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There is a series of generalizations and improvements of the classical closed graph theorem, such as [1-4]. Especially, [4]
has given a closed graph theorem which is available for all linear operators and many more nonlinear mappings.

Let X be a vector space and Y a topological vector space. A mapping f:X — Y is said to be quasi-linear if f satisfies
the following (1)-(3):

(1) if f(xp) — 0 and f(up) — O, then f(x, + uy) — O;
(2) if f(x, —x) — 0 and t, — t in the scalar field K, then f(tpx; —tx) — O;
(3) f(xp) — f(u) if and only if f(x, —u) — 0.

Note that, when Y is Hausdorff, taking x, = u =0 in (3) yields
(4) f(©)=0.
As was shown in [4], the family of quasi-linear mappings is a large extension of the family of linear operators. Just taking

the conditions (1)-(3), Shuhui Zhong and Ronglu Li [4] established a closed graph theorem as follows.

Theorem. (See [4, Theorem 2.1].) Let X, Y be Fréchet spaces. If f : X — Y is quasi-linear and its graph G = {(x, f (x)): x € X} is closed
in X x Y, then f is continuous.
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In this paper we would like to give a further improvement of this recent result. For topological vector spaces X and Y, a
mapping f : X — Y is said to be weakly quasi-linear if f satisfies (1), (2) and

(3") if X, —u — 0 in X, then f(x,) — f(u) if and only if f(x, —u)— 0.

Note that, when Y is Hausdorff, taking x, =u =0 in (3’) also yields (4).

Evidently, if f:X — Y satisfies condition (3), then (3’) must hold for f. So every quasi-linear mapping f:X — Y is
weakly quasi-linear. In the following, we first improve the closed graph theorem in [4] by using weakly quasi-linear map-
pings instead of quasi-linear mappings, and then show that the family of weakly quasi-linear mappings is a large extension
of the family of quasi-linear mappings.

1. The closed graph theorem for weakly quasi-linear mappings

A Fréchet space is a complete metrizable linear space. However, a Fréchet space is also a separated complete paranormed
space [5, p. 56].

Theorem 1.1. Let X, Y be Fréchet spaces. If f : X — Y is weakly quasi-linear and its graph G = {(x, f(x)): x € X} isclosedin X x Y,
then f is continuous.

Proof. Let X = (X, | -|l1) and Y = (Y, | - ||2), where || - |1 and | - || are paranorms [5, p. 15]. Define d: X% — R by d(x, u) =
lx —ull1 + | fX) — f(w)]l2, Vx,u € X. It is easy to see that d is a metric on X.

Suppose {x,} is Cauchy in (X, d), i.e., d(Xn, Xm) = llxn — Xmll1 + || f (%n) — f(xm)|l2 = 0 as n,m — 400 so {x,} and {f(x;)}
are Cauchy in (X, || - 1) and (Y, || - ||2) respectively. Since X, Y are complete, there exist x € X and y € Y such that ||x, —
X[t = 0, [ f(xn) — yll2 — 0. Then y = f(x) for f has closed graph in X x Y. Now d(xn,x) = [|xn — x[l1 + | f (xn) — fO) 2 =
lxn — xll1 + | f (xn) — yll2 — 0. Therefore, (X, d) is complete.

If x;, > x and u, — u in (X, d), then d(xn,x) = [Ix; — Xll1 + | f (xz) — f(X)|l2 — 0 and d(up, u) = |lug — ull1 + || f(un) —
f@Wlz2—0.By @), [If (%0 —2)ll2 = 0, || f(un —u)ll2 — 0 and || f (Xn +un —x—u)ll2 — 0 by (1). Since [|x, +up — (X +u)ll1 <
llxn — x|l1 + lup — ully — 0, by (3’) again, || f (X, + up) — f(x+ w)|2 — 0. Thus, d(x, + un, x + u) — 0, that is, the additive
operation is continuous in (X, d).

Suppose that t, — t in the scalar field K and x, — x in (X,d). Then d(xn,x) = ||x, — x|l1 + || f(xn) — fX) |2 — 0, i.e,
lXa —xll1 = O, | f (%) — fX)|l2 = 0. So || f (xn —%)[l2 — 0 by (3') and || f (tnxn —tx)[l2 — 0 by (2), and since [|tnx, —tx|[1 — O,
|| f (taXn) — f(tx)|l2 — O by (3') again. Then d(t,x,,tx) — 0, and therefore the scalar multiplication is also continuous in
(X, d).

