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Abstract The rapid economic and population growth in developing countries, effective and effi-

cient energy usage has turned out to be crucial due to the rising concern of depleting fossil fuels,

of which, one-third of primary energy is consumed in buildings and expected to rise by 53% up

to 2030. This roaring sector posing a challenge, due to 90% of people spend most of their time

in buildings, requires enhanced well-being of indoor environment and living standards. Therefore,

building operations require more energy because most of the energy is consumed to make the

indoor environment comfortable. Consequently, there is the need of improved energy efficiency

to decrease energy consumption in buildings. In relation to this, the primary challenge of building

control systems is the energy consumption and comfort level are generally conflicting to each other.

Therefore, an important problem of sustainable smart buildings is to effectively manage the energy

consumption and comfort and attain the trade-off between the two. Thus, smart buildings are

becoming a trend of future construction that facilitates intelligent control in buildings for the

fulfillment of occupant’s comfort level. In this study, an intelligent multi-objective system has been

developed with evolutionary multi-objective genetic algorithm (MOGA) optimization method. The

corresponding case study simulation results for the effective management of users’ comfort and

energy efficiency have been carried out. The case study results show the management of energy sup-

ply for each comfort parameter and maintain high comfort index achieving balance between the

energy consumption and comfort level.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The prompt rise in world’s energy consumption has been

observed for last two decades and is estimated to rise by
53% until 2030 (International Energy Agency, 2007). The sec-
ond largest energy-consuming sector after transport is build-

ings (which includes residential and commercial sectors) hold
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approximately, one-third of the global energy, thus touching
40% of buildings’ primary energy consumption in developing
countries (Costa et al., 2013). The factors contributing this

energy level mainly involve population growth, increased
building amenities, and improved comfort index along with
the time spent inside the buildings, show an upward trend

for rise in building energy demand in near future.
The building operations need improved energy efficiency to

decrease energy consumption. Conversely, the attainment of

quality indoor environment requires more energy. Hence, an
important problem of sustainable smart buildings is to achieve
the trade-off between the requirement of power and the occu-
pant’s comfort. The main factors in the tropical areas, which

define quality lives of occupants in the indoor environment
are temperature, humidity, illumination and air quality. There-
fore, an intelligent control of the thermal, humidification, illu-

mination and air quality, comfort factors, is important for
energy efficiency and occupants’ quality of living.

Generally, temperature defines thermal comfort in indoor

building environment, whereas other factors are supposed to
be subjective for simplification of the control system. Auxiliary
cooling and heating system is employed to maintain the temper-

ature inside the building environment. Relative humidity is a ris-
ing concern inside the buildings of tropical climate areas, due to
very hot and humid environment. Thus, relative humidity factor
indicates humidity comfort inside the buildings. Auxiliary dehu-

midifiers and humidifiers are employed to maintain the relative
humidity in indoor building environment. Illumination level
describes the visual comfort and artificial lighting systems are

used with actuators for illumination controls. CO2 concentra-
tion is used as an index to measure the air quality comfort and
ventilation system is employed for attaining lowCO2 concentra-

tions (Hussin et al., 2014). The prime objective of the control of
building energy management system (BEMS) was to maintain
high comfort index and reduce total energy consumption.

Various conventional on/off and proportional integral
derivative (PID) control schemes have widely been applied in
buildings (Mathews et al., 2000). These have shown unsatisfac-
tory performance at instants when, system peak demand

occurs, prompt overshoot of set point and enormous time-
delays with nonlinearity been observed (Li et al., 2006). Several
artificial intelligent techniques have been anticipated including

fuzzy logic systems (FLCs) (Kukolj et al., 2001; Kolokotsa,
2003), neural networks (Curtis et al., 1996), neuro-fuzzy sys-
tems (Chen et al., 2006) which have been intensive on specific

types of buildings. The pervasive monitoring of human atti-
tude has been addressed in Liu et al. (2010). Multi-agent con-
trol scheme has been proposed to manage energy consumption
and comfort employing particle swarm optimization (PSO)

