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Abstract
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1. Introduction

A good deal of classical invariant theory concerns the so-called classical groups, their
action on vectors and covectors, and their adjepresentation. It is therefore tempting to
look for counterparts of this topic in the context of quantum groups, as is shown by various
approaches in the literature. Our starting point here is [5], where two quantum versions
of the invariant theory of the conjugation action of the general linear group have been
studied. Both the (rightqdjoint coactiong: f — > f> ® S(f1) f3 (given in Sweedler’s
notation) and the (right) coactian: f — )" f> ® f3S(f1) of O(GL,(N)), the coordinate
ring of the quantum general linear group, on the coordinate ring &f N quantum matri-
ces, can be considered as quantum deformations of the classical conjugation action. In [5],
explicit generators of the subalgebra of coinvariants were determined bothdod 8
(under the assumption thatis not a root of unity). Both algebras ak&variable commu-
tative polynomial algebras. Note also that an element ig-aninvariant if and only if it is
cocommutative.

Some fragments of this picture had apgehin prior work already, in greater gen-
erality. Motivated by the theory of integrable Hamiltonian systems, pairwise commuting
g-analogues of the functions(fi’*) (n = 1, 2,...) were constructed in [18] for algebras
A(R) generated byv? elementm;, subject to the relationBuiu, = uou1 R (see Section 3
for explanation of this notation), wheris anN? x N2 matrix satisfying the Yang—Baxter
equation. One can check that the elements constructed by Maillet are cocommutative in the
bialgebraA(R) (though this is not touched in [18]).

Another set of elements afl(R) was constructed in [2], see also [19, Corollary
10.3.9]. They arise as quantum traces of powers @fith respect to the so-called co-
variantized (or transmuted) product.if(R). These elements are adjoint coinvariants, and
pairwise commute, so they are also appropriate quantum analogues of the classical func-
tions tn(L").

The adjoint coaction is not multiplicative (neither is the versiQnMajid developed a
theory for coquasitriangular matrix bialgebrd$R) which remedies this defect. Namely,

a new covariantized product can be introduced A(R) in a canonical way. The ad-

joint coinvariants become central in this ndraided matrix algebraknown also as a
reflection equation algebrdrhis process (calletansmutatiorin [19]) provides a bridge
between the results of [5], and certain results on the reflection equation algebra. There is
a number of papers dealing with the adjoint action (or coaction) on reflection equation
algebras. For example, [11] and [7] (see dlse references therein) make use of adjoint
invariants (central elements) of the reflection equation algebra to study quantizations of
coadjoint orbits ofSL(N). (Staying in the framework of quantum matrices, related results
were obtained in [4].) See also [17] and [16] for discussion of other versions of the re-
flection equation algebra. There are various versions of the Cayley—Hamilton theorem for
guantum matrix algebras or the reflection equation algebra, see [12,14,27]. These imply
relations among the above mentioned adjoint coinvariants (respectively cocommutative el-
ements).

Now let us briefly describe the subject of the present paper, where the point of view
of invariant theory is adopted, and we look for generators and relations for subalgebras of
coinvariants. Our focus is on the matrix bialgebré&5,), associated with the classical
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groupG and the parameter € C* by Faddeev, Reshetikhin, and Takhtadzhyan in [22].
These algebras (calldeRT-bialgebra¥ are defined in terms of generators and relations.
They have a natural bialgebra structure, where the comultiplication reflects the rule for
matrix multiplication. Following [22], by the coordinate rid®(G,) of the quantum group

G, we mean the quotient ofl(G,) by an explicitly given ideal. The algebta(G,) is
endowed with the adjoint coaction 61(G,). Our main result, Theorem 3.3 presents ex-
plicit generators and relations for the subalgel(& ,)°°° of cocommutative elements in
A(G,) under the assumption thais transcendental (the method of proof probably works
wheng is not a root of unity). We indicate also how the same thing can be done for the
subalgebraA(Gq)ﬂ of adjoint coinvariants in4(G,). This recovers the results of [5] as

the special case d@BL,(N), SL, (V). For the other classical groups these results seem to
be new. The description 0A(G,)®°® and A(G,)? is obtained from the description of the
corresponding subalgebrasGiG,) (see Theorem 2.4), where the assertion is essentially

a consequence of the Peter—Weyl decomposition, due to Hayashi [13]. Let us note however
that from our point of view, the algebtd(G,) is closer to the flavour of classical invari-

ant theory (dealing with commutative polynomial algebras), B, ): it is a graded
(Noetherian) algebra, having the same Hilbert series as its classical counterpart. The finite
generation property of the subalgebra ofnvariants follows from a general Hilbert type
argument, see [6].

After a first draft of this paper was written, we learnt from Stephen Donkin that inde-
pendently from us, strongly related results were obtained by him on the conjugation action
of quantum groups on their coordinate algebra in [9], with no restriction on the deforma-
tion parametey and on the base field (in particular, the case whés a root of unity is
covered as well). Moreover, his work involréhe study of the structure of the coordinate
ring of the quantum group as a module over the subalgebra of coinvariants.

2. Cocommutative elementsin O(Gy)

We work over the base field of complex numbers. L&D(G,) be any of the coordinate
algebras of the quantum grou@d, (N), SL;(N), O4(N), SQ,(N), Sp,(N), defined in
[15, Sections 9.2, 9.3], following [22]. Assume that the complex paramgeenot a root
of unity whenG, is GL, (N) or SL,(N), and assume that is transcendental in all other
cases. We allow also the cage= 1, when we get the commutative coordinate algebra
O(G) of the classical groufy corresponding taG,. The assumption og guarantees
thatO(G,) is cosemisimple, and its corepresentation theory is completely analogous to its
classical counterpart. The results presented in this paper depend crucially on the work of
Hayashi [13], concerning the Peter—\Weyl decompositio@ 66 ;).

Recall that an elemenf € O(G,) is cocommutativef v o A(f) = A(f), where
A:O0(Gy) = O(Gy) ® O(G,) is the comultiplication, and is the flipr (f ® ¢g) =g ® f.
The cocommutative elements form a subalgeb¢a ;) °°C. We would like to point out that
as an immediate corollary of the representation theorg of generators and the struc-
ture of O(G,)°°° can be described explicitly. This is based on the following well-known
statement, which is a reformulation of Schur’s lemma.
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Lemma 2.1. The cocommutative elements in a simple coalgebra form a one-dimensional
subspace.

Proof. Since our base field i€, any simple coalgebré& is isomorphic to the dual of the
matrix algebraM/ (N, C) for someN. The trace function oM (N, C) fixes a vector space
isomorphismu +— Tr(a - ) betweenM (N, C) andC. Under this isomorphism the center
of M(N, C) is mapped onto the space of cocommutative elements inO

Given a finite dimensional corepresentationV — V ® O(G,), write tr(¢) for the
sum of the diagonal matrix coefficients of (see, for example, [15, 1.3.2] for the no-
tion of matrix coefficients of a corepresentation)glis irreducible, then t) spans the
space of cocommutative elemeirighe coefficient coalgebra gf by Lemma 2.1. Clearly,
tr(p & ¥) =tr(p) +tr(y) and tly ® ¥) =tr(p) - tr(y).

The isomorphism classes of irreducible corepresentatiod¥ 6f,) are parameterized
by a setP(G,) = P(G). This set is independent gf, so it is the same as in the classical
caseq = 1, when it is clearly in a natural bijection with the set of isomorphism classes
of irreducible rational representations of the affine algebraic g@ufpi is a convenient
tradition to represenP(G) as a set of certain sequences of integers, see [13, formulae
(4.17), (6.2), and Theorem 6.4], or [15, Section 11.2.3] for details. Wiea Sp(N),
SL(N), or GL(N), then it is natural to identifyP(G) with the semigroup of dominant
integral weights for the corresponding reductive Lie algehrhereas whew = SQ(N),
then P(G) consists of those dominant integral weights fox; savhich appear as a highest
weight in some tensor power of the vector representation pf ¥¢henG = O(N), then
following [26], P(G) is usually identified with the set of partitions, such that the sum of
the length of the first two columns of their Young diagram is at nst

Forne P(G,), write gy, for the corresponding irreducible corepresentatio®of ).

Proposition 2.2. The sef{tr(¢n) | n € P(G,)} is aC-vector space basis @(G,)°°°. The
structure constants of the algebt&G ,)*°° with respect to this basis are independen bf
they are the same as in the classical case 1.

