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1. Introduction

A good deal of classical invariant theory concerns the so-called classical groups
action on vectors and covectors, and their adjoint representation. It is therefore tempting
look for counterparts of this topic in the context of quantum groups, as is shown by va
approaches in the literature. Our starting point here is [5], where two quantum ve
of the invariant theory of the conjugation action of the general linear group have
studied. Both the (right)adjoint coactionβ :f �→ ∑

f2 ⊗ S(f1)f3 (given in Sweedler’s
notation) and the (right) coactionα :f �→ ∑

f2 ⊗ f3S(f1) of O(GLq(N)), the coordinate
ring of the quantum general linear group, on the coordinate ring ofN × N quantum matri-
ces, can be considered as quantum deformations of the classical conjugation action
explicit generators of the subalgebra of coinvariants were determined both forα andβ

(under the assumption thatq is not a root of unity). Both algebras areN -variable commu-
tative polynomial algebras. Note also that an element is anα-coinvariant if and only if it is
cocommutative.

Some fragments of this picture had appeared in prior work already, in greater ge
erality. Motivated by the theory of integrable Hamiltonian systems, pairwise comm
q-analogues of the functions tr(Ln) (n = 1,2, . . .) were constructed in [18] for algebra
A(R) generated byN2 elementsui

j , subject to the relationsRu1u2 = u2u1R (see Section 3
for explanation of this notation), whereR is anN2×N2 matrix satisfying the Yang–Baxte
equation. One can check that the elements constructed by Maillet are cocommutativ
bialgebraA(R) (though this is not touched in [18]).

Another set of elements ofA(R) was constructed in [2], see also [19, Corolla
10.3.9]. They arise as quantum traces of powers ofu with respect to the so-called co
variantized (or transmuted) product inA(R). These elements are adjoint coinvariants,
pairwise commute, so they are also appropriate quantum analogues of the classic
tions tr(Ln).

The adjoint coaction is not multiplicative (neither is the versionα). Majid developed a
theory for coquasitriangular matrix bialgebrasA(R) which remedies this defect. Name
a new covariantized product can be introduced onA(R) in a canonical way. The ad
joint coinvariants become central in this newbraided matrix algebra, known also as a
reflection equation algebra. This process (calledtransmutationin [19]) provides a bridge
between the results of [5], and certain results on the reflection equation algebra. T
a number of papers dealing with the adjoint action (or coaction) on reflection equ
algebras. For example, [11] and [7] (see alsothe references therein) make use of adjo
invariants (central elements) of the reflection equation algebra to study quantizati
coadjoint orbits ofSL(N). (Staying in the framework of quantum matrices, related res
were obtained in [4].) See also [17] and [16] for discussion of other versions of th
flection equation algebra. There are various versions of the Cayley–Hamilton theor
quantum matrix algebras or the reflection equation algebra, see [12,14,27]. These
relations among the above mentioned adjoint coinvariants (respectively cocommuta
ements).

Now let us briefly describe the subject of the present paper, where the point o
of invariant theory is adopted, and we look for generators and relations for subalgeb
coinvariants. Our focus is on the matrix bialgebrasA(Gq), associated with the classic
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groupG and the parameterq ∈ C× by Faddeev, Reshetikhin, and Takhtadzhyan in [2
These algebras (calledFRT-bialgebras) are defined in terms of generators and relatio
They have a natural bialgebra structure, where the comultiplication reflects the ru
matrix multiplication. Following [22], by the coordinate ringO(Gq) of the quantum group
Gq we mean the quotient ofA(Gq) by an explicitly given ideal. The algebraA(Gq) is
endowed with the adjoint coaction ofO(Gq). Our main result, Theorem 3.3 presents
plicit generators and relations for the subalgebraA(Gq)coc of cocommutative elements i
A(Gq) under the assumption thatq is transcendental (the method of proof probably wo
whenq is not a root of unity). We indicate also how the same thing can be done fo
subalgebraA(Gq)β of adjoint coinvariants inA(Gq). This recovers the results of [5] a
the special case ofGLq(N), SLq(N). For the other classical groups these results see
be new. The description ofA(Gq)coc andA(Gq)β is obtained from the description of th
corresponding subalgebras inO(Gq) (see Theorem 2.4), where the assertion is essen
a consequence of the Peter–Weyl decomposition, due to Hayashi [13]. Let us note h
that from our point of view, the algebraA(Gq) is closer to the flavour of classical inva
ant theory (dealing with commutative polynomial algebras), thanO(Gq): it is a graded
(Noetherian) algebra, having the same Hilbert series as its classical counterpart. Th
generation property of the subalgebra of coinvariants follows from a general Hilbert typ
argument, see [6].

After a first draft of this paper was written, we learnt from Stephen Donkin that i
pendently from us, strongly related results were obtained by him on the conjugation
of quantum groups on their coordinate algebra in [9], with no restriction on the defo
tion parameterq and on the base field (in particular, the case whenq is a root of unity is
covered as well). Moreover, his work involves the study of the structure of the coordin
ring of the quantum group as a module over the subalgebra of coinvariants.

2. Cocommutative elements in O(Gq)

We work over the base fieldC of complex numbers. LetO(Gq) be any of the coordinat
algebras of the quantum groupsGLq (N), SLq(N), Oq(N), SOq(N), Spq(N), defined in
[15, Sections 9.2, 9.3], following [22]. Assume that the complex parameterq is not a root
of unity whenGq is GLq(N) or SLq(N), and assume thatq is transcendental in all othe
cases. We allow also the caseq = 1, when we get the commutative coordinate alge
O(G) of the classical groupG corresponding toGq . The assumption onq guarantees
thatO(Gq) is cosemisimple, and its corepresentation theory is completely analogous
classical counterpart. The results presented in this paper depend crucially on the w
Hayashi [13], concerning the Peter–Weyl decomposition ofO(Gq).

Recall that an elementf ∈ O(Gq) is cocommutativeif τ ◦ ∆(f ) = ∆(f ), where
∆ :O(Gq) →O(Gq)⊗O(Gq) is the comultiplication, andτ is the flipτ (f ⊗g) = g ⊗f .
The cocommutative elements form a subalgebraO(Gq)coc. We would like to point out tha
as an immediate corollary of the representation theory ofGq , generators and the stru
ture ofO(Gq)coc can be described explicitly. This is based on the following well-kno
statement, which is a reformulation of Schur’s lemma.
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Lemma 2.1. The cocommutative elements in a simple coalgebra form a one-dimen
subspace.

Proof. Since our base field isC, any simple coalgebraC is isomorphic to the dual of th
matrix algebraM(N,C) for someN . The trace function onM(N,C) fixes a vector spac
isomorphisma �→ Tr(a · _) betweenM(N,C) andC. Under this isomorphism the cent
of M(N,C) is mapped onto the space of cocommutative elements inC. �

Given a finite dimensional corepresentationϕ :V → V ⊗ O(Gq), write tr(ϕ) for the
sum of the diagonal matrix coefficients ofϕ (see, for example, [15, 1.3.2] for the n
tion of matrix coefficients of a corepresentation). Ifϕ is irreducible, then tr(ϕ) spans the
space of cocommutative elementsin the coefficient coalgebra ofϕ by Lemma 2.1. Clearly
tr(ϕ ⊕ ψ) = tr(ϕ) + tr(ψ) and tr(ϕ ⊗ ψ) = tr(ϕ) · tr(ψ).

The isomorphism classes of irreducible corepresentations ofO(Gq) are parameterize
by a setP(Gq) = P(G). This set is independent ofq , so it is the same as in the classic
caseq = 1, when it is clearly in a natural bijection with the set of isomorphism cla
of irreducible rational representations of the affine algebraic groupG. It is a convenien
tradition to representP(G) as a set of certain sequences of integers, see [13, form
(4.17), (6.2), and Theorem 6.4], or [15, Section 11.2.3] for details. WhenG = Sp(N),
SL(N), or GL(N), then it is natural to identifyP(G) with the semigroup of dominan
integral weights for the corresponding reductive Lie algebrag, whereas whenG = SO(N),
thenP(G) consists of those dominant integral weights for soN , which appear as a highe
weight in some tensor power of the vector representation of soN . WhenG = O(N), then
following [26], P(G) is usually identified with the set of partitions, such that the sum
the length of the first two columns of their Young diagram is at mostN .

For n ∈ P(Gq), write ϕn for the corresponding irreducible corepresentation ofO(Gq).

Proposition 2.2. The set{tr(ϕn) | n ∈ P(Gq)} is a C-vector space basis ofO(Gq)coc. The
structure constants of the algebraO(Gq)coc with respect to this basis are independent oq :
they are the same as in the classical caseq = 1.

Proof. Start with the Peter–Weyl decomposition ofO(Gq) due to [13] (respectively
[20] for GLq(N)); see also [15, 11.2.3, Theorem 22 and 11.5.4, Theorem 51]. We
O(Gq) = ⊕

n∈P(Gq) C(ϕn), whereC(ϕn) is the coefficient coalgebra ofϕn. It follows that
O(Gq)coc = ⊕

n∈P(Gq) C(ϕn)coc. By Lemma 2.1,C(ϕn)coc = C tr(ϕn), showing the first

assertion. For the second assertion, decompose the tensor productϕn ⊗ϕm ∼= ⊕
p m

n,m
p ϕp.