(Yang and Wang, 2013). It also uses graphical user interface
(GUI) for occupants in order to manage building operations
(Wang et al., 2010). The model predictive optimization with

linear programming method has been employed in
Dagdougui et al. (2012) using LINDO system tool. Moreover,
the detail review on control systems and the optimizations in

buildings have been presented in Shaikh et al. (2014a).
Nonetheless, multi-objective optimization techniques have

been proposed (Nguyen et al., 2014) to instantaneously deal

with multi-modal problems generally in conflict with each
other. The evolutionary algorithms turned to be the most
popular and widely used optimization method for resolving
multi-objective problems. Genetic algorithm (GA) being the
Please cite this article in press as: Shaikh, P.H. et al., Intelligent multi-objective opt
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meta-heuristic, population based technique can instanta-
neously explore and utilize various solution space regions.
GA being very suitable for Pareto optimality set in complex

spaces. Various multi-objective genetic algorithm techniques
exist for assigned fitness, maintaining diversity and preserving
elite solutions. Multi-islanded genetic algorithm (MIGA) and

simple genetic algorithm (GA) have been used for energy con-
servation and comfort management developed in Safdar and
Dohyeun (2013), and this employs MIGA at the input fuzzy

parameters optimization for environmental difference. Wang
et al. (2011), proposed multi-agent controller structure to man-
age energy consumption and occupants’ comfort. It employed
particle swarm optimization (PSO) at the central agent to

observe the trade-off solutions for informed decision-making.
However, yet multi-objective genetic algorithm needs to be
employed for several strategies. To accomplish, the distributed

control of several comfort demands, the main task of the
intended building control systems is to figure out the feasible
distribution of energy for the higher comfort level possible.

Besides optimization the studies consider individual comfort
parameters such as mostly thermal and visual, while air quality
is considered in combination of the two others. However, the

thermal loading is increased in tropical climatic regions where
heavy rainfall, in this context relative humidity parameter
within the buildings is significant for various health issues.
Therefore, the system should be capable to accommodate the

varying user preferences. Therefore, the intended building con-
trol systems may take both maximizing the comfort level (ther-
mal, relative humidity, visual, air quality) and minimizing the

energy consumption as objective. This should also provide
multiple optimized trade-off solutions to users for their specific
choices. This is considered as multi-faceted problem, in which

the objective functions to be optimized generally are in conflict
with each other.

This study is the advancement of our previous works as in

Shaikh et al. (2014b) and Shaikh et al. (2016). The major con-
tribution of this study is an added comfort parameter of relative
humidity. Therefore, in this study, a multi-agent coordinator
system has been developed for energy consumption and envi-

ronmental comfort management. The system aids in developing
the energy consumption of the actuator system. In addition to
this, an evolutionary multi-objective genetic algorithm

(MOGA) has been employed for attaining trade-off between
energy consumption and comfort. The significant contributions
of this manuscript are the addition of humidity comfort param-

eter along with its model function. This parameter of humidity
comfort has been integrated with other three parameters of
thermal, visual and air quality comfort. Implementation of
multi-objective genetic algorithm has not been employed in this

kind of study and the modification of the comfort function as
an additional parameter has been integrated. The remainder
of the paper is organized as follows: Section 2 describes the

overall system model and framework, and Section 3, in detail
the algorithm for multi-objective optimization problem. Simu-
lation results and analysis are given in Section 4, whereas Sec-

tion 5 presents the conclusion and future works.
2. System framework and modeling

The multi-agent coordinator system comprises of the master
coordinator agent and peripheral coordinator agents for each
imization for building energy and comfort management. Journal of King Saud
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comfort parameter. The master agent coordinator is capable of
coordinating all peripheral coordinating agents. It allows the
occupant’s preferences and coordinates with the optimization

algorithm in order to maximize the user set value as quick as
possible. The evolutionary optimization method uses the net-
work knowledge and permits consumer to state the required

comfort range to tune and update the best set points in each
step. Its function is to optimize and update the set point values
of master and peripheral coordinator agent, thus, adding intel-

ligence to the system. The main aim was that, when the periph-
eral coordinator agent cannot reach the required target, the
master coordinator agent will offer more power for attaining
the desired set value as soon as possible. The entire optimiza-

tion system framework has been shown in Fig. 1.
The users can set their different comfort range based on

their preferences, which is represented as, [Cmin, Cmax], where,

‘‘C” denotes the required comfort parameter. In this study, the
parameters selected are thermal, relative humidity, visual and
air quality comfort. The users are allowed to set their specific