Proof. Start with the Peter-Weyl decomposition 6f(G,) due to [13] (respectively

[20] for GL,(N)); see also [15, 11.2.3, Theorem 22 and 11.5.4, Theorem 51]. We have
OGy) = @neP(Gq) C(¢n), WhereC (¢n) is the coefficient coalgebra of,. It follows that
O(Gy)*°c= EBnEp(Gq) C(¢pn)®°C. By Lemma 2.1C(¢n)°¢= Ctr(¢n), showing the first
assertion. For the second assertion, decompose the tensor predugh = P, mp " pp.

The multiplicitiesmp™ here are the same as in the classical case 1, since this
holds for the decompositions of tensor products of the corresponding representations
of quantized universal enveloping algebras (see, for example, [15, 7.2] or [3, Proposi-
tion 10.1.16]; for the case ad,(N), see Appendix A, Proposition 6.3, and the remark
afterwards). On the other hand, they are the structure constaii®@jf)°°“: we have
tr(gn) - trgm) = >y mp " tr(gp). O
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The following immediate corollary is a ring theoretic formulation of the well-known
fact that the representation theory®j is essentially the same as the representation theory
of G.

Proposition 2.3. The algebrad(G,)*°¢is isomorphic to its classical counterpa(G)°©°c,
via an isomorphism mappirtg(¢n) € O(G,) totr(gn) € O(G) for all n € P(G).

There is a natural right coaction 61(G,) on thequantum exterior algebra\(G,),
[15, see Sections 9.2 and 9.3]. The quanaxterior algebra is graded. Its degeebomo-
geneous componentis a subcomodule of dimen@’()nwrite wy for the corepresentation
of O(G,) on this space, fo = 1,..., N, and seb, = tr(wy). In the classical casg=1
the representation correspondingipis thedth exterior power of the defining representa-
tion of G. Wheng is transcendental, the multiplicities of the irreducible summands;of
are the same as in the classical casel, since/\ (G,) has the same kind of weight space
decomposition as in the classical case. In particularS@(2/) we havew; = w0 ® w1
is the direct sum of two non-isomorphic irreducibles; in this caserset= tr(w; o) and
011 =1tr(w; 1), SO0 0+ 07,1 = 0;. Generators and relations for the commutative algebra
O(G4)°°¢ are the following.

Theorem 2.4.

(i) (cf.[6]) O(SL, (I +1))°°is anl-variable commutative polynomial algebra generated
byal, ..., 0].

(i) O(Sp,(2))*°° is an [-variable commutative polynomial algebra generated by
01,...,0].

(i) O(04(21+1))c°Cis generated by, ..., 07, 02141, Subject to the relationzzlﬂ =1
Soitis a rank two free module generatedlbgndoy 1 over thel-variable commu-
tative polynomial algebr&[oy, ..., o].

(iv) O(SQ, (2 + 1))%°¢is thel-variable commutative polynomial algebra generated by
01,...,0].

(v) O(04(20))°°¢ is generated byos, ..., 01,02, subject to the reIations;zzl =1,
o109 = o;. SO it is the vector space direct sulifoy, ..., 0] ® 02Clo1, ..., 07-1]
of thel-variable commutative polynomial algeb&o1, ..., o7], and the rank one
free module generated g, over the(l — 1)-variable commutative polynomial al-
gebraCloy, ..., 0-1].

(vi) O(SQ,(2))*°Cis generated by, ..., 011, 07,0, 07,1, Subject to the relation

-1 -1
(01,0 — 01,1)° = (Ul + 220,») (Gz + 22(—1)l_i0i),

i=0 i=0

whereo; = 0,0 + 07,1. SOO(SQ,(2/))®°Cis a rank two free module generated by
andoy o — 07,1 over thel-variable polynomial algebr&[oy, .. ., o/].
(vii) (cf. [5]) O(GL,(N))¢°¢is the commutative Laurent polynomial ring generated by

01,...,0N, crlgl (note thatoy is the quantum determingnt



108 M. Domokos, T.H. Lenagan / Journal of Algebra 282 (2004) 103-128

Proof. By Proposition 2.3 the result follows from its special cgse 1. In the classical
case the structure @?(G)°Cis well-known: it can be derived from the representation the-
ory of G. For sake of completeness we give some references and hints in Appendix B.

The quantum exterior algeby&(G,) has a basis consisting of formally the same set of
monomials as in the classical case, and a general monomial can be easily rewritten in terms
of this basis, using the defining relationegg15, 9.2.1 Proposition 6, 9.3.2 Proposition 15,
9.3.4 Proposition 17]. So in principle one can expressdathéor each concrete case of
Theorem 2.4 as a polynomial in the generator€gt,); an example will be given in
Section 3. (The cases (i) and (vii) were handled by different methods in [5,6]; then the
are sums of principal minors of the generic quantum matrix.) However, we do not know
how to get such an expression o (or o7.1) in (vi).

3. Cocommutative elementsin the FRT-bialgebra

Throughout this sectiorG, is one of SL;(N), O4(N), Sp,(N), and we retain the
assumptions oy made in Section 2, so that the results of [13] on the Peter—-Weyl de-
composition can be applied.

By definition,O(G,) is the quotient of the so-calldeRT-bialgebra4(G,) modulo the
ideal generated b, — 1, whereD, is a central group-like element, having deghean the
case ofSL,(N), and having degree 2 in the casesf(N), Sp,(N). The aIgebraA(Gq)
was defined in [22] as the associatilealgebra withN? generators (i, j=1,...,N),
subject to the relations

Ruquo = UsUR. Q)

HereR is anN? x N2 matrix, the R-matrix of the vector representation of the Drinfeld—
Jimbo algebral, (g), whereg is the simple Lie algebra corresponding@g, andu; =

u® I, ux = I ®u are Kronecker products of thé x N matricesu = («’.) and the identity
matrix in the two possible orders. The relations (1) are homogeneous of degree 2 in the
generatorai therefored(G,) is a graded algebra, with the generatd;shaving degree 1.

Moreover WA(Gy) is a bialgebra with comultlpllcatlom(u )= U ® u and counit
8(u ) =4;, ;. Let V be anN-dimensionalC-vector space with basisy, ..., en. erte

V — V ® A(G,) for the A(G,)-corepresentation given hy(e;) = Z ej® u , and

caII o thefundamental corepresentatiofi.A(G,). Note that the generatonz? are nothlng
but the matrix coefficients ab (with respect to the basig, ..., ey). It is clear then that
the degree homogeneous componentdiG,) is the coefficient space of theh tensor
powero®" of the fundamental corepresentation.

Write m : A(G,) — O(G,) for the natural surjection. A corepresentatipf A(G,)
induces the corepresentati@@((;q) = (id ® m) o ¢ of O(Gy). Forr € Ng denote by
P.(G,) the subset oP (G ) consisting of ther such tha(a)®’)o((;q), therth tensor power
of the fundamental corepresentation considered as a corepresentafloq pf, contains
a subcorepresentation isomorphiagg the explicit form of . (G,) can be found in [13,
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(4.17)]. Up to isomorphism, there is a unigd€G ,)-subcorepresentatigm, , in «®” with
(¢nr)oG,) = en. The coefficient spac€ (¢n ) is a simple subcoalgebra of the degree
homogeneous componentdiG,), and by [15, 11.2.3 Theorems 21 and 22] we have the
decomposition

AGH=B P cwnn. 2)

r=0 neP,(Gy)

The polynomial ringC[z] is a sub-bialgebra of the coordinate rififjz, z~1] of the
multiplicative group ofC. The mapu’, - §; ;z extends to a bialgebra homomorphism
k : A(G4) — CIz]. This follows from the defining relations (1): specializim¢gp any scalar
matrix,uiuz andusu; specialize to the same scalar matrix, hence (1) is fulfilled. Therefore
there exists an algebra homomorphisnvith the prescribed images of the generators. Itis
easy to check on the generators that this is a coalgebra homomorphism as well, moreover,
that« has the followingcentralityproperty:

(id®K)OA_A(Gq):TO(K@id)OA_A(Gq), (3)
wherert is the flip mapr(a ® b) = b ® a.

Proposition 3.1. The map = (7 ® k) o A 4G, Is a bialgebra injection ofA(G,) into
the tensor product bialgebr&®(G,) ® C[z]. The subcoalgebr& (¢n, ) is mapped onto
C(en) ® Z" forall r e No andn € P-(Gg).

