscosity (Brookfield

viscometer, USA).

2.6. Evaluation tests

2.6.1. Pour point measurement (ASTM D 97-96) [27]

Solutions of oil soluble samples PPD1–PPD12 in toluene con-
tain 10% active material, are prepared according to ASTM,

D97–96 method. Different concentrations (250,500,1000,
1500,2000 and 3000 ppm) of PPD solutions were injected into
the lube oil and tested as pour point depressants. The pour

point is set at 2.8 �C above the temperature at which the oil be-
comes solid [28], the location of pour point instrument is Suez
Oil Processing Company (SOPC).

2.6.2. Dynamic viscosity measurements

The dynamic viscosity using (Brookfield viscometer USA),
(DVII) at the Chemistry Department, Faculty of Science (Cairo
University) for untreated and treated lube oil with some selected
pour point depressants PPD2, PPD5, PPD8 and PPD11 at con-
centration 2000 ppm and different temperatures (10, 15 and

20 �C) have been studied. In addition, the common flow modes
that reasonably identify the non- Newtonian rheological flow
properties of lube oil at temperatures around and lower than

the pour point have been also studied. The rheology parameters
were obtained from the following equations [29]:

SHEAR RATE

ðsec�1Þ : S0 ¼ x
sinh

SHEAR STRESS

ðdynes=cm2Þ : F0 ¼ M
2
3

pr3

VISCOSITY

Definitions : x ¼ angular velocity of spindle F0

S0

ðrad=secÞ
¼ ð2p

60
ÞN

� �
; N ¼ RPM

M ¼ torque input by instrument

h ¼ cone angleðdegreesÞ
r ¼ cone radius ðcmÞ

The Bingham yield value (sB) can be obtained from the

intercept of the graph relation between shear rate and shear
stress. On the other hand, the linear line from the relation be-
tween shear rate and viscosity gives us the dynamic viscosity.

2.7. Photo micrographic analysis

The photomicrographs showing wax crystallization behavior

of the untreated and treated lube oil (LO) sample with the syn-
thesized additives at different concentrations have been re-
corded. An Olympus polarizing microscope model BHSP
fitted with an automatic camera with a 35 mm format was used

for photo micrographic analysis. The light source was a helium
lamp. The temperature of the tested lube oil sample was con-
trolled on the microscope slide by an attached cooling thermo-

stat. All photos were taken at 0 �C. The adopted magnification
was 100·.

3. Results and discussion

3.1. Chemical structure and characterization of the prepared
copolymers

3.1.1. Ester monomers

The chemical structure was studied by Infrared spectral analy-
sis which showed similar patterns for the four esters. A repre-
sentative IR pattern for octadecyl itaconate monomer is shown

in Fig. 2a which illustrates the OAH stretching band of mono
carboxylic group absorbed small broad band at 3443 cm�1 due
to partial esterification reaction. The CAH stretching vibration

of CH3 and CH2 groups absorbed strongly at 2913–2845 cm�1,
the ester C‚O appeared as a strong absorption band at
1707 cm�1 and the presence of the ester functionality was fur-

ther supported by appearance of a CAO stretching vibration at
1154–1188 cm�1. The characteristic C‚C stretching band
appeared at 1636 cm�1, whereas the CH in plane deformation

vibrations of itaconate ester monomers appeared at
1323 cm�1. A strong absorption of the bending vibration of



Figure 2 IR spectra of (a) octadecyl itaconate (b) octadecyl itaconate-styrene copolymer (50%:50%).
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CA(CH2)AC of long alkyl chain of the ester appeared at

713 cm�1.
The chemical structure was further studied by 1H Nuclear

Magnetic Resonance Spectroscopy which showed similar pat-

terns for the four esters. A representative 1H NMR pattern
for octadecyl itaconate monomer is shown in Fig. 3i which illus-
trates the signal at 0.9 ppm which is assigned to CACH3 group,
the signal at 1.3 ppmwhich is assigned to CACH2ACgroup, the

signal at 3.3 ppm which is assigned to CH2AC‚O group, the
signal at 4.1 which is assigned to CH2O group (ester linkage),
and the signals at 5.7 and 6.3 assigned to C‚CH group.