The multiplicities m
n,m
p here are the same as in the classical caseq = 1, since this

holds for the decompositions of tensor products of the corresponding represen
of quantized universal enveloping algebras (see, for example, [15, 7.2] or [3, Pr
tion 10.1.16]; for the case ofOq(N), see Appendix A, Proposition 6.3, and the rem
afterwards). On the other hand, they are the structure constants ofO(Gq)coc: we have
tr(ϕn) · tr(ϕm) = ∑

p m
n,m
p tr(ϕp). �
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The following immediate corollary is a ring theoretic formulation of the well-kno
fact that the representation theory ofGq is essentially the same as the representation th
of G.

Proposition 2.3. The algebraO(Gq)coc is isomorphic to its classical counterpartO(G)coc,
via an isomorphism mappingtr(ϕn) ∈O(Gq) to tr(ϕn) ∈ O(G) for all n ∈ P(G).

There is a natural right coaction ofO(Gq) on thequantum exterior algebra
∧

(Gq),
[15, see Sections 9.2 and 9.3]. The quantumexterior algebra is graded. Its degreed homo-
geneous component is a subcomodule of dimension

(
N
d

)
, write ωd for the corepresentatio

of O(Gq) on this space, ford = 1, . . . ,N , and setσd = tr(ωd). In the classical caseq = 1
the representation corresponding toωd is thed th exterior power of the defining represen
tion of G. Whenq is transcendental, the multiplicities of the irreducible summands oωd

are the same as in the classical caseq = 1, since
∧

(Gq) has the same kind of weight spa
decomposition as in the classical case. In particular, forSOq(2l) we haveωl = ωl,0 ⊕ ωl,1
is the direct sum of two non-isomorphic irreducibles; in this case setσl,0 = tr(ωl,0) and
σl,1 = tr(ωl,1), soσl,0 + σl,1 = σl . Generators and relations for the commutative alge
O(Gq)coc are the following.

Theorem 2.4.

(i) (cf. [6]) O(SLq(l +1))coc is anl-variable commutative polynomial algebra genera
byσ1, . . . , σl .

(ii) O(Spq(2l))coc is an l-variable commutative polynomial algebra generated
σ1, . . . , σl .

(iii) O(Oq(2l + 1))coc is generated byσ1, . . . , σl , σ2l+1, subject to the relationσ 2
2l+1 = 1.

So it is a rank two free module generated by1 andσ2l+1 over thel-variable commu-
tative polynomial algebraC[σ1, . . . , σl].

(iv) O(SOq (2l + 1))coc is the l-variable commutative polynomial algebra generated
σ1, . . . , σl .

(v) O(Oq(2l))coc is generated byσ1, . . . , σl, σ2l , subject to the relationsσ 2
2l = 1,

σlσ2l = σl . So it is the vector space direct sumC[σ1, . . . , σl] ⊕ σ2lC[σ1, . . . , σl−1]
of the l-variable commutative polynomial algebraC[σ1, . . . , σl], and the rank one
free module generated byσ2l over the(l − 1)-variable commutative polynomial a
gebraC[σ1, . . . , σl−1].

(vi) O(SOq (2l))coc is generated byσ1, . . . , σl−1, σl,0, σl,1, subject to the relation

(σl,0 − σl,1)
2 =

(
σl + 2

l−1∑
i=0

σi

)(
σl + 2

l−1∑
i=0

(−1)l−iσi

)
,

whereσl = σl,0 + σl,1. SoO(SOq(2l))coc is a rank two free module generated by1
andσl,0 − σl,1 over thel-variable polynomial algebraC[σ1, . . . , σl].

(vii) (cf. [5]) O(GLq(N))coc is the commutative Laurent polynomial ring generated
σ1, . . . , σN ,σ−1

N (note thatσN is the quantum determinant).
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Proof. By Proposition 2.3 the result follows from its special caseq = 1. In the classica
case the structure ofO(G)coc is well-known: it can be derived from the representation t
ory of G. For sake of completeness we give some references and hints in Appendix�

The quantum exterior algebra
∧

(Gq) has a basis consisting of formally the same se
monomials as in the classical case, and a general monomial can be easily rewritten i
of this basis, using the defining relations; see [15, 9.2.1 Proposition 6, 9.3.2 Proposition
9.3.4 Proposition 17]. So in principle one can express theσi for each concrete case
Theorem 2.4 as a polynomial in the generators ofO(Gq); an example will be given in
Section 3. (The cases (i) and (vii) were handled by different methods in [5,6]; thenσi

are sums of principal minors of the generic quantum matrix.) However, we do not
how to get such an expression forσl,0 (or σl,1) in (vi).

3. Cocommutative elements in the FRT-bialgebra

Throughout this sectionGq is one of SLq(N), Oq(N), Spq(N), and we retain the
assumptions onq made in Section 2, so that the results of [13] on the Peter–Wey
composition can be applied.

By definition,O(Gq) is the quotient of the so-calledFRT-bialgebraA(Gq) modulo the
ideal generated byDq −1, whereDq is a central group-like element, having degreeN in the
case ofSLq(N), and having degree 2 in the cases ofOq(N), Spq (N). The algebraA(Gq)

was defined in [22] as the associativeC-algebra withN2 generatorsui
j (i, j = 1, . . . ,N),

subject to the relations

Ru1u2 = u2u1R. (1)

HereR is anN2 × N2 matrix, the R-matrix of the vector representation of the Drinfe
Jimbo algebraUq(g), whereg is the simple Lie algebra corresponding toGq , andu1 =
u ⊗ I , u2 = I ⊗ u are Kronecker products of theN ×N matricesu = (ui

j ) and the identity
matrix in the two possible orders. The relations (1) are homogeneous of degree 2
generatorsui

j , thereforeA(Gq) is a graded algebra, with the generatorsui
j having degree 1

Moreover,A(Gq) is a bialgebra with comultiplication∆(ui
j ) = ∑

k ui
k ⊗ uk

j and counit
ε(ui

j ) = δi,j . Let V be anN -dimensionalC-vector space with basise1, . . . , eN . Write

ω : V → V ⊗ A(Gq) for theA(Gq)-corepresentation given byω(ei) = ∑
j ej ⊗ u

j

i , and

call ω thefundamental corepresentationof A(Gq). Note that the generatorsui
j are nothing

but the matrix coefficients ofω (with respect to the basise1, . . . , eN ). It is clear then tha
the degreer homogeneous component ofA(Gq) is the coefficient space of therth tensor
powerω⊗r of the fundamental corepresentation.

Write π : A(Gq) → O(Gq) for the natural surjection. A corepresentationϕ of A(Gq)

induces the corepresentationϕO(Gq) = (id ⊗ π) ◦ ϕ of O(Gq). For r ∈ N0 denote by
Pr(Gq) the subset ofP(Gq) consisting of then such that(ω⊗r )O(Gq), therth tensor power
of the fundamental corepresentation considered as a corepresentation ofO(Gq), contains
a subcorepresentation isomorphic toϕn; the explicit form ofPr (Gq) can be found in [13
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(4.17)]. Up to isomorphism, there is a uniqueA(Gq)-subcorepresentationϕn,r in ω⊗r with
(ϕn,r )O(Gq)

∼= ϕn. The coefficient spaceC(ϕn,r ) is a simple subcoalgebra of the degrer
homogeneous component ofA(Gq), and by [15, 11.2.3 Theorems 21 and 22] we have
decomposition

A(Gq) =
∞⊕

r=0

⊕
n∈Pr(Gq)

C(ϕn,r ). (2)

The polynomial ringC[z] is a sub-bialgebra of the coordinate ringC[z, z−1] of the
multiplicative group ofC. The mapui

j �→ δi,j z extends to a bialgebra homomorphis
κ :A(Gq) → C[z]. This follows from the defining relations (1): specializingu to any scalar
matrix,u1u2 andu2u1 specialize to the same scalar matrix, hence (1) is fulfilled. There
there exists an algebra homomorphismκ with the prescribed images of the generators.
easy to check on the generators that this is a coalgebra homomorphism as well, mo
thatκ has the followingcentralityproperty:

(id ⊗ κ) ◦ ∆A(Gq) = τ ◦ (κ ⊗ id) ◦ ∆A(Gq), (3)

whereτ is the flip mapτ (a ⊗ b) = b ⊗ a.

Proposition 3.1. The mapι = (π ⊗ κ) ◦ ∆A(Gq) is a bialgebra injection ofA(Gq) into
the tensor product bialgebraO(Gq) ⊗ C[z]. The subcoalgebraC(ϕn,r ) is mapped onto
C(ϕn) ⊗ zr for all r ∈ N0 andn ∈ Pr(Gq).