requirement of the comfort value. This signifies the optimizer
to achieve the targeted comfort in contrast to its best capabil-
ities ensuring all the indoor and outdoor information satisfying

their needs.
Figure 1 Optimization

Please cite this article in press as: Shaikh, P.H. et al., Intelligent multi-objective opt
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The management of building energy and comfort is through
distributing the entire system into various subordinate systems.
Primarily four comfort parameters have been considered,

include thermal, visual, air quality and humidity. These com-
fort indexes have been corresponding to temperature for ther-
mal comfort, artificial illumination for visual comfort, CO2

concentrations in air for air quality comfort and relative
humidity for humidity comfort respectively. Moreover, the
actuator systems that drive the comfortable environment con-

stitutes of auxiliary heating and cooling system for thermal
comfort, electrical lighting system for visual comfort, auto-
mated window and fan operations to maintain CO2 concentra-
tions for air quality comfort and dehumidifier/humidifier

systems for humidity comfort.
The fuzzy controllers are utilized to compute the power

demand by each environmental parameter to maintain a high

comfort level with the control of corresponding actuators.
The implication of the fuzzy controllers helps to overcome
the nonlinear problems in the control process. The inputs to

the fuzzy inference system (FIS) of each parameter are random
data set processed within the standard ASHARE (ASHARE
Standard, 1992) comfortable range. The range has been pro-

vided with the set of intervals as proposed in the base quality
system framework.

imization for building energy and comfort management. Journal of King Saud
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assurances plan (Mark, 1996) for sensor measurement accu-
racy. These set of inputs has been supplied to the FIS system
of each comfort parameter, which gives an output in terms

of power demand. Since all the parameters have been pro-
cessed in form of error values it transforms into a unit-less sys-
tem with common output power demand. Therefore, the

inputs and outputs of the FIS system have been treated with
the statistical curve to fit empirical model development. The
empirical models for each comfort parameter are capable of

closely intimating the behavior of the developed FIS system.
The FIS system characteristic membership functions and rule
bases have been discussed in detail in our previous work
(Shaikh et al. (2013a,b)). Moreover, the FIS provides empirical

model functions as shown in Eqs. ((6)–(9)) having been
observed through the fuzzy inference system. The developed
functions for the power requirement of multi-agent coordina-

tor of each comfort parameter are determined as follows.
The four control variables of temperature, relative humidity,
CO2 concentration and illumination are provided through sen-

sors as inputs to compute the desired power.
Meanwhile, all the power demand empirical models have

been added together that constitute of four variables (that

are four comfort parameters). On the other hand, comfort
model function has been utilized from the literature (Wang
et al., 2011) and has been modified with an additional relative
humidity comfort factor constituted in the range of [0,1]. This

is due to the subjectivity of the comfort index; therefore, con-
sider 0 being the lowest comfort level and 1 being the highest.
As comfort for each individual varies, so, it is measured in

terms of dwellers’ percentage satisfaction; defined in terms of
discomfort, utilizing the error between the measured sensor
values and the user set points.

The two objective functions power demand and overall
comfort constitute of four similar variables to be dealt with
the multi-objective optimization techniques. Since the opti-

mization has to be simplified in form of either minimization
or maximization, indeed power demand needs to be minimized
whereas, overall comfort has to be maximized. Here as the
overall comfort is subjective represented in percentage there-

fore the function has been transformed to minimize the overall
discomfort, simply by subtracting the overall comfort from the
highest possible comfort level. Therefore, for the objective

functions of overall comfort and energy consumption of the
targeted comfort parameters are set as the vectors of four deci-
sion variables.