Proof. The map is defined as a composition of algebra homomorphisms, hence it is an
algebra homomorphism. Property (3) can be used to verify that it is a coalgebra homo-
morphism as well. The only thing left to show is thas injective. The algebral(G,) is
graded, the generaton% have degree 1. Similarly, the usual grading on the polynomial
ring C[z] induces a grading o®(G,) ® C[z], and the map is obviously homogeneous.
Therefore, the kernel afis spanned by homogeneous elements. Take a homogeneous ele-
ment f from ken:), say of degree. Then'(f) =7 (f) ® z", hencer (f) = 0. It follows

that f is a multiple of D, — 1. The elemenD, is not a zero-divisor inA(G,) by [13,
Theorem 5.7(1)]; see also 11.2.3 Lemma 25, and the beginning of the proof of Theorem 22
on p. 414 in [15]. (Note thatl(G,) is not always a domain, as we shall see later.) Clearly

1 is not a zero-divisor. Therefore no non-zero multiplef— 1 is homogeneous. Thus

we havef =0. O

Write A(G) for the classical counterpart of the FRT-bialgebra. &hy(N), this is just
the N2-variable commutative polynomial algebra, that we obtain when we speciatize
1 in the defining relations (1). It is crucial to note however that in the case, W)
andSp, (N), the algebrad(G) is different from theN2-variable commutative polynomial
algebra (although specializing to 1 in relations (1), we end up with th&2-variable
commutative polynomial algebra in these cases as well); see also [8] for this point. To get
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the right definition ofA(G) for G = O (N) or G = Sp(N), recall that the symmetric matrix
R(g) = t o R has a spectral decomposition

R(@)=qP+(@) —q *P_(q) + eV Po(g),

wheree = 1 for O,(N) ande = —1 for Sp,(N); see [15, Section 9.3]. Far transcen-
dental, the eigenvalueg, —g 1, ¢~V are pairwise different, therefore (1) is a short
expression of the equivalent set of relations

Py (g)utuz =uiuz Py (g), P_(g)uiuz = uiuz2P_(g),
Po(g)uzuz = uiuz Po(q). 4)

When we specializg to 1, the eigenvaluesg€~" andg (respectively—g 1) become
equal in the orthogonal case (respectively in the symplectic case), and that is why the
relations obtained from (1) are not strong enough. Instead, we can write down a third set
of relations equivalent to (1) or (4):

R(g)u1lz =UiUupR(g) and K(g)uiuz = uguzK(q), %)

where Kg) = 1+ €(g — g H gV ¢ — ¢ V) Po(q). Itis clear that (5) is equivalent
to (1), though (5) is trivially redundant fer # 1. The advantage of (5) compared to (4) is
that K(¢) has a rather simple form. Write(&) for the matrix of the metric defined in [15,

p. 317]. Its non-zero entries all lie on the anti-diagonal, and up to sign, they-pogvers.
Note that @1) is the matrix of the symmetric (respectively skew-symmetric) bilinear form
that appears in the usual definition of théhmgonal (respectivelyysnplectic) group. Now
the entries of theV2 x N2 matrix K(g) are given by Kq);,, = €C(¢){ C(q)", see [15,

p. 318]. So the non-zero entries ofd) are allg-powers up to sign. In particulak (1)
makes sense. After these preparations it is natural to defiit® as the algebra with
generatorﬂ;, i,j=1,..., N, subjectto the relations

R(Duiuz = u1upR(1) and K(L)ugus = uiusK (). (6)

Itis a bialgebra with comitiplication and counit given by the same formulae asAgG ;).
Specializingg to 1 in D, we get a group-like elemer? of A(G). As we shall point out
below, the quotient ofA(G) modulo the ideal generated By — 1 can be identified with
O(G), such that the images of the generatzdjsbecome the coordinate functions 6h
with its usual embedding into the spak& N, C) of N x N matrices.

A close inspection of the proofs of the statements cited in this section from [15] about
the coalgebra structure of(G,) shows that they remain valid fo4(G). Indeed, the key
point in the proof of (2) is [15, 11.2.3 Proposition 20], which is a consequence of the
guantum Brauer—Schur—Weyl duality, that is, that the commutant algelﬁ@(gj acting
on a tensor power of the vector repretsgion is generated by the ‘shifts’ cﬁ(q), see
[15, 8.6.3 Theorem 38] for a precise statement. Now in the classical Brauer—Schur—Weyl
duality, the corresponding commutant ddge is generated by the shifts 8i(1) = v and
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K(1), therefore the proof of [15, 11.2.3dposition 20] works for the algebrd(G) defined
in terms ofR(1) and K(1). This yields a version of [15, 11.2.3 Theorem 21] #(G), and
in turn the decomposition (2) fod(G):

AG)= P Cwnn,

r=0 neP.(G)

where P, (G) = P-(G,), since the multiplicities of the irreducible summands of klie
tensor power of the fundamental corepresentatiaf @, ) are the same as f@(G) (cf.
[15, 8.6.2 Corollary 37(i)]). Similarly, Proposition 3.1 holds in the case 1 as well.

So we have definedl(G) as an algebra given in terms of generators and relations.
The path we have followed expresses explicitly tH&t ) is obtained as the special case
g =1 of A(G,). Moreover, we will need to comparthe coalgebra structures df(G)
and.A(G4), and this definition makes possible a uniform approach: one can get the above
mentioned statements abad{G) and the corresponding statements 4(G,) with ¢
transcendental simultaneously. HowevétG) has a description in simple geometric terms
as well. Namely,A(G) is the coordinate ring of the Zariski closure of the cdh& of G,
where by this cone we mean the image of the mag x C - M(N,C), (g,t) — tg.
Indeed, the first set of the relations (6) says thatthepairwise commute (note that
R(1) = 7). By the proof of [15, 9.3.1 Lemma 12], the second set of the above relations
says that

uc)~tu’c1) = c(1)~tu’ C(1)u = a scalar multiple of the identity,

where the scalar above is the quadratic group-like ele®eitheorems (5.2C) and (6.3B)

of [26] describe the generators of the vanishing ideal in the coordinate ring(of, C)

of the full orthogonal group and the symplectic group. This result can be paraphrased by
saying that the quotient ofl(G) modulo the ideal generated iy — 1 is indeedO(G),

as we claimed before. Furthermore, we obtained that the locus of solutions of the equa-
tions (6) inM (N, C) istheN x N matrix semigroupM consisting of the matrices such

that AC(1)"1A” C(1) and Q1)~1ATC(1)A are equal scalar matrices (we allow the scalar
zero). Clearly the subset of invertible elements\ihis C*G. ThereforeM > CG, there

exist natural surjectionsy : A(G) — O(CG) andn,: O(CG) — O(G), and their com-
position is the natural surjectian = 72 o 71 : A(G) — O(G). So, as we noted already,
Proposition 3.1 makes sense and is valid f1G). It is easy to see that in this case the
map: is the composition™* o 71 of the comorphism ofi andr;. Consequently, the injec-

tivity of « implies thatr; is an isomorphism, hencet = CG, and.A(G) is the coordinate

ring of M. (Alternatively, instead of using Proptien 3.1, it is possible to derive directly
from the results of [26] cited above that the vanishing ideal of the Zariski closWé&ah

M (N, C) is generated by the polynomials coming from the second set of relations in (6).
For sake of completeness we present thésreintary argument in Appendix D.) Note that,
being the coordinate ring of a linear algebraic semigrodif¥;) is naturally a bialgebra;

the comultiplication and counit structures coign from this geometc interpretation of

A(G) agree with the one specified before.
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Proposition 3.2. The subalgebraA(G,)®°¢ of cocommutative elements in the FRT-
bialgebrais isomorphic to its classical counterpart via an isomorphism magpipg ) €
A(Gy) totr(gn,r) € A(G) forall r € Ng, n € P.(G) = P-(Gy).

Proof. By Lemma 2.1 and (2) we know that(G,)°°° has t(¢n, ), r € No, n € P.(G)

as a vector space basis. Identil(G,) with its image under from Proposition 3.1.
Then A(G,)®¢ is identified with the subspace @(G,)°°° ® C[z] spanned by the
tr(pn) ®z" with n € P.(G,) = P-(G). The assertion now immediately follows from Propo-
sition 2.3. O

The corepresentation; of O(G,) from Section 2 is defined 240G, where
£24 is a natural right coaction af{(G,) on the degree/ homogeneous component of
the quantum exterior algebra(G,), ford =1,..., N. Setpy = tr(24). Thenp, is a
cocommutative element igdl(G,), andmr(ps) = o4. Another cocommutative element is
D,. Under the bialgebra injection the elementD, is mapped to 2 (to1®7V in
the case oBL,(N)), andp, is mapped to; ® z¢. The elementp, can be expressed as
polynomials of the generatoaz§ in each concrete case, using the well-known basis and the
defining relations of\ (G,). The expression faP, can be found in [15, 9.3.1 Lemma 12].