Proof. The mapι is defined as a composition of algebra homomorphisms, hence it
algebra homomorphism. Property (3) can be used to verify that it is a coalgebra
morphism as well. The only thing left to show is thatι is injective. The algebraA(Gq) is
graded, the generatorsui

j have degree 1. Similarly, the usual grading on the polyno
ring C[z] induces a grading onO(Gq) ⊗ C[z], and the mapι is obviously homogeneou
Therefore, the kernel ofι is spanned by homogeneous elements. Take a homogeneo
mentf from ker(ι), say of degreer. Thenι(f ) = π(f ) ⊗ zr , henceπ(f ) = 0. It follows
that f is a multiple ofDq − 1. The elementDq is not a zero-divisor inA(Gq) by [13,
Theorem 5.7(1)]; see also 11.2.3 Lemma 25, and the beginning of the proof of Theor
on p. 414 in [15]. (Note thatA(Gq) is not always a domain, as we shall see later.) Cle
1 is not a zero-divisor. Therefore no non-zero multiple ofDq − 1 is homogeneous. Thu
we havef = 0. �

Write A(G) for the classical counterpart of the FRT-bialgebra. ForSLq(N), this is just
theN2-variable commutative polynomial algebra, that we obtain when we specializeq to
1 in the defining relations (1). It is crucial to note however that in the cases ofOq(N)

andSpq(N), the algebraA(G) is different from theN2-variable commutative polynomia
algebra (although specializingq to 1 in relations (1), we end up with theN2-variable
commutative polynomial algebra in these cases as well); see also [8] for this point.
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the right definition ofA(G) for G = O(N) or G = Sp(N), recall that the symmetric matri
R̂(q) = τ ◦ R has a spectral decomposition

R̂(q) = qP+(q) − q−1P−(q) + εqε−NP0(q),

whereε = 1 for Oq(N) andε = −1 for Spq(N); see [15, Section 9.3]. Forq transcen-
dental, the eigenvaluesq , −q−1, εqε−N are pairwise different, therefore (1) is a sh
expression of the equivalent set of relations

P+(q)u1u2 = u1u2P+(q), P−(q)u1u2 = u1u2P−(q),

P0(q)u1u2 = u1u2P0(q). (4)

When we specializeq to 1, the eigenvaluesεqε−N andq (respectively−q−1) become
equal in the orthogonal case (respectively in the symplectic case), and that is w
relations obtained from (1) are not strong enough. Instead, we can write down a th
of relations equivalent to (1) or (4):

R̂(q)u1u2 = u1u2R̂(q) and K(q)u1u2 = u1u2K(q), (5)

where K(q) = (1 + ε(q − q−1)−1(qN−ε − qε−N))P0(q). It is clear that (5) is equivalen
to (1), though (5) is trivially redundant forq 
= 1. The advantage of (5) compared to (4)
that K(q) has a rather simple form. Write C(q) for the matrix of the metric defined in [15
p. 317]. Its non-zero entries all lie on the anti-diagonal, and up to sign, they areq-powers.
Note that C(1) is the matrix of the symmetric (respectively skew-symmetric) bilinear f
that appears in the usual definition of the orthogonal (respectively symplectic) group. Now
the entries of theN2 × N2 matrix K(q) are given by K(q)

ji
mn = εC(q)

j
i C(q)mn , see [15,

p. 318]. So the non-zero entries of K(q) are allq-powers up to sign. In particular,K(1)

makes sense. After these preparations it is natural to defineA(G) as the algebra with
generatorsui

j , i, j = 1, . . . ,N , subject to the relations

R̂(1)u1u2 = u1u2R̂(1) and K(1)u1u2 = u1u2K(1). (6)

It is a bialgebra with comultiplication and counit given by the same formulae as forA(Gq).
Specializingq to 1 inDq we get a group-like elementD of A(G). As we shall point ou
below, the quotient ofA(G) modulo the ideal generated byD − 1 can be identified with
O(G), such that the images of the generatorsui

j become the coordinate functions onG,
with its usual embedding into the spaceM(N,C) of N × N matrices.

A close inspection of the proofs of the statements cited in this section from [15] a
the coalgebra structure ofA(Gq) shows that they remain valid forA(G). Indeed, the key
point in the proof of (2) is [15, 11.2.3 Proposition 20], which is a consequence o
quantum Brauer–Schur–Weyl duality, that is, that the commutant algebra ofŨq(g) acting
on a tensor power of the vector representation is generated by the ‘shifts’ of̂R(q), see
[15, 8.6.3 Theorem 38] for a precise statement. Now in the classical Brauer–Schur
duality, the corresponding commutant algebra is generated by the shifts of̂R(1) = τ and
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K(1), therefore the proof of [15, 11.2.3 Proposition 20] works for the algebraA(G) defined
in terms ofR̂(1) and K(1). This yields a version of [15, 11.2.3 Theorem 21] forA(G), and
in turn the decomposition (2) forA(G):

A(G) =
∞⊕

r=0

⊕
n∈Pr(G)

C(ϕn,r ),

wherePr(G) = Pr(Gq), since the multiplicities of the irreducible summands of therth
tensor power of the fundamental corepresentation ofO(Gq) are the same as forO(G) (cf.
[15, 8.6.2 Corollary 37(i)]). Similarly, Proposition 3.1 holds in the caseq = 1 as well.

So we have definedA(G) as an algebra given in terms of generators and relat
The path we have followed expresses explicitly thatA(G) is obtained as the special ca
q = 1 of A(Gq). Moreover, we will need to compare the coalgebra structures ofA(G)

andA(Gq), and this definition makes possible a uniform approach: one can get the
mentioned statements aboutA(G) and the corresponding statements onA(Gq) with q

transcendental simultaneously. However,A(G) has a description in simple geometric ter
as well. Namely,A(G) is the coordinate ring of the Zariski closure of the coneCG of G,
where by this cone we mean the image of the mapµ :G × C → M(N,C), (g, t) �→ tg.
Indeed, the first set of the relations (6) says that theui

j pairwise commute (note tha
R̂(1) = τ ). By the proof of [15, 9.3.1 Lemma 12], the second set of the above rela
says that

uC(1)−1uT C(1) = C(1)−1uT C(1)u = a scalar multiple of the identity,

where the scalar above is the quadratic group-like elementD. Theorems (5.2C) and (6.3B
of [26] describe the generators of the vanishing ideal in the coordinate ring ofM(N,C)

of the full orthogonal group and the symplectic group. This result can be paraphras
saying that the quotient ofA(G) modulo the ideal generated byD − 1 is indeedO(G),
as we claimed before. Furthermore, we obtained that the locus of solutions of the
tions (6) inM(N,C) is theN ×N matrix semigroupM consisting of the matricesA such
thatAC(1)−1AT C(1) and C(1)−1AT C(1)A are equal scalar matrices (we allow the sca
zero). Clearly the subset of invertible elements inM is C×G. ThereforeM ⊇ CG, there
exist natural surjectionsπ1 :A(G) → O(CG) andπ2 :O(CG) → O(G), and their com-
position is the natural surjectionπ = π2 ◦ π1 :A(G) → O(G). So, as we noted alread
Proposition 3.1 makes sense and is valid forA(G). It is easy to see that in this case t
mapι is the compositionµ∗ ◦ π1 of the comorphism ofµ andπ1. Consequently, the injec
tivity of ι implies thatπ1 is an isomorphism, henceM = CG, andA(G) is the coordinate
ring of M. (Alternatively, instead of using Proposition 3.1, it is possible to derive directl
from the results of [26] cited above that the vanishing ideal of the Zariski closure ofCG in
M(N,C) is generated by the polynomials coming from the second set of relations i
For sake of completeness we present this elementary argument in Appendix D.) Note th
being the coordinate ring of a linear algebraic semigroup,A(G) is naturally a bialgebra
the comultiplication and counit structures coming from this geometric interpretation of
A(G) agree with the one specified before.
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Proposition 3.2. The subalgebraA(Gq)coc of cocommutative elements in the FR
bialgebra is isomorphic to its classical counterpart via an isomorphism mappingtr(ϕn,r ) ∈
A(Gq) to tr(ϕn,r ) ∈ A(G) for all r ∈ N0, n ∈ Pr(G) = Pr(Gq).

Proof. By Lemma 2.1 and (2) we know thatA(Gq)coc has tr(ϕn,r ), r ∈ N0, n ∈ Pr(G)

as a vector space basis. IdentifyA(Gq) with its image underι from Proposition 3.1
Then A(Gq)coc is identified with the subspace ofO(Gq)coc ⊗ C[z] spanned by the
tr(ϕn)⊗zr with n ∈ Pr(Gq) = Pr(G). The assertion now immediately follows from Prop
sition 2.3. �

The corepresentationωd of O(Gq) from Section 2 is defined as(Ωd)O(Gq), where
Ωd is a natural right coaction ofA(Gq) on the degreed homogeneous component
the quantum exterior algebra

∧
(Gq), for d = 1, . . . ,N . Setρd = tr(Ωd). Thenρd is a

cocommutative element inA(Gq), andπ(ρd) = σd . Another cocommutative element
Dq . Under the bialgebra injectionι, the elementDq is mapped to 1⊗ z2 (to 1⊗ zN in
the case ofSLq(N)), andρd is mapped toσd ⊗ zd . The elementsρd can be expressed a
polynomials of the generatorsui

j in each concrete case, using the well-known basis an
defining relations of

∧
(Gq). The expression forDq can be found in [15, 9.3.1 Lemma 12

Example. The quantum exterior algebra
∧

(Oq(3)) (we need to use the version on [1
p. 322], and not the one given in [22]) has three generatorsy1, y2, y3, subject to the relation

y2
1 = y2

3 = 0, y2
2 = (

q1/2 − q−1/2)y1y3,

y1y2 = −q−1y2y1, y2y3 = −q−1y3y2, y1y3 = −y3y1.