The demanded power in the building, allows the actuator
system of each comfort parameter to cause variation in the
indoor environmental parameter of the building. The key goal
of the entire automation process is to achieve the required

comfort index in the building. The level sensor sub-systems will
give feedback to the environmental variation for calculating
the input error to the fuzzy system. This feeds back the power

demand to the master coordinator agent determining further
adjustment of power demand. In relation to this, when the dif-
ference between set point and sensor value decreases, the

power demand by the actuator system decreases and ulti-
mately, the comfort value increases. Consequently, the selec-
tion of comfort set points has impact on both the energy

consumption and the comfort level.
These coordinator agents acquire adjusted set points from

the master agent controller and real time indoor environmental
parameter. It provides the actual power demand for the actu-
Please cite this article in press as: Shaikh, P.H. et al., Intelligent multi-objective opt
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ator system to maintain the required comfort level. However,
fuzzy rule base and membership function help to compute
the required power during indefinite circumstances. In this

proposed system, it is primarily supposed that the building
indoor environment is very sensitive to the outdoor environ-
mental variations. Therefore, the building indoor environment

is closely following the change of outdoor environmental con-
ditions, if no optimal system is applied. In that case, the ambi-
ent environmental parameters can serve as the input signals for

the building control system. Besides, building optimization
system it also considers the inhabitant’s preferences for the
attaining the user centered design.

Comfort ¼ 1�DiscomfortN ð1Þ
Broadly, when dealing with each comfort parameter into a

single function the weighting factor needs to be added and can
be written mathematically as follows:

Overall comfort ¼
Xn

i¼1

wi � comfort ð2Þ

where wi is the weighting coefficient and for comforti is the
each factor. Furthermore, in Eq. (2) expressively for each com-

fort parameter of thermal, relative humidity, visual and air
quality comfort it can be written in the form as follows:

Comfort ¼ w1 1� eThermal

Tempset

� �2
" #

þ w2 1� eRHr

RHrset

� �2
" #

þ w3 1� eLux
Luxset

� �2
" #

þ w4 1� eCO2

AQset

� �2
" # ð3Þ

The prime control goal is to maximize comfort under vari-
able operating conditions. w1, w2, w3 and w4 are the user defined
weighting coefficients of importance provided for each comfort

parameter. These weighting coefficients are in the range of [0, 1]
and generally expressed as w1 þ w2 þ w3 þ w4 ¼ 1. On the other
hand, Tempset, RHrset Luxset and AQset are the set points of

temperature, relative humidity, illumination and indoor air
quality respectively. The user preferences and adaptive rules,
which reflect the human behavior pattern to determine four
set points. nThermal; nHumidity; nLux, and nCO2

are the differences

between the measured sensor values and set point values of

the each comfort demand factors. The weighting coefficients
and set points of environmental parameters are defined by
the user’s based on the occupant’s preferences. On the other

hand, the measured values of the environmental parameters
are obtained from the peripheral agents for computing the
differences.

The power requirement function will be computed at the

local control level, but as the demand rises by the individual
agents, the power demand function will supply accordingly
as described in the following pattern;

PTempðtÞ þ PRHrðtÞ þ PLuxðtÞ þ PAQðtÞ ¼ PinðtÞ ð4Þ

PinðtÞ 6 PmaxðtÞ ð5Þ
The Pin is the actual power supplied from the utility electric

grid and Pmax is the maximum power that can be supplied by
the electric grid.

The peripheral controller agents were developed to control
thermal, humidity, visual and air quality comfort factors. The

fuzzy controllers were utilized to calculate the power demand
imization for building energy and comfort management. Journal of King Saud
001
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by each environmental parameter for maintaining high com-
fort level with the control of corresponding actuators. The gen-
eralized functions were developed for the power required by

each subsystem. This power function has been compared to
the power determined by the supervisory agent to adjust the
real amount of power used. The actuator systems then drive

the auxiliary heating/cooling system, electrical lighting system
and air-quality system for all environmental parameters.

The temperature index is utilized to evaluate the thermal

comfort in the building environment; thus, a linear best fit
stochastic empirical model is derived with 98% confidence fit
interval.

PTemp ¼ 5:655 � TTemp þ 2:961 ð6Þ
where PTemp is power required for the temperature control
actuator and TTemp is the temperature control difference input

value.
The per unit relative humidity is used to evaluate humidity

comfort in the building environment; thus, a Gaussian model

best fit stochastic model is derived with 98% confidence fit
interval.

PRHr ¼ 13:23 � e �RHr�0:9594
0:6572ð Þ2 ð7Þ

PRHr is power required for the temperature control actuator

and RHr is the relative humidity control difference input value.
The lux metric is used to evaluate the illumination level of

the building environment; thus, the sum of sine model is best

fitted and shows 99% confidence level fit.