Example. The quantum exterior algebyg(0,(3)) (we need to use the version on [15,
p. 322], and not the one given in [22]) has three generatons, ys, subject to the relations

1/2 —1/2)

v2=y5=0,  y3=(¢"*—qV?¥y1ya

-1 -1
yiy2=—gq "Y2)1, y2y3=—q "Y3y2, Y1y3 = —y3)1.

Forl<i < j <3 wehave2a(yiy;) = ZS =1 Ysy Quj u . The degree two homogeneous
component ofA (0, (3)) has the baS|§;1y2 y2y3, Y13, and using the above relations it is
easy to rewrite any monomia} y; as a linear combination of the basis elements. Thus one
can easily get that

p2=tl‘(.f22)=ulu qulu2+u2u3 qu2u3+u1u§ u?u%-l—(ql/z—q*l/z)u%u%

An expression for the elememy, is

1/2.2 1

D, = u%u% +gq u1u3 + qulu3
The explicit generators and relations {dtG,)°°° are the following:
Theorem 3.3.

(i) (cf. [5]) The algebra. A(SL,(N))®°¢ is the N-variable commutative polynomial
algebra generated bypi, p2,..., o8 = Dy. In particular, its Hilbert series is

M,a—-2
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(i) For Sp,(N), N =2I, 1 € N, the cocommutative eIemer1,lls(Sp;17(N))COC form an
(I + 1)-variable commutative polynomial algebra generatedy, o1, p2, ..., o1
In particular, the Hilbert series afA(Sp, (N))®Cis (1 — 2~ []/_;(1 —r))~L.

(i) For O4(N), N=2or2l+1,1 €N, N >3, we have thajd(0,(N))®C is the com-
mutative algebra generated @y, o1, o2, . .., pn, subject to the relations

N—i—j . .
pn-ipN—-j =pipjDq T (0<i<j<D),

pipN-;Dy " =pjpn-i (O<i<j<D),

where we setpg = 1 for notational convenience. AC-vector space basis of
A(O4(N))®°Cis B(N), where

i i1~ i i k Ka—p-1 kg ki
B ={pi - p/ Dy, pnpit - 01 Dh. pn—aDlpr - p N 0
| j.k,is, js. ks €No, 0< b <a<l—1}

and
. o 4 ) . _— .
B2 +1) =|pf 0D}, onpit- .,leID/(;’ pN_apgpll . 'pa—bb—ip(]j o ph

| jik.is, js ks €No, 0<b <a<l}.

In particular, the Hilbert series afA(0, (N))°¢is
- -1
1+ tN(]_ — tl) +@1- t2)(1 _ tl) 20<b<aglfltN a+2b H(li=a7b(l _ tk)
L—)[T_ A —1D)

’

whenN = 2/, and

1+N + Q=12 Yogpeag !V [Tz »1—15

Y )

3

whenN =2/ + 1.

Proof. By Proposition 3.2, it is sufficient to prove the result in the classical case. Gen-
erators ofA(G)®°° can be obtained from an old result of [23]. The relations among the
generators can be determined using the classical case of Proposition 3.1 and Theorem 2.4.
A sketch of the details is given in Appendix CO

The relation,ojzv = Df]V in A(O4(N)) (the special caseé= j = 0 of the first type re-
lations in Theorem 3.3(iii)) has already been obtained in [13] and [25]. It shows that
A(04(2D)) is not a domain.
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4. Dually paired Hopf algebrasand quantum traces

In this preparatory section we collect some standard generalities on Hopf algebras in a
form that we shall need later.

Let(-,-):U x O — C be a dual pairing of Hopf algebras and O; see, for example,
[15, 1.2.5] for the notion of a dual pairing. Assume that /) = O for all u implies f = 0.
Then the mapf — (-, f) is an injection ofO into the dual spac&™* of /. This injection
identifiesO with a Hopf subalgebra of the finite dudf of I/; in the sequel we shall freely
make this identification.

Letp:V—>V®0O,v— Y vo®v1 be acorepresentation 6fon V. (We say then that
V is a right O-comodule.) Denote by.(V) the algebra of linear transformations &h
Then¢:U — L(V) defined by the formul& (u)v := Y (u, vi)vo, u €U, v € V, is an
algebra homomorphism. Thus the corepresentaiion V induces a representatignof
U on V. In other words, a righ©-comoduleV automatically becomes a ldff-module,
and the following basic properties hold.

Proposition 4.1. Letg:V — V ® O be a corepresentation @, and letg be the corre-
sponding representation of.

(i) A subspacéV of V is anO-subcomodule if and only W is ani/-submodule.
(i) Anelement € V is anO-coinvariant if and only ifv is ai/-invariant.
(iii) The coefficient spac&(y) of ¢ coincides with the space of matrix elememéy) of
¢, provided thatV is finite dimensional.

Recall thatC(g) is the smallest subspace in O such thatp(V) CV Q C;itis a

subcoalgebra 0. For a finite dimensional representati@nof I/ the space of matrix
elements is

M(T):=Span{c} |E e V*, ve V] U,

whereV* is the dual space df, and for§ € V*, v € V the linear functiort-ﬁ ony maps
x eU tO&(T (x)v).

In the sequel we write§ for the antipode, and\ for the comultiplication in the Hopf
algebras considered. Thight adjoint coactiong : O — O ® O is given in Sweedler's
notation by

B()=Y_ f2®5(f)fs

and theright adjoint actionad ofi/ on itself is given by

ada)b = Z S(a1)baz, a,bel,
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see, for example, [15, 1.3.4] for these definitions. The connection between gdcancde
explained in terms of the left action @df &/ on its dual spacéf*, defined by the formula

(ad(@)§)(b) :=E£(ada)b), a,bell, & eU*.

Proposition 4.2. The representatiop coincides with the subrepresentationazf on the
U-invariant subspac® of 1/*.

Proof. Fora,b el and f € O we have

(b B@)f) = (b, Yl S fa)f2) = (o SUD f3) b f2)
= [a1, S(fNaz, f3)(b, f2) =Y (S(av), f1)(b, follaz, f3)
:Z(S(al)b, fiflaz, fo) = Z(S(al)baz, f)=(ada)b, f).
This impliesf(a) f =ad(a) f. O
Suppose that there exists an invertible eleni@im ¢/ such that
S%(a)=KaK™t forallael. 7)

Then for an arbitrary finite dimensional representafiaid/ — L (V) we define thejuan-
tum traceof T by

try T'(a) == TI‘(T(ICfla)), ael, (8)
where Tr is the ordinary trace function. Sg 1t is an element oM (T'), which is deter-
mined by the isomorphism class Bf Obviously this quantum trace depends on the choice
of K. It follows from (7) and usual properties of Tr that°@d) tr, T = (a)tr, T, or, in
other words, that irT is invariant with respect to the action‘ad
Proposition 4.3. If T :U — L(V) is a finite dimensional irreducible representationlof
such that?” @ T* and T* ® T are isomorphic representations of, then up to scalar
multiple,tr, T is the onlyad’-invariant element i/ (T').

Proof. We use a sequence of natural isomorphisnig-ofiodules

LV)ZVRV*ZVFQVXMT). 9

The firstisomorphism associates witlp € € V ® V* the linear transformatian+— & (x)v.
This is an isomorphism of thig-representation ® 7* and ad , where

ad (a)¢ = Z T(a)$T (S(a2)).
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By assumption, there exists a linear isomorphiBpy+:V ® V* — V* ® V intertwin-
ing betweenT ® T* andT* ® T; this is the second isomorphism in (9). The third map
c:V*®V — M(T) is the linear map sending ® v to cﬁ. It is surjective by the def-
inition of M(T). This map intertwines befeen the representatio’s* ® T and ad, as
one can easily check. (In particular, this shows th&iT) is an ad-invariant subspace
of U*.) Since our base fiel@ is algebraically closed, the irreducibility @f implies that
T (U) = L(V), hence the dimension a@f (T) is dim(V)?2. Therefore, the surjective linear
mapc goes between vector spaces of the same dimension.cThust be an isomorphism.
SinceK is invertible, 7 (X~1) is non-zero, and so there existgpae L(V) such that
Tr(T (K~1)¢) is non-zero. Choose € U with T'(a) = ¢. Then ty, T (a) is non-zero, show-
ing that ty, 7 is a non-zero element @ (7). Therefore by thé/-module isomorphisms of
(9), it is sufficient to show that the subspace of ddvariants inL (V) is one-dimensional.
The latter statement is the assertion of Schur’'s lemma, becatise)ad= (a)¢ for all
a €U if and only if T (a)p = ¢T (a) for all a € U (this equivalence can be proved by a
straightforward modification of the well known proof of the statement that the centér of
coincides with the subspace adi-invariant elements). o

