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There is a series of generalizations and improvements of the classical closed graph theorem, such as [1–4]. Especially, [4]
has given a closed graph theorem which is available for all linear operators and many more nonlinear mappings.

Let X be a vector space and Y a topological vector space. A mapping f : X → Y is said to be quasi-linear if f satisfies
the following (1)–(3):

(1) if f (xn) → 0 and f (un) → 0, then f (xn + un) → 0;
(2) if f (xn − x) → 0 and tn → t in the scalar field K, then f (tnxn − tx) → 0;
(3) f (xn) → f (u) if and only if f (xn − u) → 0.

Note that, when Y is Hausdorff, taking xn = u = 0 in (3) yields

(4) f (0) = 0.

As was shown in [4], the family of quasi-linear mappings is a large extension of the family of linear operators. Just taking
the conditions (1)–(3), Shuhui Zhong and Ronglu Li [4] established a closed graph theorem as follows.

Theorem. (See [4, Theorem 2.1].) Let X , Y be Fréchet spaces. If f : X → Y is quasi-linear and its graph G = {(x, f (x)): x ∈ X} is closed
in X × Y , then f is continuous.
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In this paper we would like to give a further improvement of this recent result. For topological vector spaces X and Y , a
mapping f : X → Y is said to be weakly quasi-linear if f satisfies (1), (2) and

(3′) if xn − u → 0 in X , then f (xn) → f (u) if and only if f (xn − u) → 0.

Note that, when Y is Hausdorff, taking xn = u = 0 in (3′) also yields (4).
Evidently, if f : X → Y satisfies condition (3), then (3′) must hold for f . So every quasi-linear mapping f : X → Y is

weakly quasi-linear. In the following, we first improve the closed graph theorem in [4] by using weakly quasi-linear map-
pings instead of quasi-linear mappings, and then show that the family of weakly quasi-linear mappings is a large extension
of the family of quasi-linear mappings.

1. The closed graph theorem for weakly quasi-linear mappings

A Fréchet space is a complete metrizable linear space. However, a Fréchet space is also a separated complete paranormed
space [5, p. 56].

Theorem 1.1. Let X , Y be Fréchet spaces. If f : X → Y is weakly quasi-linear and its graph G = {(x, f (x)): x ∈ X} is closed in X × Y ,
then f is continuous.

Proof. Let X = (X,‖ · ‖1) and Y = (Y ,‖ · ‖2), where ‖ · ‖1 and ‖ · ‖2 are paranorms [5, p. 15]. Define d : X2 → R by d(x, u) =
‖x − u‖1 + ‖ f (x) − f (u)‖2, ∀x, u ∈ X . It is easy to see that d is a metric on X .

Suppose {xn} is Cauchy in (X,d), i.e., d(xn, xm) = ‖xn − xm‖1 + ‖ f (xn) − f (xm)‖2 → 0 as n,m → +∞ so {xn} and { f (xn)}
are Cauchy in (X,‖ · ‖1) and (Y ,‖ · ‖2) respectively. Since X , Y are complete, there exist x ∈ X and y ∈ Y such that ‖xn −
x‖1 → 0, ‖ f (xn) − y‖2 → 0. Then y = f (x) for f has closed graph in X × Y . Now d(xn, x) = ‖xn − x‖1 + ‖ f (xn) − f (x)‖2 =
‖xn − x‖1 + ‖ f (xn) − y‖2 → 0. Therefore, (X,d) is complete.

If xn → x and un → u in (X,d), then d(xn, x) = ‖xn − x‖1 + ‖ f (xn) − f (x)‖2 → 0 and d(un, u) = ‖un − u‖1 + ‖ f (un) −
f (u)‖2 → 0. By (3′), ‖ f (xn − x)‖2 → 0, ‖ f (un − u)‖2 → 0 and ‖ f (xn + un − x− u)‖2 → 0 by (1). Since ‖xn + un − (x+ u)‖1 �
‖xn − x‖1 + ‖un − u‖1 → 0, by (3′) again, ‖ f (xn + un) − f (x + u)‖2 → 0. Thus, d(xn + un, x + u) → 0, that is, the additive
operation is continuous in (X,d).

Suppose that tn → t in the scalar field K and xn → x in (X,d). Then d(xn, x) = ‖xn − x‖1 + ‖ f (xn) − f (x)‖2 → 0, i.e.,
‖xn −x‖1 → 0, ‖ f (xn)− f (x)‖2 → 0. So ‖ f (xn −x)‖2 → 0 by (3′) and ‖ f (tnxn −tx)‖2 → 0 by (2), and since ‖tnxn −tx‖1 → 0,
‖ f (tnxn) − f (tx)‖2 → 0 by (3′) again. Then d(tnxn, tx) → 0, and therefore the scalar multiplication is also continuous in
(X,d).