PLux ¼ 4:428 � Sinð0:9603 � ILux � 0:4234Þ ð8Þ
PL is power required for the lighting control actuator and IL is
the lux control difference input value. On the other hand, the
CO2 concentration is used to evaluate the air quality index

measured in ppm in building indoor environment; thus, the
Gaussian model is best fitted and shows 99% confidence level
fit.

PAQ ¼ 9:444 � e �WAQ�1163

389

� �2

ð9Þ
PAQ is power required for the air quality control actuator and
WAQ is the CO2 concentration control difference input value.
3. Multi-objective optimization (MO) algorithm

Multi-objective optimization tries to improve vector-valued
cost function components generally in conflict with each other

(Nguyen et al., 2014). The aim of multiple objective optimiza-
tions was to find the solution set diversity, decisive with trad-
ing off among various objective functions. Multi-objective

optimization has been applied in various fields of electrical
engineering problems and yet at initial stages developing inter-
ests of researchers, where optimal decisions required for the

presence of trade-offs between two or more contradictory
objective functions. Moreover, the Pareto optimal solution
set points will be generated in contrast to single solution as

in single objective optimization. The solution is known as
non-dominated, non-inferior Pareto efficient, mean if no
objective function can be improved without degrading the
other objective function. Therefore, MO usually looks for

‘‘trade-offs”, rather than single solutions when dealing with
multi-objective optimization problems. The MO problem
Please cite this article in press as: Shaikh, P.H. et al., Intelligent multi-objective opt
University – Engineering Sciences (2016), http://dx.doi.org/10.1016/j.jksues.2016.03.
requiring the optimization of ‘‘n” objectives may be formu-
lated as follows: General MO problem can be mathematically
represented in Eqs. (10)–(12);

MOP min
x2C

FðxÞ ¼

f1ðxÞ
f1ðxÞ
:

:

:

fnðxÞ

2
666666664

3
777777775

n P 2 ð10Þ

Subject to,

C ¼ x : hðxÞ ¼ 0; gðxÞ 6 0; a 6 x 6 bf g ð11Þ

where; x ¼ ½x1; x2; x3; . . . ; xp�T ¼ X ðParameter SpaceÞ ð12Þ
A point x� 2 C is Pareto Optimal (or non-dominated) for

multi-objective optimization problem (MOP) if and only if
there is no x 2 C such that fiðxÞ 6 fiðx�Þ for all
i 2 1; 2; 3; . . . ; n with at least one strict inequality.

‘‘F(x)” is the objective vector, the C represent the con-
straints and ‘‘x” is a P-dimensional vector representing the
decision variables within a parameter space ‘‘X”. The space

spanned by the objective vectors is called the objective space.
The subspace of the objective vectors, which fulfills, the con-
straints, has been called the feasible space.

A genetic algorithm (GA) is a population based stochastic

approach and is suitable for multi-objective problems. GA is
capable to stochastically search various regions, instanta-
neously in a solution space and discover trade-off solutions

for different problems with discontinuous, non-convex and
multi-modal solution space. The GA is capable of intuitive-
ness, easy in implementation, and solves nonlinear problems

and mixed integer optimizations. It simply works with objec-
tive functions rather than the requisite of derivative and other
auxiliary information. It parallel searches in population and

implements probabilistic rules, which proceed toward opti-
mum solutions using genetic operators and converge to high
quality solutions within the few generations with minimized
computational costs (Horn et al., 1994). In order to generate

fresh non-dominated solutions in unmapped Pareto front mea-
sures, the GA crossover operator uses creditable solutions with
regard to various objectives. Adding to this, MOGA does not

necessitate scale, order or weigh objectives, thus being the most
popular heuristic approach for multi-objective design and
problems (Horn et al., 1994). Fig. 2 below shows the pseudo

code that depicts the working of MOGA.

