Topology and its Applications

Topology and its Applications 155 (2008) 1/26-1/29



Contents lists available at ScienceDirect

## Topology and its Applications

www.elsevier.com/locate/topol

# An improvement of a recent closed graph theorem

Zhong Shuhui<sup>a</sup>, Li Ronglu<sup>a,\*</sup>, Won Sok Yoo<sup>b</sup>

<sup>a</sup> Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

<sup>b</sup> Department of Applied Mathematics, Kumoh National Institute of Technology, Gumi 730-701, South Korea

#### ARTICLE INFO

#### ABSTRACT

Article history: Received 5 December 2007 Received in revised form 16 May 2008 Accepted 19 May 2008

MSC: 46A30 47H99

Keywords: Weakly quasi-linear mappings Quasi-linear mappings Closed graph Continuous mappings Fréchet spaces We obtain a new closed graph theorem which is a substantial improvement of a recent result. © 2008 Elsevier B.V. All rights reserved.

There is a series of generalizations and improvements of the classical closed graph theorem, such as [1–4]. Especially, [4] has given a closed graph theorem which is available for all linear operators and many more nonlinear mappings.

Let X be a vector space and Y a topological vector space. A mapping  $f: X \to Y$  is said to be quasi-linear if f satisfies the following (1)-(3):

(1) if  $f(x_n) \to 0$  and  $f(u_n) \to 0$ , then  $f(x_n + u_n) \to 0$ ;

(2) if  $f(x_n - x) \to 0$  and  $t_n \to t$  in the scalar field  $\mathbb{K}$ , then  $f(t_n x_n - tx) \to 0$ ;

(3)  $f(x_n) \rightarrow f(u)$  if and only if  $f(x_n - u) \rightarrow 0$ .

Note that, when *Y* is Hausdorff, taking  $x_n = u = 0$  in (3) yields

(4) f(0) = 0.

As was shown in [4], the family of quasi-linear mappings is a large extension of the family of linear operators. Just taking the conditions (1)–(3), Shuhui Zhong and Ronglu Li [4] established a closed graph theorem as follows.

**Theorem.** (See [4, Theorem 2.1].) Let X, Y be Fréchet spaces. If  $f : X \to Y$  is quasi-linear and its graph  $G = \{(x, f(x)): x \in X\}$  is closed in  $X \times Y$ , then f is continuous.

\* Corresponding author. E-mail address: rongluli@yahoo.com.cn (R. Li).

<sup>0166-8641/\$ –</sup> see front matter  $\,\,\odot\,$  2008 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2008.05.012

In this paper we would like to give a further improvement of this recent result. For topological vector spaces X and Y, a mapping  $f : X \to Y$  is said to be weakly quasi-linear if f satisfies (1), (2) and

(3') if  $x_n - u \to 0$  in X, then  $f(x_n) \to f(u)$  if and only if  $f(x_n - u) \to 0$ .

Note that, when *Y* is Hausdorff, taking  $x_n = u = 0$  in (3') also yields (4).

Evidently, if  $f: X \to Y$  satisfies condition (3), then (3') must hold for f. So every quasi-linear mapping  $f: X \to Y$  is weakly quasi-linear. In the following, we first improve the closed graph theorem in [4] by using weakly quasi-linear mappings instead of quasi-linear mappings, and then show that the family of weakly quasi-linear mappings is a large extension of the family of quasi-linear mappings.

#### 1. The closed graph theorem for weakly quasi-linear mappings

A Fréchet space is a complete metrizable linear space. However, a Fréchet space is also a separated complete paranormed space [5, p. 56].

**Theorem 1.1.** Let X, Y be Fréchet spaces. If  $f : X \to Y$  is weakly quasi-linear and its graph  $G = \{(x, f(x)): x \in X\}$  is closed in  $X \times Y$ , then f is continuous.

**Proof.** Let  $X = (X, \|\cdot\|_1)$  and  $Y = (Y, \|\cdot\|_2)$ , where  $\|\cdot\|_1$  and  $\|\cdot\|_2$  are paranorms [5, p. 15]. Define  $d: X^2 \to \mathbb{R}$  by  $d(x, u) = \|x - u\|_1 + \|f(x) - f(u)\|_2$ ,  $\forall x, u \in X$ . It is easy to see that *d* is a metric on *X*.