A nice example to apply the above considerations is the case #li®almost cocom-
mutative This means that there exists an invertible elenfeim &/ ® U such that

ToA()=RAW@R™Y forallacl,

wheret is the flip map. Sek := u(id ® S)(R™1), wherey is the multiplication map
inU. ThenK is an invertible element @f, with inversew (id ® S)(R). Formula (7) holds

by [3, Proposition 4.2.3], and the remarks afterwards. Thus, usingkthi®rmula (8)
gives an atinvariant quantum trace. Moreover, for an arbitrary representdtiaf I/

the representatioriB ® 7* and7* ® T are isomorphic; an isomorphism between them is
10(T ® T*)R, wheret(v® §) = & ® v, see, for example, [3, 4.2, p. 119]. Therefore, we
may apply Proposition 4.3 to conclude thafifis irreducible, then up to scalar multiple,
tr, T is the only ad-invariant element i/ (7). We note that in this case,tr" is the im-

age of id; € L(V) under the composition of the isomorphisms (9), with the isomorphism
7o (T ® T*)R being used in the middle.

5. Adjoint coinvariantsin O(Gy)

For an arbitrary Hopf algebi@, the spac€*“°¢ coincides with the spad®@* = {f € O |
a(f) = f ® 1} of a-coinvariants, where is the right coaction of0 on itself given in
Sweedler’s notation by the formuda: f — > f> ® f3S(f1), see [5]. So in Section 2 we
were dealing withO(G,)*; a parallel analysis of the spa@(Gq)ﬂ of B-coinvariants
is carried out in this section, wheg is the adjoint coactioB: f — > f> ® S(f1) fs.
The results (and the proofs) are essentially the same as those of Section 2, but the natural
interpretation of them involves the quantized enveloping alg&lita, ) associated t@r,;,
fitting into the general framework formalized in Section 4.
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For G, = SLy(N), Sp,(N), SQ;(2)), SQ; (2l + 1), the Hopf algebrd/(G,) is the
Drinfeld—Jimbo algebrd/, (sly), Uq(Spy), Uq(S02), U,1/2(S02+1), respectively. The al-
gebral{(0,4(N)) is ﬁq(soN), defined in [15, 8.6.1], following [13] (see Appendix A of
the present paper). The algeBfeGL, (N)) is U, (gly), defined in [15, p. 163]. There is
a dual pairing(-, -) :U(G4) x O(G4) — C, given in [15, 9.4]. We still assume thatis
transcendental (a7 is not a root of unity foIGL, (N), SL,(N)). Then this dual pairing is
non-degenerate by [13] (see also [15, pp. 410 and 440]). In particular, the mag , f)
injectsO(G ) into the finite dual{/(G,)° of U(G,). In the sequel we shall often consider
O(G,) as a Hopf-subalgebra 6f(G,)° in this way.

The representatio® induced by the fundamental corepresentatiois the so-called
vector representatiorof U/(G,). More generally, sel, = ¢n for n € P(G,). When
G4 =Sp,(N), SLy(N), or GLg(N), then{T, | n € P(G,)} is a complete list of the iso-
morphism classes of the so-callgghe 1 finite dimensional irreducible representations of
U(Gy). WhenG, = O4(N) or SQ,(N), then{T, | n € P(G,)} is a complete list of the
isomorphism classes of those (type 1) irreducible representations, which appear as a direct
summand in some tensor power of the vector representation.

Let us introduce the following ad hoc terminology. By thasic representations of
U(G4) we meanasy, ..., o for G, = SL, (1 + 1), Sp,(2),SQ, (2 + 1), the representa-
tions @y, ..., dn for O4(N), N =21,2] + 1, the representations, ..., &—1, &0, &1,1
for SQ,(2/), and the representatiods, . .., @y, @} for GL,(N).

is the half-sum of positive roots;; are the simple roots of, and K, = Ki’l K

where K; are usual generators of the Drinfeld—Jimbo algebipgég). For GL,(N), we

setk = KV 1k 3k Y. KV, whereky, ..., Ky denote the same generators of

U(GLy(N)) as in [15, 6.1.2, p. 163]. Using [15, 6.1.2 Proposition 6] it is easy to check

that formula (7) holds fofC. Therefore formula (8) defines an“ashvariant quantum trace

tr, T for an arbitrary finite dimensional representatibrof /(G,). It is well known that

for arbitrary finite dimensional representatidiis 7> of U (G,) we havel1 @ To = T2 @ T1.

Therefore by Proposition 4.3, we obtain that &ny irreducible finite dimensional repre-

sentation ot/(G,), the quantum trace " spans the subspace ofaidvariants inM (T).
Obviously, for finite dimensional representatidis 7> we have

try (Ty & T2) =try Ty +try To. (20)
SinceKC is group-like, by [15, 7.1.6] we have
try (T1 ® T2) = (try T1) + (try T2), (11)

wherex is the convolution multiplication in the dual éf(G,); so when the irreducible
summands of1, 7> are contained if7, | n € P(G,)}, then the right-hand side of (11) is
the product of ty 71 and tg; 7 in O(G).

Theorem 5.1. The quantum tracefir, T, | n € P(G,)} form aC-vector space basis of the
space ofg-coinvariants inO(G,). The linear mapO(G,)? — O(G)?, tr, T > tron,
n € P(G), is an algebra isomorphism betwe@n(G,,)/3 and its classical counterpart
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O(G)? = O(G)®°°. As aC-algebra,O(G,)? is generated by the quantum traces of the
basic representations &f(G ), subject to the same relations as the corresponding cocom-
mutative elements in Theoretm.

Proof. Identifying O(G,) with a subspace of the dual &f(G,), the Peter-Weyl decom-
position is written ag)(G,) = EBnep(Gq) M (Ty). Itis clearly a decomposition as a direct

sum of g-subcomodules. Therefore we ha®%€G,)” = @nep(g,) M (Tn)”, hence the el-

ements t 7, form a basis inO(G,)? by Proposition 4.3. The structure constants of the
algebraO(G,)? with respect to this basis are the multiplicities appearing in the tensor
product decompositior&, ® Tm = @, mp" Tp by (10) and (11). Since the multiplicities
mp™ are the same as in the classical case 1 (see [15, 7.2] or [3, Rposition10.1.16],

and Appendix A for the case @, (N)), we obtain the statement about the algebra isomor-
phismO(G,)? = O(G)®°C. Then the statement about the generators and relations follows
from the known classical case (see Appendix Bl

The definition of the adjoint coaction @P(G,) on itself can be modified to make
it a coactiong of O(G,) on the FRT-bialgebrad(G,) as follows: B(f) = > fo ®
S(m(f1))m(f3). The results of Theorem 5.1 imply a descriptionét(t}q)ﬂ both as a vector
space and as an algebra with explicit generators and relations. This can be derived from the
bialgebra embeddingin Proposition 3.1 in the saenway as the results aA(G,)°°. The
algebraA(G,)*f turns out to be isomorphic ta(G,)*°° = A(G)*°° = A(G)? as graded
algebras (butd(G,4)? and.A(G,)°° are two different subsets of(G,) wheng # 1). We
omit the obvious details.

Example. Let us compute fra,, in the case ofGL,(N). For subsetd, J C {1,..., N}
with |I| = |J| = m, write [I|J] for the corresponding quantum mmor(mf) So[I|J] is
the quantum determinant of the x m quantum matrlx(uj)’ . Fix Jo ={1,...,m},
and write e; = [Jo|I] for the quantum minors belonging to the firat rows. Slnce
Aler) = Zm=m ey @ [J]I], the subspace iD(GL, (N)) spanned byle; | m =|J|} is

a subcomodule with respect to the right coactitirthe corresponding corepresentation is
wn, see [15, 11.5.3]. The coefficient spaCéw,,) of wy, is the subspace @(GL,(N))
spanned by all the: x m quantum minors. By definition ab,,, for x € U(GL, (N)) we
have

om(x)er =Y (x,[J1)es

J

It follows from the explicit formulae giving the dual pairing in [15, 9.4, p. 328] that

om(Kiyey =4 ¢rr i€l
m(Ki)e, {Ej, otherwise

Consequently, we have
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N
R _ R “N—1+2i L\ (~N—142i
wm(lC l)eJ:wm(l_[K[ N 1+21)eJ=(q 1)2,61( +z)ej
i=1
— "N+ =2y D
that is, the matrix ofy,, (,C~1) with respect to the basig; | m = |J|} is diagonal. Thus

try @ () = Tr(@n (KN m(0) = Y gV HD=22ies Dy, [717])
|J|=m

This means thatfonn =1, ..., N, we have

tryom=»_ g2l Dy,
|J|=m

where the summation ranges over theelement subsetg of {1,..., N}. Note that a
scalar multiple of this element appears as the basic coinvagjaintroduced in [5]. Since

it is convenient to perform computations@GL, (N)), the results of this section can be
viewed as an explicit determination of thgantum traces of finite dimensional represen-
tations of type 1 ot/ (GL, (N)), as elements aD(GL, (N)).