4. Results and discussion

In this section, a case study has been presented. The building is
assumed to be in the islanded mode and has been supplied dis-
tributed renewable energy sources. Here, six 4.5-kW solar pan-

els and equally 5-kW wind turbine generators are used (green
energy ohio, 2013). The total amount of power being generated
with these renewables is shown in Fig. 7 on a 24-h time
domain. The storage bank constitutes batteries of 45 kWh,

with minimum storage threshold of 4.5 kWh have been
selected for distributed energy storage. In most of the entire
day, the distributed energies are not capable to fulfill the com-

plete power demand of the building. In this regard, the
imization for building energy and comfort management. Journal of King Saud
001
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Begin
     t = 0
‘Initialize population of chromosomes P(g);,

,Evaluate the initialized population by,,computing its fitness measure 
P(g);,

While,not termination criteria,do
g:=g+1;
         Select P(g+1) from P(g);
,Crossover P(g+1),;
,Mutate P(g+1),;
         Evaluate P(g+1);
    End While
Output results to external archive
End

Figure 2 Pseudo code for multi-objective genetic algorithm

(MOGA).
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stochastic optimized, control system distributes the available
power, sensibly and maximizes the overall comfort index inside

the building.
In the simulation, the occupants’ comfort ranges for the

various control tasks are set at Temp = [67,78] (�F), RHr =

[0.40,0.60] (p.u), Lux = [750,880] (lux) and AQ = [400,880]
(ppm). These comfort ranges, sever as the bound constraints
in the stochastic MOGA to drive out the optimal set points

tuning in each time step. The set points targeted for each com-
fort parameter are set at Tset = 71.6 �F, RHrset = 0.5 p.u,
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Lset = 800 lux and AQset = 800 ppm and equal weighting
coefficient for each comfort parameter has been set as one-
fourth (1/4).

The MATLAB� simulation platform has been used for the
building energy and comfort management. The optimization
tool box has been used for the MOGA algorithm for the gen-

eration of Pareto front trade off solution set. The initial set
parameters for the GA has been selected as the following:
number of variables are four as the comfort parameters repre-

senting temperature, relative humidity, illumination level and
CO2 concentration. Constraints provided in the simulation
were Lower bound [670.40750400] and upper bound
[780.60880850] representing the respective comfort parameter.

GA parameters use the following; population was selected as
500, selection function employs tournament method, crossover
rate was set at 0.8, mutation rate was selected default of con-

straint dependent, migration was in forward direction with
the fraction of 0.2 and an interval of 20 has been kept. On
the other hand, the multi-objective problem settings use

default distance crowding for the function of distance measure
and the Pareto front population fraction was selected as 0.35.
However, the simulation stopping criteria were having the

default settings; comprising of generations: 200 * number of
variables, time and fitness limit was set infinite, stall genera-
tions use default value of 100 and the fault tolerance was set
at 1e-4. The simulation output describes problem type as

bound constrained and generates 175 points on the Pareto
front. The average distance measure of solutions on the Pareto
front has been observed at 0.0063. The spread measure of the

Pareto Front was 0.5049 and the number of generations was
125. On the other hand, the function counts were observed
as 62,401 and the final message was displayed as ‘‘optimization
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ts with and without MOGA.
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Figure 4 Relative humidity set points with and without MOGA.
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Figure 5 Illumination set points with and without MOGA.
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terminated: average change in the spread of Pareto solutions

less than options.TolFun.”
The optimized indoor environmental set point variations

over a day of 24 h are shown. On the other hand, the optimized
temperature, humidity, illumination and air quality set point

variations are shown in Figs. 3–6 respectively. However, the
overall power consumption has been shown in Fig. 7. The
overall power consumption is 654.082 kWh, whereas the total

power been generated with the distributed renewable is
971.803 kWh, showing significant amount energy saving. The
Please cite this article in press as: Shaikh, P.H. et al., Intelligent multi-objective opt
University – Engineering Sciences (2016), http://dx.doi.org/10.1016/j.jksues.2016.03.
overall actual and optimized comfort index has been shown

in Fig. 8. On an average the overall actual comfort 87.25%,
whereas, the optimized comfort after MOGA has been
improved to 99.73%. In spite of energy shortage from the
renewable energy generation, the intelligent optimized system

has distributed the energy appropriately for attaining the
improved indoor comfort level. These results make evident
that the system can be optimized by regulating the comfort

ranges and along with this, it also proves the effectiveness of
multi-agent coordinator system and MOGA optimizer.
imization for building energy and comfort management. Journal of King Saud
001
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5. Conclusion