Suppose  $\{x_n\}$  is Cauchy in (X, d), i.e.,  $d(x_n, x_m) = \|x_n - x_m\|_1 + \|f(x_n) - f(x_m)\|_2 \rightarrow 0$  as  $n, m \rightarrow +\infty$  so  $\{x_n\}$  and  $\{f(x_n)\}$  are Cauchy in  $(X, \|\cdot\|_1)$  and  $(Y, \|\cdot\|_2)$  respectively. Since X, Y are complete, there exist  $x \in X$  and  $y \in Y$  such that  $\|x_n - x\|_1 \rightarrow 0$ ,  $\|f(x_n) - y\|_2 \rightarrow 0$ . Then y = f(x) for f has closed graph in  $X \times Y$ . Now  $d(x_n, x) = \|x_n - x\|_1 + \|f(x_n) - f(x)\|_2 = \|x_n - x\|_1 + \|f(x_n) - y\|_2 \rightarrow 0$ . Therefore, (X, d) is complete.

If  $x_n \to x$  and  $u_n \to u$  in (X, d), then  $d(x_n, x) = ||x_n - x||_1 + ||f(x_n) - f(x)||_2 \to 0$  and  $d(u_n, u) = ||u_n - u||_1 + ||f(u_n) - f(u)||_2 \to 0$ . By (3'),  $||f(x_n - x)||_2 \to 0$ ,  $||f(u_n - u)||_2 \to 0$  and  $||f(x_n + u_n - x - u)||_2 \to 0$  by (1). Since  $||x_n + u_n - (x + u)||_1 \le ||x_n - x||_1 + ||u_n - u||_1 \to 0$ , by (3') again,  $||f(x_n + u_n) - f(x + u)||_2 \to 0$ . Thus,  $d(x_n + u_n, x + u) \to 0$ , that is, the additive operation is continuous in (X, d).

Suppose that  $t_n \to t$  in the scalar field  $\mathbb{K}$  and  $x_n \to x$  in (X, d). Then  $d(x_n, x) = ||x_n - x||_1 + ||f(x_n) - f(x)||_2 \to 0$ , i.e.,  $||x_n - x||_1 \to 0$ ,  $||f(x_n) - f(x)||_2 \to 0$ . So  $||f(x_n - x)||_2 \to 0$  by (3') and  $||f(t_n x_n - tx)||_2 \to 0$  by (2), and since  $||t_n x_n - tx||_1 \to 0$ ,  $||f(t_n x_n) - f(tx)||_2 \to 0$  by (3') again. Then  $d(t_n x_n, tx) \to 0$ , and therefore the scalar multiplication is also continuous in (X, d).

Thus, (X, d) is a complete metrizable linear space, that is, (X, d) is a Fréchet space and, letting I(x) = x for  $x \in X$ ,  $I: (X, d) \to (X, \|\cdot\|_1)$  is continuous, one-to-one and onto. By the open mapping theorem [5, p. 58], the converse  $I^{-1}: (X, \|\cdot\|_1) \to (X, d)$  is also continuous.

Now let  $x_n \to x$  in  $(X, \|\cdot\|_1)$ . Then  $x_n = I^{-1}(x_n) \to I^{-1}(x) = x$  in (X, d), that is,  $\|x_n - x\|_1 + \|f(x_n) - f(x)\|_2 \to 0$  so  $\|f(x_n) - f(x)\|_2 \to 0$ , i.e.,  $f(x_n) \to f(x)$  in  $(Y, \|\cdot\|_2)$ . This shows that  $f: (X, \|\cdot\|_1) \to (Y, \|\cdot\|_2)$  is continuous.  $\Box$ 

Clearly, the recent result in [4] is a special case of this new closed graph theorem. Moreover, the continuity version Theorem 2.2 of [4] is also a special case of the following Corollary 1.1.