Appendix A

This appendix deals with the algeld# O, (2/)) associated withD, (2/) by Hayashi
[13]. We prove the assertiomanultiplicities of irreduciblesn tensor product decomposi-
tions, used in the proof of Proposition 2.2.

Throughoutthis appendixe C* is not a root of unity, og = 1. Write E;, F;, K;, Kfl
(i =1,...,1) for the usual generators of the Drinfeld—Jimbo algeliya= U, (soy), de-
fined, for example, in [15, 6.1.2]; whep= 1, the algebra/; can be defined using an
integral form of the Drinfeld—Jimbo algebra, see the proof of Proposition 6.2. The universal
enveloping algebr& = U (say) is the homomorphic image d@f, with kernel generated
by K; —1,i =1,...,1. The Dynkin diagramD; of sgy has an involutive automorphism
interchanging the nodds— 1 and/. Denote byy the corresponding involutive automor-
phism ofU,, SOE} = E, iy, F* = Fyi), K] = Ky, Wherex (i) =ifori=1,...,1-2,
x(—1)=x(),andx () = x (I — 1). This extends to a Hopf algebra automorphisn/pf
by [15, 6.1.6 Theorem 16]. In the cage= 1, the automorphisny of Uy (see the proof
of Proposition 6.2 for the definition gf on U1) induces an automorphism (denoted by
as well) of the quotientU. (The algebra/ is generated by the images &f, F;, and
permutes them by the same rule as above.) WE[te] for the group algebra of the two-
element group generated Ry and seﬁq = C[x1 = Uy, the right crossed product algebra
with commutation rulega x = a*, a € U,. Similarly, we set/ =C[x] x U.

Let P denote the weight lattice of 59 and P the subset of dominant integral weights.
For » € P1 denote byT; the finite dimensional irreducible type 1 representatio/pf
with highest weight.. The type 1 finite dimensional irreducible representation®/ pf
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can be determined from the corresponding list &gr by standard arguments, see [15,
8.6.1 Proposition 34]. Namely, the automorphigninduces an involutory action on the
set of isomorphism classes of irreducible finite dimensional representatidns Given

a representatiom” of U, define the representatich by TX(a) = T (aX), a € U,;. A
dominant integral weight can be represented by a sequence of non-negative integers
A= (1,..., 7)), wherer; =2(A, o;)/(a;, @), anday, ..., oy are the simple roots. Then
TAX = Thx, whereAX =(A1,..., A2, A1, M—1). If AX = A, then there are exactly two non-
equivalent extensions @, to a representation ¢ aIf on the same underlying space, denote
them byTA and T° They are distinguished b%(x)v =v and T°(X)v = —v for a high-
est weight vectov of T;. If MFE A, then theU,- representatlorn @ Thx extends to an
irreducible representatiah, of Uq, the transformatioff (x) interchanges the underlying
subspaces df, andT,x. Now

T:{Tk,ﬁo,fu |A,MEP+, A=A, ut ;é/,L}

is a complete list of isomorphism classes of type 1 finite dimensional irreducible represen-
tations oqu (note thaty is assumed to be not a root of unity,ge=1).

The Hopf algebra/ (0, (2])) was defined to bé’q This can be justified as follows. The
elementy may be identified with a suitable reflection in the full orthogonal groug@!),
such that the tangent map of the conjugatioryly O (2/) on the special orthogonal group
SQ2l), which is a Lie algebra automorphism of;goinduces the automorphism of
the universal enveloping algebts, defined above. A representati@nof O (2/) induces
naturally a representatiofi of U: on U it is the tangent representation &f whereas
T(x) = T(x). Obviously,T determine’. Writing P/, for the subset of;. consisting of
thosex for which 7;, is the tangent representation of a representation of the g8Q(@r)
(note that with the notation of Section 2, may be naturally identified witt? (SQ(2/))),
consider the seT” = {73, T, T, | A, u € P, A =1, pu* 3 u} of U,-representations. In
the casegy = 1, 7" is a set ofU representatlons (to be more premSﬁ representations
factoring throughU), and it coincides with the set of isomorphism classe§ ps T
ranges over the set of isomorphism classes of irreducible representationgiof So in
the classical casg = 1 we may think of the elements Gf' as representations of the full
orthogonal group (21).

Denote byH the subalgebra d¥, generated bXi™, ..., K;*!, and byH () the sub-
algebra ofﬁq generated by overH. Let V be a type 1 finite dimensiondﬁq-module.
(Wheng =1, the elementX; act trivially on a type 1 module, s© is actually a module
overU.) It has a weight space decompositidr= &, . p V1, and itsH-module structure
is described by the weight multiplicitigd, | A € P), d,, = dim¢ V,.. Multiplication by x
interchanges the weight spacgs and V,x, henced, = dyx. For A = A%, the subspace
V, is preserved by, andx acts as an involutory linear automorphism\gf, denote by
d;t andd;_ the multiplicity of 1 and—1 as an eigenvalue ¢f on V;, sod; +d;, =d;.
Clearly, theH (r)-module structure o is determined by the collection of non-negative
integers(d;’, d, ,dy | A, e P, =21%, u+#uX), that we shall call théormal character
chany,) V of theU,-moduleV . (We keep this notation for the formal character also when
g = 1, although in this case the weight multipliciiearry more information than just the
‘H-module structure.)
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Proposition 6.1. The structure of a typé finite dimensionaﬁq—modulev is determined
by its formal charactechapy ) V

Proof. By our assumption og, we know that the representatidhof l7q on V decom-
poses as a direct sum of irreducibles frdm One can determine this decomposition by
the following process. The formal character determines the weight multiplicities, hence we
know howV decomposes over the Drinfeld—Jimbo algebia Take a maximal weight

X € Py such thatT, occurs with multiplicity > 0 in the decomposition ovér,, .

Case 1. If A% # 1, thenT;.x also occurs with multiplicity in the decomposition ovey,,,
and T must contain7; as a summand with multiplicity:. Subtractn times the formal
character off; from the formal character df , and continue the same process.

Case 2. If A X =4, thencfr +d, =m, and TA must occur with mult|pI|C|tder inT,
whereasl;® must occur Wlth multiplicityd,” in T. Subtract the formal character of these
summands from chayry V, and continue the same process.

For notational simplicity, sef;’ = 75, wheniX # .

Proposition 6.2. The formal character of each of tfig,-modulesT; and 7} is independent
of ¢, and is the same as in the classical casé/of

Proof. Recall that the weight multiplicities fdf;, : U, — End: V(1) are independent of
and are the same as in the classical cagé ,afee [3, Corollary 10.1.15]. ifX # A, then
TA|Uq =T, @ T,x, and the action of interchanges the weight subspaceSIf;pandT,\x o]
the assertion is obvious. Fix now= AX € P, and conS|deTA (the case oT° is similar).

A weight subspac® (1), for u # pX is interchanged b)TA(X) with V(A)MX, hence the
assertion is clear for the contribution dfi¢ part in the formal character. Assume from
now on thatu = u* € P, and denote byi*(g), d~(g) the multiplicity of +1, —1 as an
eigenvalue off; (x) restricted to the weight subspa®éxr),,. What is left to show is that
d*(g) andd~(g) do not depend op.