3.1.2. Copolymers

The synthesized copolymers were characterized through aver-
age molecular weight and polydispersity using gel permeation

chromatographic analysis as listed in Table 3. The chemical
structure of the prepared copolymers was further studied
through infrared spectral analysis that showed similar pat-

terns. A representative example is illustrated in Fig. 2b for
octadecyl itaconate-styrene copolymer which showed strong
absorption bands at 1726 cm�1, 1454 cm�1 and 1173 cm�1, as-

signed to stretching vibration C‚O, CAH bending vibration
of aromatic and CAO stretching vibration, respectively. The

characteristic C‚C stretching absorbed at 1637 cm�1 due to
conjugated aromatic ring and aromatic CAH absorption of
the bending vibration appeared at 713 cm�1.

The chemical structure of the synthesized copolymers was
also studied by 1H NMR spectroscopy which showed similar
patterns. A representative example is illustrated in Fig. 3ii
for octadecyl itaconate-styrene copolymer which illustrates

the signal at 0.9 ppm which is assigned to CACH3 group, the
signal at 1.3 ppm which is assigned to CACH2AC group, the
signal at 3.3 ppm which is assigned to CH2AC‚O group,

the signal at 4.1 which is assigned to CH2O group (ester link-
age), and the signal at 7.1 ppm which is assigned to Ph-H
group (Aromatic Ring).

3.2. Influence of pendant chain length of the various copolymers

on their effectiveness in terms of pour point depression

The effectiveness of the different alkyl chain lengths on the
pour point depression of lube oil follows the order PPD1–
3 C16 > PPD4–6 C18 > PPD7–9 C20 > PPD10–12 C22.
From the demonstrated results in Table 4, it is obvious that



Figure 3 1H-NMR spectra of (i) octadecyl itaconate ester, (ii) Copolymer of octadecyl itaconate-styrene (50%:50%).
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depressant efficiency decreases with increasing the alkyl chain
length from C16 to C22. On the other hand, (C16 itaconate-

styrene) at molar ratio 50%:50% (PPD2) has achieved the
optimum flow improver to the extent of PP2000 ppm =
�15 �C. It seems that decreasing the alkyl chain length C22

to C16 increases the interaction between the alkyl chain of
the copolymer and the paraffin in the lube oil. Thus inhibi-
tion of the wax crystal formation should be obtained. The

ester functionalities are preferably of short alkyl chain length
to enhance steric hindrance. Long alkyl chain length makes
the copolymer bulky and less soluble making the copolymer
less effective [30,31]. Accordingly, the degree of the
improvement of the flow of the oil depends primarily on
the alkyl chain that matches with the paraffin content in

the lube oil.
3.3. Influence of the average molecular weights of the various
investigated copolymers on their effectiveness in terms as pour
point depression

The twelve synthesized polymers (PPD1–PPD12) were as-

sessed as PPD/FI at 2000 ppm concentration in lube oil in
terms of pour point depression. Their average molecular



Table 4 Effect of the polymeric additives on the flowability of lube oil.