For 1� i < j � 3 we haveΩ2(yiyj ) = ∑3
s,t=1ysyt ⊗us

i u
t
j . The degree two homogeneo

component of
∧

(Oq(3)) has the basisy1y2, y2y3, y1y3, and using the above relations it
easy to rewrite any monomialysyt as a linear combination of the basis elements. Thus
can easily get that

ρ2 = tr(Ω2) = u1
1u

2
2 − qu2

1u
1
2 + u2

2u
3
3 − qu3

2u
2
3 + u1

1u
3
3 − u3

1u
1
3 + (

q1/2 − q−1/2)u2
1u

2
3.

An expression for the elementDq is

Dq = u1
1u

3
3 + q1/2u2

1u
2
3 + qu3

1u
1
3.

The explicit generators and relations forA(Gq)coc are the following:

Theorem 3.3.

(i) (cf. [5]) The algebraA(SLq(N))coc is the N -variable commutative polynomia
algebra generated byρ1, ρ2, . . . , ρN = Dq . In particular, its Hilbert series is∏N

i=1(1− t i )−1.
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(ii) For Spq(N), N = 2l, l ∈ N, the cocommutative elementsA(Spq(N))coc form an
(l + 1)-variable commutative polynomial algebra generated byDq, ρ1, ρ2, . . . , ρl .
In particular, the Hilbert series ofA(Spq(N))coc is (1− t2)−1 ∏l

i=1(1− t i )−1.
(iii) For Oq(N), N = 2l or 2l + 1, l ∈ N, N � 3, we have thatA(Oq(N))coc is the com-

mutative algebra generated byDq, ρ1, ρ2, . . . , ρN , subject to the relations

ρN−iρN−j = ρiρjDN−i−j
q (0 � i � j � l),

ρiρN−jDj−i
q = ρjρN−i (0 � i < j � l),

where we setρ0 = 1 for notational convenience. AC-vector space basis o
A(Oq(N))coc is B(N), where

B(2l) = {
ρ

i1
1 · · ·ρil

l D
j
q, ρNρ

j1
1 · · ·ρjl−1

l−1 D
k
q, ρN−aDb

qρ
k1
1 · · ·ρka−b−1

a−b−1ρ
ka
a · · ·ρkl−1

l−1∣∣ j, k, is, js, ks ∈ N0, 0� b < a � l − 1
}

and

B(2l + 1) = {
ρ

i1
1 · · ·ρil

l D
j
q, ρNρ

j1
1 · · ·ρjl

l D
k
q, ρN−aDb

qρ
k1
1 · · ·ρka−b−1

a−b−1ρ
ka
a · · ·ρkl

l∣∣ j, k, is, js, ks ∈ N0, 0� b < a � l
}
.

In particular, the Hilbert series ofA(Oq(N))coc is

1+ tN (1− t l) + (1− t2)(1− t l)
∑

0�b<a�l−1 tN−a+2b
∏a−1

k=a−b(1− tk)

(1− t2)
∏l

i=1(1− t i )
,

whenN = 2l, and

1+ tN + (1− t2)
∑

0�b<a�l t
N−a+2b

∏a−1
k=a−b(1− tk)

(1− t2)
∏l

i=1(1− t i )
,

whenN = 2l + 1.

Proof. By Proposition 3.2, it is sufficient to prove the result in the classical case.
erators ofA(G)coc can be obtained from an old result of [23]. The relations among
generators can be determined using the classical case of Proposition 3.1 and Theo
A sketch of the details is given in Appendix C.�

The relationρ2
N = DN

q in A(Oq(N)) (the special casei = j = 0 of the first type re-
lations in Theorem 3.3(iii)) has already been obtained in [13] and [25]. It shows
A(Oq(2l)) is not a domain.
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4. Dually paired Hopf algebras and quantum traces

In this preparatory section we collect some standard generalities on Hopf algebr
form that we shall need later.

Let 〈· , ·〉 :U × O → C be a dual pairing of Hopf algebrasU andO; see, for example
[15, 1.2.5] for the notion of a dual pairing. Assume that〈u,f 〉 = 0 for all u impliesf = 0.
Then the mapf �→ 〈· , f 〉 is an injection ofO into the dual spaceU∗ of U . This injection
identifiesO with a Hopf subalgebra of the finite dualU◦ of U ; in the sequel we shall freel
make this identification.

Let ϕ :V → V ⊗O, v �→ ∑
v0 ⊗v1 be a corepresentation ofO onV . (We say then tha

V is a rightO-comodule.) Denote byL(V ) the algebra of linear transformations onV .
Then ϕ̂ :U → L(V ) defined by the formulâϕ(u)v := ∑〈u,v1〉v0, u ∈ U , v ∈ V , is an
algebra homomorphism. Thus the corepresentationϕ on V induces a representation̂ϕ of
U on V . In other words, a rightO-comoduleV automatically becomes a leftU -module,
and the following basic properties hold.

Proposition 4.1. Let ϕ :V → V ⊗ O be a corepresentation ofO, and letϕ̂ be the corre-
sponding representation ofU .

(i) A subspaceW of V is anO-subcomodule if and only ifW is anU -submodule.
(ii) An elementv ∈ V is anO-coinvariant if and only ifv is aU -invariant.
(iii) The coefficient spaceC(ϕ) of ϕ coincides with the space of matrix elementsM(ϕ̂) of

ϕ̂, provided thatV is finite dimensional.

Recall thatC(ϕ) is the smallest subspaceC in O such thatϕ(V ) ⊆ V ⊗ C; it is a
subcoalgebra ofO. For a finite dimensional representationT of U the space of matrix
elements is

M(T ) := SpanC
{
cξ
v

∣∣ ξ ∈ V ∗, v ∈ V
} ⊂ U∗,

whereV ∗ is the dual space ofV , and forξ ∈ V ∗, v ∈ V the linear functioncξ
v onU maps

x ∈ U to ξ(T (x)v).
In the sequel we writeS for the antipode, and∆ for the comultiplication in the Hop

algebras considered. Theright adjoint coactionβ : O → O ⊗ O is given in Sweedler’s
notation by

β(f ) =
∑

f2 ⊗ S(f1)f3,

and theright adjoint actionad ofU on itself is given by

ad(a)b =
∑

S(a1)ba2, a, b ∈ U,
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see, for example, [15, 1.3.4] for these definitions. The connection between ad andβ can be
explained in terms of the left action ad◦ of U on its dual spaceU∗, defined by the formula(

ad◦(a)ξ
)
(b) := ξ

(
ad(a)b

)
, a, b ∈ U, ξ ∈ U∗.

Proposition 4.2. The representation̂β coincides with the subrepresentation ofad◦ on the
U -invariant subspaceO of U∗.

Proof. Fora, b ∈ U andf ∈O we have

〈
b, β̂(a)f

〉 = 〈
b,

∑〈
a,S(f1)f3

〉
f2

〉
=

∑〈
a,S(f1)f3

〉〈b,f2〉

=
∑〈

a1, S(f1)
〉〈a2, f3〉〈b,f2〉 =

∑〈
S(a1), f1

〉〈b,f2〉〈a2, f3〉
=

∑〈
S(a1)b, f1

〉〈a2, f2〉 =
∑〈

S(a1)ba2, f
〉 = 〈

ad(a)b,f
〉
.

This impliesβ̂(a)f = ad◦(a)f . �
Suppose that there exists an invertible elementK in U such that

S2(a) =KaK−1 for all a ∈ U . (7)

Then for an arbitrary finite dimensional representationT :U → L(V ) we define thequan-
tum traceof T by

trq T (a) := Tr
(
T

(
K−1a

))
, a ∈ U, (8)

where Tr is the ordinary trace function. So trq T is an element ofM(T ), which is deter-
mined by the isomorphism class ofT . Obviously this quantum trace depends on the ch
of K. It follows from (7) and usual properties of Tr that ad◦(a) trq T = ε(a) trq T , or, in
other words, that trq T is invariant with respect to the action ad◦.

Proposition 4.3. If T :U → L(V ) is a finite dimensional irreducible representation ofU ,
such thatT ⊗ T ∗ and T ∗ ⊗ T are isomorphic representations ofU , then up to scalar
multiple,trq T is the onlyad◦-invariant element inM(T ).