To this end we need to recall an integral form of the Drinfeld—Jimbo algebraz Let
be an indeterminate, and consider the Laurent polynomialZ’[mﬁl]. Denote byU; =
U,Q(’)(soﬂ), the Drinfeld-Jimbo algebra over the fie{d(r). Let U™S be theZ[r*1]-
subalgebra ofU; defined in [3, 9.3A]. WriteV for the irreducibleU;-module with
highest weight,, sayv € V is a fixed highest weight vector. Consider th&S-module
V'S = U"%, and recall some of its properties from [3, Proposition 10.1.4]. The module
V' has a weight subspace decompositidfi*= P, . » V,,*, whereV#°is the intersec-
tion of V'®*SandV,,. Moreover, each/lies is a freeZ[r*1]-module. Forg € C \ {0} define

UlES, = U®z;,21) CandVieS, = V'®®y,.1, C, whereC is made into &[r*]-module
via the homomorphisrZ[t*1] — C, t > ¢. Then Ui, is the complex Drinfeld—Jimbo
algebral/, (wheng = 1, this can be taken as the definition @f), and V&, is aU,-

module with highest weight (for ¢ not a root of unity org = 1, this is the irreducible
module associated with). Moreover, a fre&[r*1]-module basis oi/lies is mapped onto

aC-basis of the weight spac&,’, ) ..
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We define the automorphispn of U, in the same way as for the complex Drinfeld—
Jimbo algebra. Thery permutes theZ[r*1]-algebra generators di"S, hencey pre-
servesU'®®. The automorphisny of U"® induces an automorphism &f{e5, in an ob-
vious manner, and the resulting automorphism clearly coincides with the automorphism
of U, called x already (whery = 1, this can be taken as the definitionof. The Q(¢)-
linear endomorphisnﬂ(x) of the U;-moduleV preserved/™S, Indeed, take an element
a-veV™ aeU'™S Then

()@ v)=(x-a)-v=(aX-x) - v=a* - (T(x)(v)) = aX -ve U™,

sinceaX € U™S So T, (x) restricts to an automorphism of the frﬁetﬂ]-modulevl[es

(recall thatuX = ). This freeZ[r*1]-module automorphism is represented by a square
matrix B with entries fromZ[s*1], such thatB2 = I, the identity matrix. Denote by
B:.1 the integer matrix obtained from® by specializing: to 1. ThenB;.1 is a ma-
trix which representg, acting on(V/°%), via the classical irreducible representation
T, of U. Clearly we have ranl, (B — I) > rankz(By1 — I) and ranky)(B + 1) >
rankz (B;s1 + 1), implying d* () < dT(1) andd~(t) < d~(1). On the other hand,
dt (1) +d~(t) = dimg V, = dime(V®3),, = d* (1) + d~ (1), so we have equality in
both of the above inequalities. Similarly, fgre C\ {0} write B;,., for the complex matrix
obtained fromB by specializing to ¢. Then B, representg, acting on(V,r,ejq)M via
the representatiofy, of U, . The obvious inequalities ranle (B — I) > rankz (Byq — )
and ranky (B + I) > ranke(Bsq + 1) imply d* (1) < d*(g) andd~(t) <d~(g). On
the other hand/™* (r) +d~(t) = dimg() V, = dime (VAE5), = d*(q)+d(q). Hence we

getdt(q) =dt(t)=dT (D) andd~(g)=d (1) =d~(1). O

Proposition 6.3. Assume thag € C \ {0} is not a root of unity oig = 1. Then the tensor
product of any pair of representatiofis, 7> € 7 decomposes as

nhen= @ mrT,
TeT

and the multiplicitiesn here are independent gf (they are the same as in the classical
caseg =1).

Proof. T1 ® T is a finite dimensionaﬁq-module of type 1, hence is the direct sum of
modules from7 . The formal characters df; and 7> are the same as in the classical
caseq = 1 by Proposition 6.2. They determine the formal charactefiab 7>, so it is
again the same as in the cage= 1. So the assertion on the multiplicities follows by
Proposition 6.1. O

Inthe special case whdh is the vector representation 5}; (theirreducible representa-
tion with highest weight1, 0, . .., 0), the above resultis proved in [13, Proposition 4.2(1)]
(see also [15, 8.6.2 Proposition 36]) by different methods.

Finally, note that in the odd dimensional case, the full orthogonal g@@ + 1) is
generated ove8Q(2/ + 1) by the central element !, which acts as a scalafl or—1 in
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any irreducible representation 6f(2/ + 1). Therefore the algebid(O (2! + 1)) is defined

as the tensor produ[x] ® Ug1/2(S0141), wherey here is just an abstract generator of
the two-element group, arld[ x| is the corresponding group algebra. Then an irreducible
Ug2 (soy+1)-representation has always two extensions ttY &0 (2/ + 1))-representation

on the same underlying space: the elememicts as a scalarl or —1. The analogue of
Proposition 6.3 holds obviously in this case.

Appendix B

Here we sketch a proof of Theorem 2.4 in the classical gasd..

WhenG = SQ2! + 1) or whenG is simple and simply connecte@(G)c°Cis a poly-
nomial algebra generated by the characters of the fundamental representations, see, for
example, [24]. FoSL(I + 1) or SO2/ + 1) the fundamental representations are the first
[ exterior powers of the defining representation, hence we have (i) and (iv).titexte-
rior power of the defining representation®f(2/) for r =1, ..., 1 is the direct sum of the
rth fundamental representation and some copies of the fundamental representations with
strictly lower index, see [10, Section 5.1.3]. Therefete. . ., o; is another generating sys-
tem of O(Sp2/))°°¢, and we get (ii). Since? (2/ + 1) = SQ2/ + 1) x Zz, andwy 11 is
trivial on SQ2/ + 1) whereas it gives the non-trivial irreducible representatioigthe
statement (iii) immediately follows from (iv).

(v) Note thatG acts on itself by conjugation, an@(G)°¢ is the corresponding al-
gebra of polynomial invariants. Identif@ (2/) with the subset of the spadd (2, C)
of (21 x 2/) matrices consisting of matrice$ with AA” = I. The groupO(2/) acts
on M(2{,C) by conjugation, and the corresponding algebra of polynomial invariants is
generated by the functions — Tr(f(A, AT)) as f ranges over the possible mono-
mials in A and A7, see [23] or [21]. UsingdA” = A~1 for A € 0(2]), we get that
the algebra®(G)°°° is generated by the functions — Tr(A4), d =1, ..., 2! (the up-
per bound ond comes from the Cayley—Hamilton identity). Note thatA) is theith
characteristic coefficient of the matrix, henceos, ..., o also generat&(G)°°C. For
r=1,...,1 we have the well known isomorphism§” CZ @ A\ CZ = A\?~"CZ of
O (2])-representations (see, for example, [Exercise 6 in Section 5.1.8]). This im-
pliesoy_, = 0,02, r =1,...,1, henceO(G)°¢ is generated by, ..., 01, 02, and the
relation3c722, =1 andojoy = o7 hold. We need to show that there are no further re-
lations among these generators. Realize @@/) as the group of invertible matrices
{A1JA=(AT)"1J}, whereJ = (93) @ --- @ (9}), and restrict the functions i®(G)
to the subset U Z, whereY consists of the diagonal matrices diag z{l, ey s zl_l)
and Z consists of the matriceézgl o) @diagzz. 25t ... 2.7 Y) with z; € C*. Now
suppose thaf (o1, ..., 01) + o2g(01, ...,01-1) = 0 holds inO(G). Clearly the restric-
tions ofo1,...,0; to Y are algebraically independent. So restricting the above relation to
Y we get thatf(s1,...,4) = —g(t1, ..., —1) as polynomials iny, ..., #;, so the above
relation is(1 — o9)g(o1, ..., 07—1) = 0. Now restricting this relation t& one sees that
g(t1, ..., 1—1) is the zero polynomial.
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(vi) The highest weights of the representations corresponding,to., 0;_1, 07,0, 07,1
generate the semigroup of the highest weights of all irreducible representati®a&y,
see, for example, [10, p. 102 and 234]. Using the usual partial ordering on the weight
semigroup, an inductive argument shows that the trace of an arbitrary irred8E#8 -
representation can be expressed as a polynomiad,of ., 0;_1, 01,0, 01,1. The elements
o1, ..., 0 are algebraically independent by the same argument as in (v). The full orthogo-
nal groupO (2/) acts onSQ(2/) by conjugation, and this induces an action@EQ2/)).
For x € 0O(21)\ SQ2!) we havey (0;.0—01,1) = —(01,0— 01.1), because the automorphism
of SQO(2/) induced byy interchanges the representatiang and w; 1. Consequently,
(01,0 — 01,1)2 is an O (2])-invariant inO(SQ(2])), hence it is a polynomial of, ..., o;
by (v). TheClot, ..., o;]-module generated by 1 anrdo — 07,1 is free (of rank two),
becauseD(SQ(2/)) is a domain, and the elements @f o — 07,1)Clo1, ..., 01] are not
invariant with respect to the action of the full orthogonal group, wheegas. ., o; are
O (2l)-invariants.