Lube oil

Additive design Additive concentration, ppm

Nil 250 500 1000 1500 2000 3000

pp Dpp pp Dpp pp Dpp pp Dpp pp Dpp pp Dpp

PPD 1 15 12 3 12 3 0 15 �3 18 �9 24 �12 27

PPD 2 15 12 3 3 12 0 15 �9 24 �18 33 �18 33

PPD 3 15 12 3 12 3 3 12 0 15 �6 21 �9 24

PPD 4 15 12 3 12 3 0 15 �6 21 �9 24 �12 27

PPD 5 15 12 3 0 15 �3 18 �9 24 �15 30 �15 30

PPD 6 15 12 3 12 3 6 9 0 15 �6 21 �9 24

PPD 7 15 12 3 12 3 6 9 0 15 �6 21 �9 24

PPD 8 15 12 3 9 6 3 12 �3 18 �12 27 �12 27

PPD 9 15 12 3 9 6 6 9 3 12 0 15 �6 21

PPD 10 15 15 0 12 3 3 12 �3 18 �6 21 �9 24

PPD 11 15 15 0 12 3 3 12 �3 18 �6 21 �9 24

PPD 12 15 15 0 12 3 9 6 6 9 0 15 �3 18
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weights and polydispersity were determined by GPC analysis.
Results are listed in Table 3. The data obtained showed that
the prepared polymeric additives have different molecular
weights varying from 28,858 to 60,096 and that the optimum
effectiveness is achieved at the range of 40,313 to 48,415
(PPD1, PPD2, PPD4, PPD5, PPD6). Moreover, the results
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in Table 3 showed that PPD2 and PPD5, with the highest poly
dispersity index (1.70 and 1.72). respectively accomplished the
optimum pour point depression with respect to the other

copolymers. Whereas, copolymers PPD9 and PPD12, with
the lowest polydispersity (1.31 and 1.20), respectively, achieved
the least depression. The results also indicate that the perfor-

mance of these copolymers is almost improved with increasing
the polydispersity index. This result confirmed our preceding
publication in this respect [32]. Thus it is concluded that aver-

age molecular weights and polydispersity index are substantial
parameters controlling the effectiveness of the used polymeric
additives.

3.4. Influence of the concentration of the various investigated
copolymers on their efficiency in terms of pour point depression

With increasing the concentration of the additives, an increase

in their activity was obtained and as a result, a great depression
of pour point was achieved [32]. From the demonstrated re-
sults in Table 4, it was observed that the pour point values reg-

ularly depressed as the additive concentration increased up to
2000 ppm. This means that at this concentration range, the
additive may co-crystallize with the paraffin and modify their
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treated with 2000 ppm C18 (50%) and styrene (50%).
crystals. In general, at lower additive concentrations, side
way growth of the crystal faces may be slightly restricted and
accordingly, the crystal grows is relatively slower, however

crystallization may still be able to form. At higher concentra-
tions of the additives, the side way growth becomes so much
more difficult for the wax crystals [33].

3.5. Influence of the molar ratios of the various investigated

copolymers on their effectiveness in terms of pour point
depression

The effectiveness of the pour point depression is related to
molar ratio of alkyl itaconate and styrene, the effectiveness

of copolymers increases in the order (50%:50%) >
(25%:75%) > (75%:25%). Copolymer (50%:50%) alkyl itac-
onate styrene is the highest efficient as pour point depressant
for Lube oil. This can be found in PPD2, PPD5, PPD8, and

PPD11, due to this molar ratio has moderate polarity. This re-
sult is correlated with that reported in the literature [34] which
denotes that slight polar groups are needed in the flow impro-

ver structure rather than non polar or highly polar to improve
interaction with the precipitating paraffin.
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Table 5 Rheological parameters for untreated and treated lube

oil at 2000 ppm of different pour point depressants.

Flow improver Temperature (�C) Bingham yield

value (dyne/cm2)

Untreated lube oil 20 7.57

15 12.91

10 18.32

PPD 11 20 6.58

15 7.03

10 10.22

PPD 8 20 6.27

15 6.61

10 7.64

PPD 5 20 5.93

15 6.17

10 6.69

PPD 2 20 4.25

15 5.24

10 5.83
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Figure 8b Relation between shear rate and viscosity for lube oil

treated with 2000 ppm C22 (50%) and styrene (50%).
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3.6. Rheological properties and flow behavior

If the oil is cooled during transportation the wax crystals tend
to deposit on the cold pipe wall. If these deposits get too thick,
they can reduce the capacity of the pipeline transportation and

cause problems during pigging. Wax deposition in process
equipment may lead to more frequent shutdowns and opera-
tional problems. In extreme cases, wax crystals may also cause
oil to gel and lead to problems of restarting the pipeline.