Proof. We use a sequence of natural isomorphisms ofU -modules

L(V ) ∼= V ⊗ V ∗ ∼= V ∗ ⊗ V ∼= M(T ). (9)

The first isomorphism associates withv⊗ξ ∈ V ⊗V ∗ the linear transformationx �→ ξ(x)v.
This is an isomorphism of theU -representationsT ⊗ T ∗ and adT , where

adT (a)φ :=
∑

T (a1)φT
(
S(a2)

)
.
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By assumption, there exists a linear isomorphismRT T ∗ :V ⊗ V ∗ → V ∗ ⊗ V intertwin-
ing betweenT ⊗ T ∗ andT ∗ ⊗ T ; this is the second isomorphism in (9). The third m
c :V ∗ ⊗ V → M(T ) is the linear map sendingξ ⊗ v to c

ξ
v . It is surjective by the def

inition of M(T ). This map intertwines between the representationsT ∗ ⊗ T and ad◦, as
one can easily check. (In particular, this shows thatM(T ) is an ad◦-invariant subspac
of U∗.) Since our base fieldC is algebraically closed, the irreducibility ofT implies that
T (U) = L(V ), hence the dimension ofM(T ) is dim(V )2. Therefore, the surjective linea
mapc goes between vector spaces of the same dimension. Thusc must be an isomorphism

SinceK is invertible,T (K−1) is non-zero, and so there exists aφ ∈ L(V ) such that
Tr(T (K−1)φ) is non-zero. Choosea ∈ U with T (a) = φ. Then trq T (a) is non-zero, show
ing that trq T is a non-zero element ofM(T ). Therefore by theU -module isomorphisms o
(9), it is sufficient to show that the subspace of adT -invariants inL(V ) is one-dimensiona
The latter statement is the assertion of Schur’s lemma, because adT (a)φ = ε(a)φ for all
a ∈ U if and only if T (a)φ = φT (a) for all a ∈ U (this equivalence can be proved by
straightforward modification of the well known proof of the statement that the centerU
coincides with the subspace ofad-invariant elements).�

A nice example to apply the above considerations is the case whenU is almost cocom-
mutative. This means that there exists an invertible elementR in U ⊗U such that

τ ◦ ∆(a) =R∆(a)R−1 for all a ∈ U,

whereτ is the flip map. SetK := µ(id ⊗ S)(R−1), whereµ is the multiplication map
in U . ThenK is an invertible element ofU , with inverseµ(id ⊗ S)(R). Formula (7) holds
by [3, Proposition 4.2.3], and the remarks afterwards. Thus, using thisK, formula (8)
gives an ad◦-invariant quantum trace. Moreover, for an arbitrary representationT of U
the representationsT ⊗ T ∗ andT ∗ ⊗ T are isomorphic; an isomorphism between them
τ ◦ (T ⊗ T ∗)R, whereτ (v ⊗ ξ) = ξ ⊗ v, see, for example, [3, 4.2, p. 119]. Therefore,
may apply Proposition 4.3 to conclude that ifT is irreducible, then up to scalar multipl
trq T is the only ad◦-invariant element inM(T ). We note that in this case trq T is the im-
age of idV ∈ L(V ) under the composition of the isomorphisms (9), with the isomorph
τ ◦ (T ⊗ T ∗)R being used in the middle.

5. Adjoint coinvariants in O(Gq)

For an arbitrary Hopf algebraO, the spaceOcoc coincides with the spaceOα = {f ∈O |
α(f ) = f ⊗ 1} of α-coinvariants, whereα is the right coaction ofO on itself given in
Sweedler’s notation by the formulaα :f �→ ∑

f2 ⊗ f3S(f1), see [5]. So in Section 2 w
were dealing withO(Gq)α ; a parallel analysis of the spaceO(Gq)β of β-coinvariants
is carried out in this section, whereβ is the adjoint coactionβ :f �→ ∑

f2 ⊗ S(f1)f3.
The results (and the proofs) are essentially the same as those of Section 2, but the
interpretation of them involves the quantized enveloping algebraU(Gq) associated toGq ,
fitting into the general framework formalized in Section 4.
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For Gq = SLq(N),Spq(N),SOq(2l),SOq(2l + 1), the Hopf algebraU(Gq) is the
Drinfeld–Jimbo algebraUq(slN), Uq(spN), Uq(so2l ), Uq1/2(so2l+1), respectively. The al
gebraU(Oq(N)) is Ũq(soN), defined in [15, 8.6.1], following [13] (see Appendix A
the present paper). The algebraU(GLq(N)) is Uq(glN), defined in [15, p. 163]. There i
a dual pairing〈· , ·〉 :U(Gq) × O(Gq) → C, given in [15, 9.4]. We still assume thatq is
transcendental (orq is not a root of unity forGLq(N), SLq(N)). Then this dual pairing is
non-degenerate by [13] (see also [15, pp. 410 and 440]). In particular, the mapf �→ 〈· , f 〉
injectsO(Gq) into the finite dualU(Gq)◦ of U(Gq). In the sequel we shall often consid
O(Gq) as a Hopf-subalgebra ofU(Gq)◦ in this way.

The representation̂ω induced by the fundamental corepresentationω is the so-called
vector representationof U(Gq). More generally, setTn = ϕ̂n for n ∈ P(Gq). When
Gq = Spq(N), SLq(N), or GLq (N), then{Tn | n ∈ P(Gq)} is a complete list of the iso
morphism classes of the so-calledtype 1 finite dimensional irreducible representations
U(Gq). WhenGq = Oq(N) or SOq (N), then{Tn | n ∈ P(Gq)} is a complete list of the
isomorphism classes of those (type 1) irreducible representations, which appear as
summand in some tensor power of the vector representation.

Let us introduce the following ad hoc terminology. By thebasic representations o
U(Gq) we meanω̂1, . . . , ω̂l for Gq = SLq(l + 1),Spq(2l),SOq(2l + 1), the representa
tions ω̂1, . . . , ω̂N for Oq(N), N = 2l,2l + 1, the representationŝω1, . . . , ω̂l−1, ω̂l,0, ω̂l,1
for SOq(2l), and the representationsω̂1, . . . , ω̂N , ω̂∗

N for GLq(N).

We setK = K2ρ ∈ U(Gq), whereK2ρ is defined in [15, p. 164]. Soρ = ∑l
i=1 niαi

is the half-sum of positive roots,αi are the simple roots ofg, andK2ρ = K
n1
1 · · ·Knl

l ,
whereKi are usual generators of the Drinfeld–Jimbo algebraUq(g). For GLq(N), we
setK = KN−1

1 KN−3
2 KN−5

3 · · ·K−N+1
N , whereK1, . . . ,KN denote the same generators

U(GLq (N)) as in [15, 6.1.2, p. 163]. Using [15, 6.1.2 Proposition 6] it is easy to ch
that formula (7) holds forK. Therefore formula (8) defines an ad◦-invariant quantum trac
trq T for an arbitrary finite dimensional representationT of U(Gq). It is well known that
for arbitrary finite dimensional representationsT1, T2 of U(Gq) we haveT1⊗T2 ∼= T2⊗T1.
Therefore by Proposition 4.3, we obtain that for any irreducible finite dimensional repr
sentation ofU(Gq), the quantum trace trq T spans the subspace of ad◦-invariants inM(T ).

Obviously, for finite dimensional representationsT1, T2 we have

trq(T1 ⊕ T2) = trq T1 + trq T2. (10)

SinceK is group-like, by [15, 7.1.6] we have

trq(T1 ⊗ T2) = (trq T1) � (trq T2), (11)

where� is the convolution multiplication in the dual ofU(Gq); so when the irreducibl
summands ofT1, T2 are contained in{Tn | n ∈ P(Gq)}, then the right-hand side of (11)
the product of trq T1 and trq T2 in O(Gq).

Theorem 5.1. The quantum traces{trq Tn | n ∈ P(Gq)} form aC-vector space basis of th
space ofβ-coinvariants inO(Gq). The linear mapO(Gq)β → O(G)β , trq Tn �→ trϕn,
n ∈ P(G), is an algebra isomorphism betweenO(Gq)β and its classical counterpar
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O(G)β = O(G)coc. As aC-algebra,O(Gq)β is generated by the quantum traces of
basic representations ofU(Gq), subject to the same relations as the corresponding coc
mutative elements in Theorem2.4.