The major challenge of building automation system is to bal-

ance the conflict between the occupant’s comfort and the total
energy consumption. Thus, in this paper, the multi-agent con-
trol system technology has been developed for the optimized

and intelligent control of the building indoor environment.
Thus, it is more concerned about occupant’s preferences and
attaining their desired comfort. The multi-agent system has

presented its capability in controlling a convoluted building
system. The designed control system considers both energy
efficiency in terms of power supply and consumption of entire
system balanced while maintaining occupants’ comfort. More-

over, the user’s preferences are also taken into consideration
for maintaining the required comfort level. In spite of total
energy supply of renewable resources, MOGA has shown to

be advantageous for maintaining high comfort level. This will
make the occupants more informed prior to make their deci-
sion. Furthermore, other optimization techniques will be

employed for evaluation of added intelligence in future work.

Acknowledgments

The authors are thankful to the Universiti Teknologi Petronas,
Malaysia for the financial support and motivation to conduct
research. They would also thank to Mehran University of

Engineering and Technology, Jamshoro, Pakistan for allowing
to accomplish higher studies smoothly.
Please cite this article in press as: Shaikh, P.H. et al., Intelligent multi-objective opt
University – Engineering Sciences (2016), http://dx.doi.org/10.1016/j.jksues.2016.03.
References

ASHARE Standard, ANSI/ASHRAE Standard 55, 1992. Thermal

Environmental Conditions for Human Occupancy. American

Society of Heating, Refrigerating and Air-Conditioning Engineers.

Inc., Atlanta.

Chen, K., Jiao, Y., Lee, E.S., 2006. Fuzzy adaptive networks in

thermal comfort. Appl. Math. Lett. 19, 420–426.

Costa, A., Keane, M.M., Torrens, J.I., Corry, E., 2013. Building

operation and energy performance: monitoring, analysis and

optimization toolkit. Appl. Energy 101, 310–316.

Curtis, P.S., Shavit, G., Kreider, K., 1996. Neural networks applied to

buildings – a tutorial and case studies in prediction and adaptive

control. ASHRAE Trans. 1, 102.

Dagdougui, H., Minciardi, R., Ouammi, A., Robba, M., Sacile, R.,

2012. Modeling and optimization of a hybrid system for the energy

supply of a Green building. Energy Convers. Manage. 64, 351–363.

Green Energy Ohio, 2013. Accessed October 05 from, <www.greenen-

ergyohio.org>.

Horn, J., Nafpliotis, N., Goldberg, D.E., 1994. A niched Pareto

genetic algorithm for multiobjective optimization. In: Proceedings

of the First IEEE Conference on Evolutionary Computation. IEEE

World Congress on Computational Intelligence, pp. 27–29.

Hussin, M., Ismail, M.R., Ahmad, M.S., 2014. Air-conditioned

university laboratories: comparing CO2 measurement for central-

ized and split-unit systems. J. King Saud Univ. Eng. http://dx.doi.

org/10.1016/j.jksues.2014.08.005.

International Energy Agency, 2007. International organization for

standardization (IEA–ISO), international standards to develop and

promote energy efficiency and renewable energy sources, special

ISO focus. In: Proceedings of theWorld Energy Congress, pp. 5–10.
imization for building energy and comfort management. Journal of King Saud
001

http://refhub.elsevier.com/S1018-3639(16)30002-2/h0005
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0005
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0005
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0005
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0010
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0010
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0015
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0015
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0015
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0020
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0020
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0020
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0025
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0025
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0025
http://www.greenenergyohio.org
http://www.greenenergyohio.org
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0035
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0035
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0035
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0035
http://dx.doi.org/10.1016/j.jksues.2014.08.005
http://dx.doi.org/10.1016/j.jksues.2014.08.005
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0045
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0045
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0045
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0045
http://dx.doi.org/10.1016/j.jksues.2016.03.001


10 P.H. Shaikh et al.
Kolokotsa, D., 2003. Comparison of the performance of fuzzy

controllers for the management of the indoor environment. Build.

Environ. 38, 1439–1450.

Kukolj, D.D., Kuzmanovic, S.B., Levi, E., 2001. Design of a PID-like

compound fuzzy logic controller. Eng. Appl. Artif. Intell. 14, 785–

803.

Li, Y., Ang, K.H., Chong, G.C.Y., 2006. PID control system analysis

and design – problems, remedies, and future directions. IEEE

Control Syst. Mag. 26, 32–41.