Thus, (X,d) is a complete metrizable linear space, that is, (X,d) is a Fréchet space and, letting I(x) = x for x € X,
I:(X,d)— (X, |- 1l1) is continuous, one-to-one and onto. By the open mapping theorem [5, p. 58], the converse I~1: (X, | -
1) — (X, d) is also continuous.

Now let x, — x in (X, | - |l1). Then x;, = I"'(x;) — I"1(x) = x in (X, d), that is, ||xa — x|[1 + || f(X2) — f(x)||2 = O so0
I fxn) — fX)|l2 — 0, ie., f(xp) — f(x)in (Y, ] - |l2). This shows that f: (X, | -|l1) = (Y, | - |l2) is continuous. O

Clearly, the recent result in [4] is a special case of this new closed graph theorem. Moreover, the continuity version
Theorem 2.2 of [4] is also a special case of the following Corollary 1.1.

Corollary 1.1. Let (X, %), (Y,J) be Fréchet spaces and T a Hausdorff topology for Y which is coarser than 3. If f : X — (Y, 7J) is
weakly quasi-linear and ¥ — t continuous, then f is ¥ — J continuous.

Proof. Hausdorff 7 and continuous f ensure that the graph G is closed in (X, %) x (Y, 7), and thus also in (X, %) x (X, J),
since the latter has a finer topology. The conclusion now follows from Theorem 1.1. O

2. Weakly quasi-linear mappings

Let wql(X,Y) denote the family of all weakly quasi-linear mappings from the topological vector space X to the topolog-
ical vector space Y.

Remark. It is obvious that f € wql(X,Y) is sequentially continuous at every point if it is sequentially continuous at one
point.

Proposition 2.1. If X, Y are Hausdorff and X is finite-dimensional, then every f € wql(X, Y) is continuous.
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Proof. Let eq, ..., e, be a Hamel basis for X. Let z;, — 0 in X, where z, = ZLI tpiei. For each i < k we have lim, t,; =0, so
that (4) and (2), with t =0 and each x; = x =¢;, imply that

lip f(tnie)) = lirflrl f(tnie; —te;) =0.

An inductive version of (1) gives us
k

lim f (zn) =li,5nf(2rm-e,~) =0=f(0).
i=1
Therefore f is sequentially continuous at 0, and hence is sequentially continuous everywhere. Since dimX < +o0, f is
continuous everywhere. O

We have a simple fact which is helpful to our knowledge of weakly quasi-linear mappings.
Proposition 2.2. A nonzero ¢ : R — R is weakly quasi-linear if and only if

(I) ¢(0) =0, and
(I) @ is continuous, ¢(x) # 0 for all x # 0 and ¢ (x,) - 0 whenever x; — oco.

Proof. If ¢ € wql(R,R) and ¢ #0, then ¢(0) =0 by (4), and ¢ is continuous by Proposition 2.1.

Suppose ¢(xg) = 0 for some xg # 0. Let t € R and for every n € N let t; =t and x, = Xp. Then t, — t and ¢(x; —0) =
©(x0) =0 s0 @(txg) = @(tyxn —t-0) — 0 by (2). Thus, ¢(txg) =0 for allt e R so ¢(x) =0, Vx € R, i.e,, ¢ =0, a contradiction.
Hence, ¢(x) # 0 for all x # 0.

Suppose that x; — oo and ¢(x;) — 0. Then ;—n — 0 and ¢(x; —0) =@ (x;) — 0. By (2), (1) = (p(% -xp—0-0)— 0, ie,
@(1) = 0. As was stated above, ¢ = 0. This is a contradiction so ¢(x,) - 0 for every x, — oco.

Conversely, suppose that both (I) and (II) hold for ¢. Since ¢(0) =0 and ¢ is continuous, ¢(x;) — 0 when x; — 0.
Suppose that x; - 0 but ¢(x;) — 0. By passing to a subsequence if necessary, we assume that |x,| > & > 0 for all n. If
{xn} is bounded, then there is a subsequence x,, — x with |x| > ¢ and @(x) =limg @(x,,) =0, a contradiction. If {x,} is
not bounded then there is a subsequence xp, — oo and limy ¢ (xp,) = lim, ¢ (x,) = 0. This is also a contradiction and so
@(xp) — 0 implies x; — 0. Thus, ¢(x,) — 0 if and only if x;, — 0.