**Corollary 1.1.** Let  $(X, \mathfrak{T})$ ,  $(Y, \mathfrak{T})$  be Fréchet spaces and  $\tau$  a Hausdorff topology for Y which is coarser than  $\mathfrak{T}$ . If  $f: X \to (Y, \mathfrak{T})$  is weakly quasi-linear and  $\mathfrak{T} - \tau$  continuous, then f is  $\mathfrak{T} - \mathfrak{T}$  continuous.

**Proof.** Hausdorff  $\tau$  and continuous f ensure that the graph G is closed in  $(X, \mathfrak{T}) \times (Y, \tau)$ , and thus also in  $(X, \mathfrak{T}) \times (X, \mathfrak{I})$ , since the latter has a finer topology. The conclusion now follows from Theorem 1.1.  $\Box$ 

### 2. Weakly quasi-linear mappings

Let wql(X, Y) denote the family of all weakly quasi-linear mappings from the topological vector space X to the topological vector space Y.

**Remark.** It is obvious that  $f \in wql(X, Y)$  is sequentially continuous at every point if it is sequentially continuous at one point.

**Proposition 2.1.** *If* X, Y are Hausdorff and X is finite-dimensional, then every  $f \in wql(X, Y)$  *is continuous.* 

**Proof.** Let  $e_1, \ldots, e_k$  be a Hamel basis for X. Let  $z_n \to 0$  in X, where  $z_n = \sum_{i=1}^k t_{ni}e_i$ . For each  $i \leq k$  we have  $\lim_n t_{ni} = 0$ , so that (4) and (2), with t = 0 and each  $x_n = x = e_i$ , imply that

 $\lim_{n \to \infty} f(t_{ni}e_i) = \lim_{n \to \infty} f(t_{ni}e_i - te_i) = 0.$ 

An inductive version of (1) gives us

$$\lim_{n} f(z_{n}) = \lim_{n} f\left(\sum_{i=1}^{k} t_{ni}e_{i}\right) = 0 = f(0).$$

Therefore f is sequentially continuous at 0, and hence is sequentially continuous everywhere. Since dim  $X < +\infty$ , f is continuous everywhere.  $\Box$ 

We have a simple fact which is helpful to our knowledge of weakly quasi-linear mappings.

**Proposition 2.2.** A nonzero  $\varphi : \mathbb{R} \to \mathbb{R}$  is weakly quasi-linear if and only if

(I)  $\varphi(0) = 0$ , and

(II)  $\varphi$  is continuous,  $\varphi(x) \neq 0$  for all  $x \neq 0$  and  $\varphi(x_n) \rightarrow 0$  whenever  $x_n \rightarrow \infty$ .

**Proof.** If  $\varphi \in wql(\mathbb{R}, \mathbb{R})$  and  $\varphi \neq 0$ , then  $\varphi(0) = 0$  by (4), and  $\varphi$  is continuous by Proposition 2.1.

Suppose  $\varphi(x_0) = 0$  for some  $x_0 \neq 0$ . Let  $t \in \mathbb{R}$  and for every  $n \in \mathbb{N}$  let  $t_n = t$  and  $x_n = x_0$ . Then  $t_n \to t$  and  $\varphi(x_n - 0) = \varphi(x_0) = 0$  so  $\varphi(tx_0) = \varphi(t_nx_n - t \cdot 0) \to 0$  by (2). Thus,  $\varphi(tx_0) = 0$  for all  $t \in \mathbb{R}$  so  $\varphi(x) = 0$ ,  $\forall x \in \mathbb{R}$ , i.e.,  $\varphi = 0$ , a contradiction. Hence,  $\varphi(x) \neq 0$  for all  $x \neq 0$ .

Suppose that  $x_n \to \infty$  and  $\varphi(x_n) \to 0$ . Then  $\frac{1}{x_n} \to 0$  and  $\varphi(x_n - 0) = \varphi(x_n) \to 0$ . By (2),  $\varphi(1) = \varphi(\frac{1}{x_n} \cdot x_n - 0 \cdot 0) \to 0$ , i.e.,  $\varphi(1) = 0$ . As was stated above,  $\varphi = 0$ . This is a contradiction so  $\varphi(x_n) \to 0$  for every  $x_n \to \infty$ .