Proof. IdentifyingO(Gq) with a subspace of the dual ofU(Gq), the Peter–Weyl decom
position is written asO(Gq) = ⊕

n∈P(Gq) M(Tn). It is clearly a decomposition as a dire

sum ofβ-subcomodules. Therefore we haveO(Gq)β = ⊕
n∈P(Gq) M(Tn)β , hence the el

ements trq Tn form a basis inO(Gq)β by Proposition 4.3. The structure constants of
algebraO(Gq)β with respect to this basis are the multiplicities appearing in the te
product decompositionsTn ⊗ Tm ∼= ⊕

p m
n,m
p Tp by (10) and (11). Since the multiplicitie

m
n,m
p are the same as in the classical caseq = 1 (see [15, 7.2] or [3, Proposition10.1.16],

and Appendix A for the case ofOq(N)), we obtain the statement about the algebra isom
phismO(Gq)β ∼=O(G)coc. Then the statement about the generators and relations fo
from the known classical case (see Appendix B).�

The definition of the adjoint coaction ofO(Gq) on itself can be modified to mak
it a coactionβ of O(Gq) on the FRT-bialgebraA(Gq) as follows: β(f ) = ∑

f2 ⊗
S(π(f1))π(f3). The results of Theorem 5.1 imply a description ofA(Gq)β both as a vecto
space and as an algebra with explicit generators and relations. This can be derived f
bialgebra embeddingι in Proposition 3.1 in the same way as the results onA(Gq)coc. The
algebraA(Gq)β turns out to be isomorphic toA(Gq)coc ∼= A(G)coc = A(G)β as graded
algebras (butA(Gq)β andA(Gq)coc are two different subsets ofA(Gq) whenq 
= 1). We
omit the obvious details.

Example. Let us compute trq ω̂m in the case ofGLq(N). For subsetsI, J ⊆ {1, . . . ,N}
with |I | = |J | = m, write [I |J ] for the corresponding quantum minor of(ui

j ). So[I |J ] is
the quantum determinant of them × m quantum matrix(ui

j )
i∈I
j∈J . Fix J0 = {1, . . . ,m},

and write eI = [J0|I ] for the quantum minors belonging to the firstm rows. Since
∆(eI ) = ∑

|J |=m eJ ⊗ [J |I ], the subspace inO(GLq (N)) spanned by{eJ | m = |J |} is
a subcomodule with respect to the right coaction∆; the corresponding corepresentation
ωm, see [15, 11.5.3]. The coefficient spaceC(ωm) of ωm is the subspace ofO(GLq(N))

spanned by all them × m quantum minors. By definition of̂ωm, for x ∈ U(GLq (N)) we
have

ω̂m(x)eI =
∑
J

〈
x, [J |I ]〉eJ .

It follows from the explicit formulae giving the dual pairing in [15, 9.4, p. 328] that

ω̂m(Ki)eJ =
{

q−1eJ , if i ∈ J ;
eJ , otherwise.

Consequently, we have
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ω̂m

(
K−1)eJ = ω̂m

(
N∏

i=1

K−N−1+2i
i

)
eJ = (

q−1)∑i∈J (−N−1+2i)
eJ

= qm(N+1)q−2(
∑

i∈J i)eJ ;

that is, the matrix of̂ωm(K−1) with respect to the basis{eJ | m = |J |} is diagonal. Thus

trq ω̂m(x) = Tr
(
ω̂m

(
K−1)ω̂m(x)

) =
∑

|J |=m

q(m(N+1)−2
∑

i∈J i)
〈
x, [J |J ]〉.

This means that form = 1, . . . ,N , we have

trq ω̂m =
∑

|J |=m

q(m(N+1)−2
∑

i∈J i)[J |J ],

where the summation ranges over them-element subsetsJ of {1, . . . ,N}. Note that a
scalar multiple of this element appears as the basic coinvariantτm introduced in [5]. Since
it is convenient to perform computations inO(GLq(N)), the results of this section can b
viewed as an explicit determination of thequantum traces of finite dimensional repres
tations of type 1 ofU(GLq(N)), as elements ofO(GLq(N)).

Appendix A

This appendix deals with the algebraU(Oq(2l)) associated withOq(2l) by Hayashi
[13]. We prove the assertion on multiplicities of irreducibles in tensor product decompos
tions, used in the proof of Proposition 2.2.

Throughout this appendixq ∈ C× is not a root of unity, orq = 1. WriteEi,Fi,Ki,K
−1
i

(i = 1, . . . , l) for the usual generators of the Drinfeld–Jimbo algebraUq = Uq(so2l), de-
fined, for example, in [15, 6.1.2]; whenq = 1, the algebraU1 can be defined using a
integral form of the Drinfeld–Jimbo algebra, see the proof of Proposition 6.2. The univ
enveloping algebraU = U(so2l) is the homomorphic image ofU1, with kernel generate
by Ki − 1, i = 1, . . . , l. The Dynkin diagramDl of so2l has an involutive automorphis
interchanging the nodesl − 1 andl. Denote byχ the corresponding involutive automo
phism ofUq , soE

χ
i = Eχ(i), F

χ
i = Fχ(i), K

χ
i = Kχ(i), whereχ(i) = i for i = 1, . . . , l −2,

χ(l − 1) = χ(l), andχ(l) = χ(l − 1). This extends to a Hopf algebra automorphism ofUq

by [15, 6.1.6 Theorem 16]. In the caseq = 1, the automorphismχ of U1 (see the proo
of Proposition 6.2 for the definition ofχ on U1) induces an automorphism (denoted byχ

as well) of the quotientU . (The algebraU is generated by the images ofEi , Fi , andχ

permutes them by the same rule as above.) WriteC[χ] for the group algebra of the two
element group generated byχ , and set̃Uq = C[χ] � Uq , the right crossed product algeb
with commutation ruleχaχ = aχ , a ∈ Uq . Similarly, we set̃U = C[χ] � U .

Let P denote the weight lattice of so2l , andP+ the subset of dominant integral weigh
For λ ∈ P+ denote byTλ the finite dimensional irreducible type 1 representation ofUq

with highest weightλ. The type 1 finite dimensional irreducible representations ofŨq
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can be determined from the corresponding list forUq by standard arguments, see [1
8.6.1 Proposition 34]. Namely, the automorphismχ induces an involutory action on th
set of isomorphism classes of irreducible finite dimensional representations ofUq . Given
a representationT of Uq define the representationT χ by T χ (a) = T (aχ), a ∈ Uq . A
dominant integral weightλ can be represented by a sequence of non-negative int
λ = (λ1, . . . , λl), whereλi = 2(λ,αi)/(αi, αi), andα1, . . . , αl are the simple roots. The
T

χ
λ

∼= Tλχ , whereλχ = (λ1, . . . , λl−2, λl , λl−1). If λχ = λ, then there are exactly two no
equivalent extensions ofTλ to a representation of̃Uq on the same underlying space, den
them byT̃λ andT̃ ◦

λ . They are distinguished bỹTλ(χ)v = v andT̃ ◦
λ (χ)v = −v for a high-

est weight vectorv of Tλ. If λχ 
= λ, then theUq -representationTλ ⊕ Tλχ extends to an
irreducible representatioñTλ of Ũq ; the transformatioñTλ(χ) interchanges the underlyin
subspaces ofTλ andTλχ . Now

T = {
T̃λ, T̃

◦
λ , T̃µ

∣∣ λ,µ ∈ P+, λχ = λ, µχ 
= µ
}

is a complete list of isomorphism classes of type 1 finite dimensional irreducible rep
tations ofŨq (note thatq is assumed to be not a root of unity, orq = 1).

The Hopf algebraU(Oq(2l)) was defined to bẽUq . This can be justified as follows. Th
elementχ may be identified with a suitable reflection in the full orthogonal groupO(2l),
such that the tangent map of the conjugation byχ ∈ O(2l) on the special orthogonal grou
SO(2l), which is a Lie algebra automorphism of so2l , induces the automorphismχ of
the universal enveloping algebraU , defined above. A representationT of O(2l) induces
naturally a representatioñT of Ũ : on U it is the tangent representation ofT , whereas
T̃ (χ) = T (χ). Obviously,T̃ determinesT . Writing P ′+ for the subset ofP+ consisting of
thoseλ for which Tλ is the tangent representation of a representation of the groupSO(2l)

(note that with the notation of Section 2,P ′+ may be naturally identified withP(SO(2l))),
consider the setT ′ = {T̃λ, T̃

◦
λ , T̃µ | λ,µ ∈ P ′+, λχ = λ, µχ 
= µ} of Ũq -representations. I

the caseq = 1, T ′ is a set ofŨ -representations (to be more precise,Ũ1 representation
factoring throughŨ ), and it coincides with the set of isomorphism classes ofT̃ , asT

ranges over the set of isomorphism classes of irreducible representations ofO(2l). So in
the classical caseq = 1 we may think of the elements ofT ′ as representations of the fu
orthogonal groupO(2l).

Denote byH the subalgebra ofUq generated byK±1
1 , . . . ,K±1

l , and byH〈τ 〉 the sub-
algebra ofŨq generated byχ overH. Let V be a type 1 finite dimensional̃Uq -module.
(Whenq = 1, the elementsKi act trivially on a type 1 module, soV is actually a module
overU .) It has a weight space decompositionV = ⊕

λ∈P Vλ, and itsH-module structure
is described by the weight multiplicities(dλ | λ ∈ P), dλ = dimC Vλ. Multiplication by χ

interchanges the weight spacesVλ andVλχ , hencedλ = dλχ . For λ = λχ , the subspac
Vλ is preserved byχ , andχ acts as an involutory linear automorphism ofVλ; denote by
d+
λ andd−

λ the multiplicity of 1 and−1 as an eigenvalue ofχ on Vλ, sod+
λ + d−

λ = dλ.
Clearly, theH〈τ 〉-module structure ofV is determined by the collection of non-negat
integers(d+

λ , d−
λ , dµ | λ,µ ∈ P , λ = λχ , µ 
= µχ), that we shall call theformal character

charH〈τ 〉 V of theŨq -moduleV . (We keep this notation for the formal character also w
q = 1, although in this case the weight multiplicities carry more information than just th
H-module structure.)
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Proposition 6.1. The structure of a type1 finite dimensional̃Uq -moduleV is determined
by its formal charactercharH〈τ 〉 V .