A thorough understanding of the rheology of the lube oil is
therefore necessary for tackling these problems particularly at
low temperatures. The nature, the type and the quantity of

wax, as well as its crystallization habits influence flow proper-
ties to a large extent. The flow properties of the lube oil depend
strongly on the shear rate, temperature, rate of cooling, time of

shearing and composition of the lube oil [35].
Rheological behavior of the untreated and treated lube oil

using PPD2, PPD5, PPD8 and PPD11 samples have been

determined in the most efficient concentration (2000 ppm)
via dynamic viscosity measurements at 20, 15 and 10�C. From
the representative examples in Figs. 4a–8a, it can be noticed
that the shear noticed stress increases with increase in the shear

rate at all temperatures. In general, Bingham model showed a
regular increase of parameters with the decrease of tempera-
ture as shown in Table 5. For the untreated lube oil, shear

stress increases sharply with increasing shear rate in such a
way that the cold flow pattern follows a non newtonian yield
pseudo plastic rheological behavior as shown in Fig. 4a.The

rheological data in Figs. 5b–8b are in a scale as shear rate ver-
sus viscosity from which it is noticed that the viscosity de-
creases approximately linearly with the increase of the shear
rate at all test temperatures and the rate of decrease was low-

ered at higher shear rates, as at high shear rates the viscosity
reached a constant value. Here also PPD2 and PPD5 were
found to be superior. This behavior may be explained by the

following reasons: At temperature around the pour point
and at low shear rate, the energy exerted by shear and dissi-
pated energy in the matrix tends to break down the wax crys-

tals partially. But by increasing the shear rate, the dissipated
energy is high enough to overcome the yield stress and start
flow. Upon increasing the shear rate, the size of the agglomer-

ates decreases and this process releases some of the continuous
phase originally immobilized within the agglomerates. As a re-
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Figure 8a Relation between shear rate and shear stress for lube

oil treated with 2000 ppm C22 (50%) and styrene (50%).
sult, the effective dispersed phase concentration decreases and
leads to decrease of viscosity. The viscosity decreases with
increasing the shear rate until the agglomerates are completely

broken down into the basic particles. So the waxy oil system
shows non-newtonian characteristics [36].The behavior of
decreasing the rheological parameters after addition of the pre-
pared polymers can thus be attributed to their chemical struc-

tures. The slight polarity of the benzene ring in the polymer
backbone and the presence of high polarity of oxygen in the
acid and ester groups along polymer chain play a role in pre-

venting the agglomeration of wax crystals in lube oil. In addi-
tion, the interaction of the alkyl chain with the paraffin
fraction in the oil occurs through a good match of the alkyl

chain length and as discussed before, as the alkyl chain length
decreases a better match occurs.

3.7. Effect of flow improver and pour point depressant type on
wax crystal modification

Photo analysis confirms other standard flow tests that evaluate
the cold flow properties of untreated/treated lube oil through
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wax crystallization behavior. It is applied herein for assessing
the action of the previously prepared bifunctional flow addi-
tives as wax inhibitor/pour point depressant through wax

modification according to their type, concentration and molar
ratios of the copolymer.

3.7.1. Type of additive and wax modification

Photomicrographs illustrated in Plate 1a–d have showed vari-
ant wax morphology changes according to the type of additive.
Plate 1a of the untreated lube oil showed large cyclic like crys-

tals (PP = 15 �C) of approximate size of 100 lm which on
treatment with PPD5 PP2000 ppm = �15 �C Plate 1b have lead
to significant reduction of wax crystal size and formation of

abundant number of fine dispersed crystals. When using the
Plate 1 Photomicrographs of (a) LO untreated, (b) LO+P

Plate 2 Photomicrographs of (a) LO untreated, (b) LO+250 ppm P
PPD8 PP2000 ppm = �12 �C additives a higher wax modifica-
tion degree was observed and fine dispersed wax crystals
started to appear Plate 1c. On treatment of 2000 ppm of

PPD11, small cyclic wax crystals were observed
PP2000 ppm = �6 �C. Concerning the correspondent flow
parameter measurements, it is revealed that with the increase

of additive activity in terms of DPP, the induced wax modifica-
tion is increased to a higher degree in the order
PPD5 > PPD8 > PPD11 i.e., there is a good correlation be-

tween wax modification and measured flow parameter.