Liu, K., Nakata, K., Harty, C., 2010. Pervasive informatics: theory,

practice and future directions. Intell. Build. Int. 2, 5–19.

Mark, A.C., 1996. BASE quality assurance project plan, environmen-

tal health and engineering, 60 Wells Avenue Newton, MA 02159-

3210 (MS report). In: Womble, Susan (Ed.), Office of Radiation

and Indoor Air United States Environmental Protection Agency,

pp. 24–32, Washington, DC 20460.

Mathews, E.H., Arndt, D.C., Piani, C.B., Heerden, E., 2000. Devel-

oping cost efficient control strategies to ensure optimal energy use

and sufficient indoor comfort. Appl. Energy 66, 135–159.

Nguyen, A.T., Reiter, S., Rigo, P., 2014. A review on simulation-based

optimization methods applied to building performance analysis.

Appl. Energy 113, 1043–1058.

Safdar, A., Dohyeun, K., 2013. Energy conservation and comfort

management in building environment. Int. J. Innovative Comput.

Inf. Control 9, 2229–2244.

Shaikh, P.H., Nor, N.B.M., Nallagownden, P., Elamvazuthi, I.,

Ibrahim, T., 2013a. Robust stochastic control model for energy
Please cite this article in press as: Shaikh, P.H. et al., Intelligent multi-objective opt
University – Engineering Sciences (2016), http://dx.doi.org/10.1016/j.jksues.2016.03.
and comfort management of buildings. Aust. J. Basic Appl. Sci. 7,

137–144.

Shaikh, P.H., Nor, N.B.M., Nallagownden, P., Elamvazuthi, I., 2013b.

Building energy management through a distributed fuzzy inference

system. Int. J. Eng. Technol. 4, 3236–3242.

Shaikh, P.H., Nor, N.B.M., Nallagownden, P., Elamvazuthi, I.,

Ibrahim, T., 2014a. A review on optimized control system for

building energy and comfort management of smart sustainable

buildings. Renewable Sustainable Energy Rev. 34, 409–429.

Shaikh, P.H., Nor, N.B.M., Nallagownden, P., Elamvazuthi, I., 2014b.

Stochastic optimized intelligent controller for smart energy efficient

buildings. Sustainable Cities Soc. 13, 41–45.

Shaikh, P.H., Nor, N.B.M., Nallagownden, P., Elamvazuthi, I., 2016.

Intelligent multi-objective control and management for smart

energy efficient buildings. Int. J. Electr. Power Energy Syst. 74,

403–409.

Wang, Z., Yang, R., Wang, L., 2010. Multi-agent control system with

intelligent optimization for smart and energy efficient building. In:

Proceedings: IEEE Industrial Electronics Society, Phoenix, AZ, pp.

1144–1149.

Wang, Z., Yang, R., Wang, L., 2011. Intelligent multi-agent control

for integrated building and micro-grid system. In: Proceedings:

IEEE PES Innovative Smart Grid Technologies Anaheim, CA, pp.

1–7.

Yang, R., Wang, L., 2013. Multi-zone building energy management

using intelligent control and optimization. Sustainable Cities Soc.

6, 16–21.
imization for building energy and comfort management. Journal of King Saud
001

http://refhub.elsevier.com/S1018-3639(16)30002-2/h0050
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0050
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0050
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0055
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0055
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0055
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0060
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0060
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0060
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0065
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0065
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0070
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0070
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0070
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0070
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0070
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0075
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0075
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0075
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0080
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0080
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0080
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0085
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0085
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0085
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0090
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0090
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0090
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0090
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0095
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0095
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0095
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0100
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0100
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0100
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0100
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0105
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0105
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0105
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0110
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0110
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0110
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0110
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0115
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0115
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0115
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0115
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0120
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0120
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0120
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0120
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0125
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0125
http://refhub.elsevier.com/S1018-3639(16)30002-2/h0125
http://dx.doi.org/10.1016/j.jksues.2016.03.001

	Intelligent multi-objective optimization for building energy and comfort management
	1 Introduction
	2 System framework and modeling
	3 Multi-objective optimization (MO) algorithm
	4 Results and discussion
	5 Conclusion
	Acknowledgments
	References