Thus, (X,d) is a complete metrizable linear space, that is, (X,d) is a Fréchet space and, letting I(x) = x for x ∈ X ,
I : (X,d) → (X,‖ · ‖1) is continuous, one-to-one and onto. By the open mapping theorem [5, p. 58], the converse I−1 : (X,‖ ·
‖1) → (X,d) is also continuous.

Now let xn → x in (X,‖ · ‖1). Then xn = I−1(xn) → I−1(x) = x in (X,d), that is, ‖xn − x‖1 + ‖ f (xn) − f (x)‖2 → 0 so
‖ f (xn) − f (x)‖2 → 0, i.e., f (xn) → f (x) in (Y ,‖ · ‖2). This shows that f : (X,‖ · ‖1) → (Y ,‖ · ‖2) is continuous. �

Clearly, the recent result in [4] is a special case of this new closed graph theorem. Moreover, the continuity version
Theorem 2.2 of [4] is also a special case of the following Corollary 1.1.

Corollary 1.1. Let (X,T), (Y ,I) be Fréchet spaces and τ a Hausdorff topology for Y which is coarser than I. If f : X → (Y ,I) is
weakly quasi-linear and T − τ continuous, then f is T − I continuous.

Proof. Hausdorff τ and continuous f ensure that the graph G is closed in (X,T) × (Y , τ ), and thus also in (X,T) × (X,I),
since the latter has a finer topology. The conclusion now follows from Theorem 1.1. �
2. Weakly quasi-linear mappings

Let wql(X, Y ) denote the family of all weakly quasi-linear mappings from the topological vector space X to the topolog-
ical vector space Y .

Remark. It is obvious that f ∈ wql(X, Y ) is sequentially continuous at every point if it is sequentially continuous at one
point.

Proposition 2.1. If X , Y are Hausdorff and X is finite-dimensional, then every f ∈ wql(X, Y ) is continuous.
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Proof. Let e1, . . . , ek be a Hamel basis for X . Let zn → 0 in X , where zn = ∑k
i=1 tniei . For each i � k we have limn tni = 0, so

that (4) and (2), with t = 0 and each xn = x = ei , imply that

lim
n

f (tniei) = lim
n

f (tniei − tei) = 0.

An inductive version of (1) gives us

lim
n

f (zn) = lim
n

f

(
k∑

i=1

tniei

)
= 0 = f (0).

Therefore f is sequentially continuous at 0, and hence is sequentially continuous everywhere. Since dim X < +∞, f is
continuous everywhere. �

We have a simple fact which is helpful to our knowledge of weakly quasi-linear mappings.

Proposition 2.2. A nonzero ϕ : R → R is weakly quasi-linear if and only if

(I) ϕ(0) = 0, and
(II) ϕ is continuous, ϕ(x) 	= 0 for all x 	= 0 and ϕ(xn) � 0 whenever xn → ∞.

Proof. If ϕ ∈ wql(R,R) and ϕ 	= 0, then ϕ(0) = 0 by (4), and ϕ is continuous by Proposition 2.1.
Suppose ϕ(x0) = 0 for some x0 	= 0. Let t ∈ R and for every n ∈ N let tn = t and xn = x0. Then tn → t and ϕ(xn − 0) =

ϕ(x0) = 0 so ϕ(tx0) = ϕ(tnxn −t ·0) → 0 by (2). Thus, ϕ(tx0) = 0 for all t ∈ R so ϕ(x) = 0, ∀ x ∈ R, i.e., ϕ = 0, a contradiction.
Hence, ϕ(x) 	= 0 for all x 	= 0.

Suppose that xn → ∞ and ϕ(xn) → 0. Then 1
xn

→ 0 and ϕ(xn − 0) = ϕ(xn) → 0. By (2), ϕ(1) = ϕ( 1
xn

· xn − 0 · 0) → 0, i.e.,
ϕ(1) = 0. As was stated above, ϕ = 0. This is a contradiction so ϕ(xn) � 0 for every xn → ∞.

Conversely, suppose that both (I) and (II) hold for ϕ . Since ϕ(0) = 0 and ϕ is continuous, ϕ(xn) → 0 when xn → 0.
Suppose that xn � 0 but ϕ(xn) → 0. By passing to a subsequence if necessary, we assume that |xn| � ε > 0 for all n. If
{xn} is bounded, then there is a subsequence xnk → x with |x| � ε and ϕ(x) = limk ϕ(xnk ) = 0, a contradiction. If {xn} is
not bounded then there is a subsequence xnk → ∞ and limk ϕ(xnk ) = limn ϕ(xn) = 0. This is also a contradiction and so
ϕ(xn) → 0 implies xn → 0. Thus, ϕ(xn) → 0 if and only if xn → 0.