If o(xn) — 0 and ¢(uy) — 0, then x; — 0 and u, — 0 so x, + up, — 0 and @(x; + up) — 0. Thus, (1) holds for ¢. If
@(xp—x) — 0 and t; — t in K, then x, —x — 0 so tyx; —tx — 0 and @(t;x, —tx) — 0. Thus, (2) holds for ¢. Let x, —u — 0
in R. Then x, — u. Since ¢ is continuous, both ¢ (x, —u) — ¢(0) =0 and ¢(x;) — ¢(u) hold. This shows that if x;, —u — 0
then ¢(xp) — @(u) if and only if ¢ (x, —u) — 0, i.e,, (3’) holds for ¢. O

Obviously, condition (II) of Proposition 2.2 is much weaker than (II) of Proposition 1.4 in [4]. So condition (3) is much
looser than (3) and it becomes very easy to find weakly quasi-linear mappings which are not quasi-linear.

Example 2.1. Let
2+sin(x—2), x>2,
|x], x< 2.

@ (x) ={

By Proposition 2.2, ¢ € wql(R, R). But ¢ is not monotonic, so ¢ is not quasi-linear [4, Proposition 1.4].

We would like to say that the family of weakly quasi-linear mappings is an important object in analysis because if
(X, ]l - 1) is a normed space and || - || £ 0 then the norm |- || : (X, || - ||) — R is not quasi-linear and so not linear but it must
be weakly quasi-linear.

Proposition 2.3. Let (X, || - ||) be a nontrivial paranormed space [5, p. 15]. Define f : X — R by f(x) = ||x||, Vx € X. Then f is weakly
quasi-linear but f is not quasi-linear when || - || # 0.

Proof. Since f(x,) — 0 means that x, — 0 in (X, || - ||), (1) and (2) hold for f.

If xp —u— 0and f(x, —u) — 0, then |[|x,]| — lull] < |lxn —ul| = 0 so f(xy) — f(w) = |xn|l — ||| = 0. If X, —u — 0 and
f(xn) — f(u) > 0, then f(x, —u) = ||xn, — u|| — 0. Thus, (3’) holds for f.

If || - || # 0 then (3) fails to hold for f. To see this, pick an x € X for which ||x|| > 0. Then ||| > @ > 0. Letting x, = —3
forneN, fom) =l —5I= 15— 151=F) but fon—5=f(-5-5H=F0=I-xI=]x| > 050 ft,—%) »0. O

Many Banach spaces contain a copy of (co, || - loc) or (€1, ]| - [|l1) or a reflexive Banach space. Hence, linearly homeomor-
phic embedding T: X — Y happens frequently. Especially, for every complex Banach space X and every continuous linear
operator S: X — X, Al —S: X — X is a linear homeomorphism for each A€ C\ o (S) D {x €C: |A| > ||S|}.
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Proposition 2.4. Let ¢ : [0, +00) — (0, +00) be a continuous function such that

0<pu=infe() <supp(lt)=M < 4oo.
=0 t>0

Let X, Y be normed spacesand T : X — Y a linearly homeomorphic embedding. If f : X — Y isdefined by f(x) = ¢(||x|)T (x), Vx € X,
then f is weakly quasi-linear.

Proof. Since 0 < ;4 < @(t) <M < +oo for all t >0 and T is a linear homeomorphism of X onto T(X), f(x;) — O if and
only if T(x,) — 0 and if and only if x, — 0. Thus, (1) and (2) hold for f.

If x, —u— 0 and f(x, —u) — 0, then |||x,] — [[ull| < lx, — ull = O ie., x|l — [lull. By the continuity of ¢ and T,
Fln) — f@) =@lxaIDT xn) — @(|[ul)T () — 0. If X, —u — 0 and f(x) — f(u) — O, then f(xp —u) = @(|lxy — uDT Xy —
u) — ¢(0)T(0) = 0 since both ¢ and T are continuous. Thus, (3') holds for f. O

Obviously, although the condition of Proposition 2.4 is much weaker than that of Proposition 3.1 in [4], the proof becomes
much simpler. So condition (3') is much looser than (3).

Note that if X is an infinite-dimensional Fréchet space then for every nontrivial Fréchet space Y there exist many linear
operators from X to Y which are not continuous and, of course, many more weakly quasi-linear mappings from X to Y
which are not continuous. The new closed graph theorem just shows that a weakly quasi-linear f : X — Y is continuous if
and only if f has closed graph.
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