Conversely, suppose that both (I) and (II) hold for  $\varphi$ . Since  $\varphi(0) = 0$  and  $\varphi$  is continuous,  $\varphi(x_n) \to 0$  when  $x_n \to 0$ . Suppose that  $x_n \to 0$  but  $\varphi(x_n) \to 0$ . By passing to a subsequence if necessary, we assume that  $|x_n| \ge \varepsilon > 0$  for all n. If  $\{x_n\}$  is bounded, then there is a subsequence  $x_{n_k} \to x$  with  $|x| \ge \varepsilon$  and  $\varphi(x) = \lim_k \varphi(x_{n_k}) = 0$ , a contradiction. If  $\{x_n\}$  is not bounded then there is a subsequence  $x_{n_k} \to \infty$  and  $\lim_k \varphi(x_{n_k}) = \lim_n \varphi(x_n) = 0$ . This is also a contradiction and so  $\varphi(x_n) \to 0$  implies  $x_n \to 0$ . Thus,  $\varphi(x_n) \to 0$  if and only if  $x_n \to 0$ .

If  $\varphi(x_n) \to 0$  and  $\varphi(u_n) \to 0$ , then  $x_n \to 0$  and  $u_n \to 0$  so  $x_n + u_n \to 0$  and  $\varphi(x_n + u_n) \to 0$ . Thus, (1) holds for  $\varphi$ . If  $\varphi(x_n - x) \to 0$  and  $t_n \to t$  in  $\mathbb{K}$ , then  $x_n - x \to 0$  so  $t_n x_n - tx \to 0$  and  $\varphi(t_n x_n - tx) \to 0$ . Thus, (2) holds for  $\varphi$ . Let  $x_n - u \to 0$  in  $\mathbb{R}$ . Then  $x_n \to u$ . Since  $\varphi$  is continuous, both  $\varphi(x_n - u) \to \varphi(0) = 0$  and  $\varphi(x_n) \to \varphi(u)$  hold. This shows that if  $x_n - u \to 0$  then  $\varphi(x_n) \to \varphi(u)$  if and only if  $\varphi(x_n - u) \to 0$ , i.e., (3') holds for  $\varphi$ .  $\Box$ 

Obviously, condition (II) of Proposition 2.2 is much weaker than (II) of Proposition 1.4 in [4]. So condition (3') is much looser than (3) and it becomes very easy to find weakly quasi-linear mappings which are not quasi-linear.

#### Example 2.1. Let

$$\varphi(x) = \begin{cases} 2 + \sin(x - 2), & x > 2, \\ |x|, & x \leq 2. \end{cases}$$

By Proposition 2.2,  $\varphi \in wql(\mathbb{R}, \mathbb{R})$ . But  $\varphi$  is not monotonic, so  $\varphi$  is not quasi-linear [4, Proposition 1.4].

We would like to say that the family of weakly quasi-linear mappings is an important object in analysis because if  $(X, \|\cdot\|)$  is a normed space and  $\|\cdot\| \neq 0$  then the norm  $\|\cdot\| : (X, \|\cdot\|) \to \mathbb{R}$  is not quasi-linear and so not linear but it must be weakly quasi-linear.

**Proposition 2.3.** Let  $(X, \|\cdot\|)$  be a nontrivial paranormed space [5, p. 15]. Define  $f : X \to \mathbb{R}$  by  $f(x) = \|x\|, \forall x \in X$ . Then f is weakly quasi-linear but f is not quasi-linear when  $\|\cdot\| \neq 0$ .

**Proof.** Since  $f(x_n) \to 0$  means that  $x_n \to 0$  in  $(X, \|\cdot\|)$ , (1) and (2) hold for f.

If  $x_n - u \to 0$  and  $f(x_n - u) \to 0$ , then  $|||x_n|| - ||u||| \le ||x_n - u|| \to 0$  so  $f(x_n) - f(u) = ||x_n|| - ||u|| \to 0$ . If  $x_n - u \to 0$  and  $f(x_n) - f(u) \to 0$ , then  $f(x_n - u) = ||x_n - u|| \to 0$ . Thus, (3') holds for f.