If ϕ(xn) → 0 and ϕ(un) → 0, then xn → 0 and un → 0 so xn + un → 0 and ϕ(xn + un) → 0. Thus, (1) holds for ϕ . If
ϕ(xn − x) → 0 and tn → t in K, then xn − x → 0 so tnxn − tx → 0 and ϕ(tnxn − tx) → 0. Thus, (2) holds for ϕ . Let xn − u → 0
in R. Then xn → u. Since ϕ is continuous, both ϕ(xn − u) → ϕ(0) = 0 and ϕ(xn) → ϕ(u) hold. This shows that if xn − u → 0
then ϕ(xn) → ϕ(u) if and only if ϕ(xn − u) → 0, i.e., (3′) holds for ϕ . �

Obviously, condition (II) of Proposition 2.2 is much weaker than (II) of Proposition 1.4 in [4]. So condition (3′) is much
looser than (3) and it becomes very easy to find weakly quasi-linear mappings which are not quasi-linear.

Example 2.1. Let

ϕ(x) =
{

2 + sin(x − 2), x > 2,

|x|, x � 2.

By Proposition 2.2, ϕ ∈ wql(R,R). But ϕ is not monotonic, so ϕ is not quasi-linear [4, Proposition 1.4].

We would like to say that the family of weakly quasi-linear mappings is an important object in analysis because if
(X,‖ · ‖) is a normed space and ‖ · ‖ 	= 0 then the norm ‖ · ‖ : (X,‖ · ‖) → R is not quasi-linear and so not linear but it must
be weakly quasi-linear.

Proposition 2.3. Let (X,‖ · ‖) be a nontrivial paranormed space [5, p. 15]. Define f : X → R by f (x) = ‖x‖, ∀x ∈ X. Then f is weakly
quasi-linear but f is not quasi-linear when ‖ · ‖ 	= 0.

Proof. Since f (xn) → 0 means that xn → 0 in (X,‖ · ‖), (1) and (2) hold for f .
If xn − u → 0 and f (xn − u) → 0, then |‖xn‖ − ‖u‖| � ‖xn − u‖ → 0 so f (xn) − f (u) = ‖xn‖ − ‖u‖ → 0. If xn − u → 0 and

f (xn) − f (u) → 0, then f (xn − u) = ‖xn − u‖ → 0. Thus, (3′) holds for f .
If ‖ · ‖ 	= 0 then (3) fails to hold for f . To see this, pick an x ∈ X for which ‖x‖ > 0. Then ‖ x

2 ‖ � ‖x‖
2 > 0. Letting xn = − x

2
for n ∈ N, f (xn) = ‖− x

2 ‖ = ‖ x
2 ‖ → ‖ x

2 ‖ = f ( x
2 ) but f (xn − x

2 ) = f (− x
2 − x

2 ) = f (−x) = ‖− x‖ = ‖x‖ > 0 so f (xn − x
2 ) � 0. �

Many Banach spaces contain a copy of (c0,‖ · ‖∞) or (�1,‖ · ‖1) or a reflexive Banach space. Hence, linearly homeomor-
phic embedding T : X → Y happens frequently. Especially, for every complex Banach space X and every continuous linear
operator S : X → X , λI − S : X → X is a linear homeomorphism for each λ ∈ C \ σ(S) ⊃ {λ ∈ C: |λ| > ‖S‖}.
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Proposition 2.4. Let ϕ : [0,+∞) → (0,+∞) be a continuous function such that

0 < μ = inf
t�0

ϕ(t) � sup
t�0

ϕ(t) = M < +∞.

Let X , Y be normed spaces and T : X → Y a linearly homeomorphic embedding. If f : X → Y is defined by f (x) = ϕ(‖x‖)T (x), ∀x ∈ X,
then f is weakly quasi-linear.

Proof. Since 0 < μ � ϕ(t) � M < +∞ for all t � 0 and T is a linear homeomorphism of X onto T (X), f (xn) → 0 if and
only if T (xn) → 0 and if and only if xn → 0. Thus, (1) and (2) hold for f .

If xn − u → 0 and f (xn − u) → 0, then
∣∣‖xn‖ − ‖u‖∣∣ � ‖xn − u‖ → 0 i.e., ‖xn‖ → ‖u‖. By the continuity of ϕ and T ,

f (xn) − f (u) = ϕ(‖xn‖)T (xn) − ϕ(‖u‖)T (u) → 0. If xn − u → 0 and f (xn) − f (u) → 0, then f (xn − u) = ϕ(‖xn − u‖)T (xn −
u) → ϕ(0)T (0) = 0 since both ϕ and T are continuous. Thus, (3′) holds for f . �

Obviously, although the condition of Proposition 2.4 is much weaker than that of Proposition 3.1 in [4], the proof becomes
much simpler. So condition (3′) is much looser than (3).

Note that if X is an infinite-dimensional Fréchet space then for every nontrivial Fréchet space Y there exist many linear
operators from X to Y which are not continuous and, of course, many more weakly quasi-linear mappings from X to Y
which are not continuous. The new closed graph theorem just shows that a weakly quasi-linear f : X → Y is continuous if
and only if f has closed graph.
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