Proof. By our assumption onq , we know that the representationT of Ũq on V decom-
poses as a direct sum of irreducibles fromT . One can determine this decomposition
the following process. The formal character determines the weight multiplicities, hen
know howV decomposes over the Drinfeld–Jimbo algebraUq . Take a maximal weigh
λ ∈ P+ such thatTλ occurs with multiplicitym > 0 in the decomposition overUq .

Case 1. If λχ 
= λ, thenTλχ also occurs with multiplicitym in the decomposition overUq ,
andT must contaiñTλ as a summand with multiplicitym. Subtractm times the formal
character of̃Tλ from the formal character ofV , and continue the same process.

Case 2. If λχ = λ, thend+
λ + d−

λ = m, and T̃λ must occur with multiplicityd+
λ in T ,

whereas̃T ◦
λ must occur with multiplicityd−

λ in T . Subtract the formal character of the
summands from charH〈τ 〉 V , and continue the same process.�

For notational simplicity, set̃T ◦
λ = T̃λ, whenλχ 
= λ.

Proposition 6.2. The formal character of each of thẽUq -modules̃Tλ andT̃ ◦
λ is independen

of q , and is the same as in the classical case ofŨ .

Proof. Recall that the weight multiplicities forTλ :Uq → EndCV (λ) are independent ofq
and are the same as in the classical case ofU , see [3, Corollary 10.1.15]. Ifλχ 
= λ, then
T̃λ|Uq

∼= Tλ ⊕Tλχ , and the action ofχ interchanges the weight subspaces forTλ andTλχ , so
the assertion is obvious. Fix nowλ = λχ ∈ P+, and consider̃Tλ (the case of̃T ◦

λ is similar).
A weight subspaceV (λ)µ for µ 
= µχ is interchanged bỹTλ(χ) with V (λ)µχ , hence the
assertion is clear for the contribution of this part in the formal character. Assume fro
now on thatµ = µχ ∈ P , and denote byd+(q), d−(q) the multiplicity of +1, −1 as an
eigenvalue of̃Tλ(χ) restricted to the weight subspaceV (λ)µ. What is left to show is tha
d+(q) andd−(q) do not depend onq .

To this end we need to recall an integral form of the Drinfeld–Jimbo algebra.t
be an indeterminate, and consider the Laurent polynomial ringZ[t±1]. Denote byUt =
U

Q(t)
t (so2l ), the Drinfeld–Jimbo algebra over the fieldQ(t). Let U res be theZ[t±1]-

subalgebra ofUt defined in [3, 9.3A]. WriteV for the irreducibleUt -module with
highest weightλ, sayv ∈ V is a fixed highest weight vector. Consider theU res-module
V res= U resv, and recall some of its properties from [3, Proposition 10.1.4]. The mo
V res has a weight subspace decompositionV res= ⊕

µ∈P V res
µ , whereV res

µ is the intersec-

tion of V res andVµ. Moreover, eachV res
µ is a freeZ[t±1]-module. Forq ∈ C \ {0} define

U res
t �→q = U res⊗Z[t±1] C andV res

t �→q = V res⊗Z[t±1] C, whereC is made into aZ[t±1]-module

via the homomorphismZ[t±1] → C, t �→ q . ThenU res
t �→q is the complex Drinfeld–Jimb

algebraUq (whenq = 1, this can be taken as the definition ofU1), andV res
t �→q is a Uq -

module with highest weightλ (for q not a root of unity orq = 1, this is the irreducible
module associated withλ). Moreover, a freeZ[t±1]-module basis ofV res

µ is mapped onto
aC-basis of the weight space(V res

t �→q)µ.
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We define the automorphismχ of Ut in the same way as for the complex Drinfel
Jimbo algebra. Thenχ permutes theZ[t±1]-algebra generators ofU res, henceχ pre-
servesU res. The automorphismχ of U res induces an automorphism ofU res

t �→q in an ob-
vious manner, and the resulting automorphism clearly coincides with the automor
of Uq calledχ already (whenq = 1, this can be taken as the definition ofχ ). TheQ(t)-
linear endomorphism̃Tλ(χ) of theUt -moduleV preservesV res. Indeed, take an eleme
a · v ∈ V res, a ∈ U res. Then

T̃λ(χ)(a · v) = (χ · a) · v = (
aχ · χ) · v = aχ · (T̃λ(χ)(v)

) = ±aχ · v ∈ U resv,

sinceaχ ∈ U res. So T̃λ(χ) restricts to an automorphism of the freeZ[t±1]-moduleV res
µ

(recall thatµχ = µ). This freeZ[t±1]-module automorphism is represented by a squ
matrix B with entries fromZ[t±1], such thatB2 = I , the identity matrix. Denote b
Bt �→1 the integer matrix obtained fromB by specializingt to 1. ThenBt �→1 is a ma-
trix which representsχ , acting on(V res

t �→1)µ via the classical irreducible representat
T̃λ of Ũ . Clearly we have rankQ(t)(B − I) � rankC(Bt �→1 − I) and rankQ(t)(B + I) �
rankC(Bt �→1 + I), implying d+(t) � d+(1) and d−(t) � d−(1). On the other hand
d+(t) + d−(t) = dimQ(t) Vµ = dimC(V res

t �→1)µ = d+(1) + d−(1), so we have equality in
both of the above inequalities. Similarly, forq ∈ C\{0} write Bt �→q for the complex matrix
obtained fromB by specializingt to q . ThenBt �→q representsχ , acting on(V res

t �→q)µ via
the representatioñTλ of Ũq . The obvious inequalities rankQ(t)(B − I) � rankC(Bt �→q − I)

and rankQ(t)(B + I) � rankC(Bt �→q + I) imply d+(t) � d+(q) andd−(t) � d−(q). On
the other hand,d+(t)+d−(t) = dimQ(t) Vµ = dimC(V res

t �→q)µ = d+(q)+d−(q). Hence we
getd+(q) = d+(t) = d+(1) andd−(q) = d−(t) = d−(1). �
Proposition 6.3. Assume thatq ∈ C \ {0} is not a root of unity orq = 1. Then the tenso
product of any pair of representationsT1, T2 ∈ T decomposes as

T1 ⊗ T2 ∼=
⊕
T ∈T

mT T,

and the multiplicitiesmT here are independent ofq (they are the same as in the classic
caseq = 1).

Proof. T1 ⊗ T2 is a finite dimensional̃Uq -module of type 1, hence is the direct sum
modules fromT . The formal characters ofT1 and T2 are the same as in the classic
caseq = 1 by Proposition 6.2. They determine the formal character ofT1 ⊗ T2, so it is
again the same as in the caseq = 1. So the assertion on the multiplicities follows
Proposition 6.1. �

In the special case whenT2 is the vector representation of̃Uq (the irreducible representa
tion with highest weight(1,0, . . . ,0), the above result is proved in [13, Proposition 4.2(
(see also [15, 8.6.2 Proposition 36]) by different methods.

Finally, note that in the odd dimensional case, the full orthogonal groupO(2l + 1) is
generated overSO(2l + 1) by the central element−I , which acts as a scalar+1 or −1 in
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any irreducible representation ofO(2l +1). Therefore the algebraU(O(2l +1)) is defined
as the tensor productC[χ] ⊗ Uq1/2(so2l+1), whereχ here is just an abstract generator
the two-element group, andC[χ] is the corresponding group algebra. Then an irreduc
Uq1/2(so2l+1)-representation has always two extensions to anU(O(2l +1))-representation
on the same underlying space: the elementχ acts as a scalar+1 or −1. The analogue o
Proposition 6.3 holds obviously in this case.

Appendix B

Here we sketch a proof of Theorem 2.4 in the classical caseq = 1.
WhenG = SO(2l + 1) or whenG is simple and simply connected,O(G)coc is a poly-

nomial algebra generated by the characters of the fundamental representations,
example, [24]. ForSL(l + 1) or SO(2l + 1) the fundamental representations are the
l exterior powers of the defining representation, hence we have (i) and (iv). Therth exte-
rior power of the defining representation ofSp(2l) for r = 1, . . . , l is the direct sum of the
rth fundamental representation and some copies of the fundamental representatio
strictly lower index, see [10, Section 5.1.3]. Thereforeσ1, . . . , σl is another generating sy
tem ofO(Sp(2l))coc, and we get (ii). SinceO(2l + 1) ∼= SO(2l + 1) × Z2, andω2l+1 is
trivial on SO(2l + 1) whereas it gives the non-trivial irreducible representation onZ2, the
statement (iii) immediately follows from (iv).