If  $\|\cdot\| \neq 0$  then (3) fails to hold for f. To see this, pick an  $x \in X$  for which  $\|x\| > 0$ . Then  $\|\frac{x}{2}\| \ge \frac{\|x\|}{2} > 0$ . Letting  $x_n = -\frac{x}{2}$  for  $n \in \mathbb{N}$ ,  $f(x_n) = \|-\frac{x}{2}\| = \|\frac{x}{2}\| \Rightarrow \|\frac{x}{2}\| = f(\frac{x}{2})$  but  $f(x_n - \frac{x}{2}) = f(-\frac{x}{2} - \frac{x}{2}) = f(-x) = \|-x\| = \|x\| > 0$  so  $f(x_n - \frac{x}{2}) \Rightarrow 0$ .  $\Box$ 

Many Banach spaces contain a copy of  $(c_0, \|\cdot\|_{\infty})$  or  $(\ell^1, \|\cdot\|_1)$  or a reflexive Banach space. Hence, linearly homeomorphic embedding  $T: X \to Y$  happens frequently. Especially, for every complex Banach space X and every continuous linear operator  $S: X \to X$ ,  $\lambda I - S: X \to X$  is a linear homeomorphism for each  $\lambda \in \mathbb{C} \setminus \sigma(S) \supset \{\lambda \in \mathbb{C} : |\lambda| > \|S\|\}$ .

**Proposition 2.4.** Let  $\varphi : [0, +\infty) \to (0, +\infty)$  be a continuous function such that

$$0 < \mu = \inf_{t \ge 0} \varphi(t) \le \sup_{t \ge 0} \varphi(t) = M < +\infty$$

Let X, Y be normed spaces and  $T: X \to Y$  a linearly homeomorphic embedding. If  $f: X \to Y$  is defined by  $f(x) = \varphi(||x||)T(x), \forall x \in X$ , then f is weakly quasi-linear.

**Proof.** Since  $0 < \mu \leq \varphi(t) \leq M < +\infty$  for all  $t \geq 0$  and *T* is a linear homeomorphism of *X* onto *T*(*X*),  $f(x_n) \to 0$  if and only if  $T(x_n) \to 0$  and if and only if  $x_n \to 0$ . Thus, (1) and (2) hold for *f*.

If  $x_n - u \to 0$  and  $f(x_n - u) \to 0$ , then  $|||x_n|| - ||u||| \le ||x_n - u|| \to 0$  i.e.,  $||x_n|| \to ||u||$ . By the continuity of  $\varphi$  and T,  $f(x_n) - f(u) = \varphi(||x_n||)T(x_n) - \varphi(||u||)T(u) \to 0$ . If  $x_n - u \to 0$  and  $f(x_n) - f(u) \to 0$ , then  $f(x_n - u) = \varphi(||x_n - u||)T(x_n - u) \to \varphi(0)T(0) = 0$  since both  $\varphi$  and T are continuous. Thus, (3') holds for f.  $\Box$ 

Obviously, although the condition of Proposition 2.4 is much weaker than that of Proposition 3.1 in [4], the proof becomes much simpler. So condition (3') is much looser than (3).

Note that if X is an infinite-dimensional Fréchet space then for every nontrivial Fréchet space Y there exist many linear operators from X to Y which are not continuous and, of course, many more weakly quasi-linear mappings from X to Y which are not continuous. The new closed graph theorem just shows that a weakly quasi-linear  $f : X \to Y$  is continuous if and only if f has closed graph.

#### Acknowledgements

The authors sincerely wish to thank the reviewer for stunningly elegant ideas and techniques contributed to this paper.

#### References

- [1] J. Qiu, A class of closed graph theorems, Acta Math. Sci. 35 (1992) 704-709.
- [2] A. Tineo, The closed graph theorem for nonlinear maps, J. Math. Anal. Appl. 233 (1999) 77-85.
- [3] R. Beattie, H.P. Butzmann, Ultracomplete convergence vector spaces and the closed graph theorem, Topology Appl. 111 (2001) 59-69.
- [4] S. Zhong, R. Li, Continuity of mappings between Fréchet spaces, J. Math. Anal. Appl. 311 (2005) 736-743.
- [5] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.