3.7.2. Concentration of additive and wax modification

The effect of the concentration of the most efficient PPD5

additive was assessed through photographic analysis on wax
PD5, (c) LO+PPD8 and (d) LO+PPD11 at 2000 ppm.

PD5), (C) LO+1000 ppm PPD5 and (d) LO+2000 ppm PPD5).



Plate 3 Photomicrographs of (a) LO untreated, (b) LO+PPD4, (c) LO+PPD5, and (d) LO + PPD6 at 2000 ppm.
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modification at 250, 1000 and 2000 ppm successively. Results

are illustrated in Plate 2a–d from which it is obvious that with
the increase of additive concentration, the wax crystal size is
significantly decreased from large cyclic like crystal (Plate 2a)

passing through Plates 2b and c to abundant number of very
small dots dispersed in the oil phase of the lube oil Plate 2d.
It is also noted that the extent of wax modification induced

by the increase of additive concentration is well correlated with
the improved pour point flow parameter.

3.7.3. Molar ratio of copolymer and wax modification

Photomicrography of lube oil without treatment showed large
cyclic like crystals (PP = 15 �C) Plate 3a. Lube oil was doped
with the flow improver PPD 4 (Poly octadecyl itaconate-sty-

rene) 25%: 75% ratio PPD4 Plate 3b, further crystal modifica-
tion has been achieved leading to the formation of fine
dispersed wax crystal PP2000 ppm = �9 �C. By treatment of
lube oil with poly octadecyl itaconate-styrene at molar ratio

(50%:50%) PPD5, PP2000 ppm = �15 �C, further crystal size
reduction with the formation of very fine dispersed crystals
was achieved as indicated in Plate 3c. Plate 3d illustrates the

lube oil treated with polyoctadecyl itaconate copolymer molar
ratio 75%:25% PPD6. A remarkable modification of wax crys-
tal size has been achieved as a result of the break down of the

cyclic form of crystals by this additive PP2000 ppm = �6 �C.

4. Conclusion

� Twelve alkyl itaconate-styrene copolymer additives with

different alkyl groups from C16 to C22 and different molar
ratios were prepared, purified and characterized by FTIR,
1H NMR and GPC and their effect on pour point and rhe-

ological properties of the lube oil was investigated.
� Both average molecular weights, polydispersity index of
additive drastically affect the performance of pour point
depressants/ flow improvers.
� The effect of the different alkyl chain lengths on the pour
point depression follows in the order PPD1-3

C16 > PPD4–6 C18 > PPD7–9 C20 > PPD10–12 C22.
� With increasing the concentration of the additives, an
increase of their activity was obtained and as a result, a
great depression of pour point was achieved.

� The prepared copolymers were tested as pour point depres-
sants for lube oil and it was found that the maximum
depression was obtained by the sample that has short alkyl

chain (C16 itaconate-styrene) at molar ratio 50%:50%
(PPD2) from 15 �C to �18 �C (DPP = 33 �C at
2000 ppm) while the minimum depression was exhibited

by long alkyl chain length (C22 itaconate-styrene) at molar
ratio 75%:25% PPD12 from 15 �C to 0 �C (DPP = 15 �C at
2000 ppm under the same conditions.
� The effect of these copolymers on the rheology and flow

properties of lube oil was investigated.
� The photo analysis has showed that a wax modification
caused by the effective pour point depressant on crystal

growth generally alters the irregular large size crystals to
form fine depressant wax crystals further enhancement of
flow ability and depressions of pour point were obtained.
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