The SQ(2/)-invarianto; o — 07,1 and the relationo; o0 — 01,1)2 = h(o1,...,07) can be
seen more explicitly as follows. Think SQ(2/) as the set of determinant 1 matricés
with JA = (AT)~1J. Itis not difficult to check that up to sigmy o — 01,1 is the function
mappingA € SQ(2/) to the Pfaffian Rf/ A — AT J) of the skew symmetri¢2/ x 2/) matrix
JA — AT J. (For the definition and basic properties of the Pfaffian see the appendix of
[10]; the SO2))-invariantA — Pf(JA — AT J) appears in [1].) Indeed, both o — 07,1
and A — Pf(JA — AT J) span a 1-dimensionad (2/)-invariant subspace i®(SQ(2/))
on which O (2]) acts by the determinant representation. Both of them are contained in the
space of matrix elements of tlith tensor power of the defining representatiors@f2!),
and in thisO (21)-invariant subspace @ (SQ(2/)) the determinant representation®@{2/)
occurs with multiplicity one. S@; .0 — 07,1 andA +— Pf(JA — AT J) are non-zero scalar
multiples of each other. Restricting them to the maximal toruS©@f2/) one can check
that in fact they coincide (up to sign). Fdre SQ(2/) we have

PP(JA—ATJ)=def{JA — JA™Y) = (-1) det A + I) detA — I).
Therefore the relation
-1 -1 '
(01,0 —01,1)* = (=1 (61 + 22%’) ((—Dldl + 22(—1)'01')
i=0 i=0

holds.

Appendix C

Here we deduce the assertion of Theorem 3.3 in the classicajcadefor G = O(N)
or SpN). Recall thatA(G) is the coordinate ring (M) of the Zariski closureM of the
coneCG. The groupG acts onM (N, C) by conjugation, and\U is a G-stable subvariety
in M(N, C). We claim that4(G)®°° coincides with the algebr@(M)¢ of G-invariants.
This follows from the well-known fact that for any affine algebraic grdiipthe algebra
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O(H)C°¢ coincides with the algebra of adjoint invariad®$H ). Applying this for H =
C* G, and observing that the conjugation action@®f on M (N, C) is trivial, we obtain
that

A(G)®°= A(G) N O(C*G)* = O(M)nO(C*G)" % = OM) nO(C*G)°
=O0M)“.

Consider the natural surjectidd(M (N, C))¢ — O(M)%. Generators 0O (M (N, C))¢
are known from [21,23], these are the functions

A Tr(AlL (A% Al (4%)7),

whereA* denotes the adjoint oA € M (N, C) with respect to the invariant bilinear form
determiningG. By definition of M, if A € M, thenAA* = A*A equals the scalar matrix
D(A)I. Note that T(A*) = Tr(A). Therefore, forA € M we have

Tr(A(A*) ... A% (A*)) = D(A)F Tr(A%),

wherek =min{i1 +---+i5, j1+---+ jg},andd = i1 +--- + iy — j1 —--- — js|. Taking
into account the Cayley—Hailton theorem, we get tha® (M) is generated by the func-
tions A — D(A), A Tr(A/), j =1,..., N. By the Newton formulae the elemeris
01, ..., pN generate the same algebra.

Next we determine the relations among the above generators. Idetiify with its
image under the map: A(G) — O(G) ® Clz] from Propositim 3.1. Thusp; = oz’
andD = z2 (we suppress the sign from the notation). Since, ..., o; are algebraically
independent irO(G) (see Theorem 2.4), the elementg, .. ., 017}, 72 are algebraically
independent ind(G).

When G = SpN) (N = 2I), we haveoy =1 andoy_; =0o; fori =1,...,1 (this
follows from the well knownG-module isomorphismf\' C¥ @ AN C¥N = AV~ CV, and
the fact that theVth exterior power oC" is the trivial S N)-module). Thus

. . 1—i s
pon—i =on—iz" T =07 (ZZ) "= p D
fori =0,...,]—1. SOA(SAN))Cis generated b, p1, ..., 0.
Finally, assum&s = O(N). In O(O(N)) the reIations;f, =1 ando;oy = oy_; for
i=1,...,1hold, see Theorem 2.4. ThereforediG) we have
pN—ipN—j =0N—iz" on_jzN T = (on)%0i7 0j2 PN TITD = pip, DN I
forO<i<j<l!, and
Pi ;OijDjfi = Giz"GijzN’jzz(jfi) = UinUNZN7i+j = O—NfiZNiinZj = PN—i P

for 0<i < j <lI. Itis an elementary exercise to show that modulo these relations an
arbitrary monomial oD, p1, ..., px can be rewritten into a monomial containeddtv):
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using the relations of the first type we can get rid of those products of the generators
which contain at least two factors frofp; 11, ..., on}. In the caseV = 2/, by the relation
on—ip = pip D' (the special casg = I of the second type relations) we eliminate the
products which contaip; and a factor fromp;+1, ..., py}. By the relationsoN_.,D/ =

pjpn (the special case= 0 of the second type relations) we get rid of the products which
contain the subworgy_;D’ for j=1,...,/if N=2/+1andforj=1,....,1 — 1if

N = 2I. Take a product of the generators which is not ruled out by the above reductions,
and which is not contained iB(N). Then it must contain a subwomv,jp,»Df*" with
1<i<j<I (respectively I<i < j <[ —1) whenN = 2/ 4+ 1 (respectivelyN = 2I).
Replace this subword by, oy—;, using the second type relations. In this way we increase
the index of the unique factor of this monomial from the{get 1, .. ., py—1}. After finitely

many such steps we end up #(N) or with a monomial eliminated already. So we have
proved that the elements B(N) spanA(O (N))c°C. We know from Theorem 2.4(iii) and

(v) thatoi! - -0/, o211107* - -0} (is, js € No) are linearly independent i@ (0 (2 + 1)),
andojt---0)', o0 --0/"7 (is, js € No) are linearly independent i@ (0 (2/)). Using

again the embeddingwe easily get that the elements BfN) are linearly independent

in A(O(N)). Finally, the fact thatB(N) is a basis ofA(O (N))°¢ implies that the set

of relations used to rewrite arbitrary products of the generators as linear combinations
of elements ofB(N) is complete: namely, the ideal oélations among the generators

D, p1, ..., py is generated by the relations given in the statement of Theorem 3.3.

Appendix D

Here we give a direct proof of the fact that f6r= O (N) or Sp(N), the algebrad(G)
defined in terms of generators and relations (6) in Section 3, coincides with the coordinate
ring of the Zariski closureM of the coneCG, whereG is embedded intd/1 (N, C) in
the usual way; that is;; = {A € M(N,C) | AC"*ATC = I}, where C is the matrix of a
symmetric (respectively skew-symmetric) non-degenerate bilinear form (the matrix C
C(1) is specified in Section 3). In other words, we claim that the vanishing idged) of
Min OM(N,C)) = (C[u; li,j=1,...,N]is generated by the entries of uiuy —
u1u2K (1) (notation explained in Section 3). Write for the set of entries of this matrix,
and write(B) for the ideal generated by these homogeneous quadratic elements. One sees
directly from the definition of K1) that(B) C I (M), see, for example, the proof of [15,
9.3.1 Lemma 12]. Sinc€EM = M, the ideall (M) is homogeneous. Take an arbitrary
f € I(M). Our aim is to show thaf is contained in(B). We may assume that is
homogeneous of degreke Clearly f € 1(G), sinceG ¢ M. Now Theorems (5.2 C) and
(6.3 B) of [26] assert thaB andD — 1 generatd (G) in a nice way; that is, there are

elementsf, h € (C[u’j] (b € B), such that

f=@-Dh+)_bfy, (12)

beB
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moreover, degf,) < d — 2 and de@gh) < d — 2. We may assume thathas the minimal
possible number of non-zero homogeneous components. SuppogeAHatWrite h =
h + h, whereh is the minimum degree homogeneous componeht dhen

(D — 1)h = —h + higher degree terms

Since de@h) < d = deq f), it follows from (12) Ehat—fz is killed by the appropri-
ate homogeneous component ®f,_ bfy, henceh = Y, g bh, for someh,, with
deghyp) < d — 4. Thus we have

f=@=Dh+Y b(fs+hy(D—1). (13)

beB

Note that in (13) we have dég, + hp (D — 1)) < d — 2, andh has fewer non-zero ho-
mogeneous components thann (12). This contradiction implies thdt= 0 in (12), so
f =2 pepbfpis contained inB).
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