(v) Note thatG acts on itself by conjugation, andO(G)coc is the corresponding a
gebra of polynomial invariants. IdentifyO(2l) with the subset of the spaceM(2l,C)

of (2l × 2l) matrices consisting of matricesA with AAT = I . The groupO(2l) acts
on M(2l,C) by conjugation, and the corresponding algebra of polynomial invarian
generated by the functionsA �→ Tr(f (A,AT )) as f ranges over the possible mon
mials in A and AT , see [23] or [21]. UsingAT = A−1 for A ∈ O(2l), we get that
the algebraO(G)coc is generated by the functionsA �→ Tr(Ad), d = 1, . . . ,2l (the up-
per bound ond comes from the Cayley–Hamilton identity). Note thatσi(A) is the ith
characteristic coefficient of the matrixA, henceσ1, . . . , σ2l also generateO(G)coc. For
r = 1, . . . , l we have the well known isomorphisms

∧r
C2l ⊗ ∧2l

C2l ∼= ∧2l−r
C2l of

O(2l)-representations (see, for example, [10,Exercise 6 in Section 5.1.8]). This im
plies σ2l−r = σrσ2l , r = 1, . . . , l, henceO(G)coc is generated byσ1, . . . , σl, σ2l , and the
relationsσ 2

2l = 1 andσlσ2l = σl hold. We need to show that there are no further
lations among these generators. Realize nowO(2l) as the group of invertible matrice
{A | JA = (AT )−1J }, whereJ = (

0 1
1 0

) ⊕ · · · ⊕ (
0 1
1 0

)
, and restrict the functions inO(G)

to the subsetY � Z, whereY consists of the diagonal matrices diag(z1, z
−1
1 , . . . , zl, z

−1
l )

andZ consists of the matrices
( 0 z1

z−1
1 0

) ⊕ diag(z2, z
−1
2 , . . . , zl, z

−1
l ) with zi ∈ C×. Now

suppose thatf (σ1, . . . , σl) + σ2lg(σ1, . . . , σl−1) = 0 holds inO(G). Clearly the restric-
tions ofσ1, . . . , σl to Y are algebraically independent. So restricting the above relatio
Y we get thatf (t1, . . . , tl) = −g(t1, . . . , tl−1) as polynomials int1, . . . , tl , so the above
relation is(1 − σ2l )g(σ1, . . . , σl−1) = 0. Now restricting this relation toZ one sees tha
g(t1, . . . , tl−1) is the zero polynomial.



124 M. Domokos, T.H. Lenagan / Journal of Algebra 282 (2004) 103–128

eight

hogo-

m
,

ix of

in the

r

(vi) The highest weights of the representations corresponding toσ1, . . . , σl−1, σl,0, σl,1
generate the semigroup of the highest weights of all irreducible representations ofSO(2l),
see, for example, [10, p. 102 and 234]. Using the usual partial ordering on the w
semigroup, an inductive argument shows that the trace of an arbitrary irreducibleSO(2l)-
representation can be expressed as a polynomial ofσ1, . . . , σl−1, σl,0, σl,1. The elements
σ1, . . . , σl are algebraically independent by the same argument as in (v). The full ort
nal groupO(2l) acts onSO(2l) by conjugation, and this induces an action onO(SO(2l)).
Forχ ∈ O(2l)\SO(2l) we haveχ(σl,0−σl,1) = −(σl,0−σl,1), because the automorphis
of SO(2l) induced byχ interchanges the representationsωl,0 and ωl,1. Consequently
(σl,0 − σl,1)

2 is anO(2l)-invariant inO(SO(2l)), hence it is a polynomial ofσ1, . . . , σl

by (v). TheC[σ1, . . . , σl]-module generated by 1 andσl,0 − σl,1 is free (of rank two),
becauseO(SO(2l)) is a domain, and the elements of(σl,0 − σl,1)C[σ1, . . . , σl] are not
invariant with respect to the action of the full orthogonal group, whereasσ1, . . . , σl are
O(2l)-invariants.

TheSO(2l)-invariantσl,0 − σl,1 and the relation(σl,0 − σl,1)
2 = h(σ1, . . . , σl) can be

seen more explicitly as follows. Think ofSO(2l) as the set of determinant 1 matricesA

with JA = (AT )−1J . It is not difficult to check that up to sign,σl,0 − σl,1 is the function
mappingA ∈ SO(2l) to the Pfaffian Pf(JA−AT J ) of the skew symmetric(2l ×2l) matrix
JA − AT J . (For the definition and basic properties of the Pfaffian see the append
[10]; the SO(2l)-invariantA �→ Pf(JA − AT J ) appears in [1].) Indeed, bothσl,0 − σl,1
andA �→ Pf(JA − AT J ) span a 1-dimensionalO(2l)-invariant subspace inO(SO(2l))

on whichO(2l) acts by the determinant representation. Both of them are contained
space of matrix elements of thelth tensor power of the defining representation ofSO(2l),
and in thisO(2l)-invariant subspace ofO(SO(2l)) the determinant representation ofO(2l)

occurs with multiplicity one. Soσl,0 − σl,1 andA �→ Pf(JA − AT J ) are non-zero scala
multiples of each other. Restricting them to the maximal torus ofSO(2l) one can check
that in fact they coincide (up to sign). ForA ∈ SO(2l) we have

Pf2
(
JA − AT J

) = det
(
JA − JA−1) = (−1)l det(A + I)det(A − I).

Therefore the relation

(σl,0 − σl,1)
2 = (−1)l

(
σl + 2

l−1∑
i=0

σi

)(
(−1)lσl + 2

l−1∑
i=0

(−1)iσi

)

holds.

Appendix C

Here we deduce the assertion of Theorem 3.3 in the classical caseq = 1, forG = O(N)

or Sp(N). Recall thatA(G) is the coordinate ringO(M) of the Zariski closureM of the
coneCG. The groupG acts onM(N,C) by conjugation, andM is aG-stable subvariety
in M(N,C). We claim thatA(G)coc coincides with the algebraO(M)G of G-invariants.
This follows from the well-known fact that for any affine algebraic groupH , the algebra



M. Domokos, T.H. Lenagan / Journal of Algebra 282 (2004) 103–128 125

x

-

s an
O(H)coc coincides with the algebra of adjoint invariantsO(H)H . Applying this forH =
C×G, and observing that the conjugation action ofC× on M(N,C) is trivial, we obtain
that

A(G)coc=A(G) ∩O
(
C×G

)coc=O(M) ∩O
(
C×G

)C×G =O(M) ∩O
(
C×G

)G
=O(M)G.

Consider the natural surjectionO(M(N,C))G → O(M)G. Generators ofO(M(N,C))G

are known from [21,23], these are the functions

A �→ Tr
(
Ai1

(
A∗)j1 · · ·Ais

(
A∗)js

)
,

whereA∗ denotes the adjoint ofA ∈ M(N,C) with respect to the invariant bilinear form
determiningG. By definition ofM, if A ∈ M, thenAA∗ = A∗A equals the scalar matri
D(A)I . Note that Tr(A∗) = Tr(A). Therefore, forA ∈M we have

Tr
(
Ai1

(
A∗)j1 · · ·Ais

(
A∗)js

) =D(A)k Tr
(
Ad

)
,

wherek = min{i1 + · · · + is, j1 + · · · + js}, andd = |i1 + · · · + is − j1 − · · · − js |. Taking
into account the Cayley–Hamilton theorem, we get thatO(M)G is generated by the func
tionsA �→ D(A), A �→ Tr(Aj ), j = 1, . . . ,N . By the Newton formulae the elementsD,
ρ1, . . . , ρN generate the same algebra.

Next we determine the relations among the above generators. IdentifyA(G) with its
image under the mapι : A(G) → O(G) ⊗ C[z] from Proposition 3.1. Thusρj = σj z

j

andD = z2 (we suppress the⊗ sign from the notation). Sinceσ1, . . . , σl are algebraically
independent inO(G) (see Theorem 2.4), the elementsσ1z, . . . , σlz

l, z2 are algebraically
independent inA(G).

When G = Sp(N) (N = 2l), we haveσN = 1 andσN−i = σi for i = 1, . . . , l (this
follows from the well knownG-module isomorphism

∧i
CN ⊗ ∧N

CN ∼= ∧N−i
CN , and

the fact that theN th exterior power ofCN is the trivialSp(N)-module). Thus

ρN−i = σN−i z
N−i = σiz

i
(
z2)l−i = ρiDl−i

for i = 0, . . . , l − 1. SoA(Sp(N))coc is generated byD, ρ1, . . . , ρl .
Finally, assumeG = O(N). In O(O(N)) the relationsσ 2

N = 1 andσiσN = σN−i for
i = 1, . . . , l hold, see Theorem 2.4. Therefore inA(G) we have

ρN−iρN−j = σN−i z
N−iσN−j zN−j = (σN)2σiz

iσj z
j z2(N−i−j) = ρiρjDN−i−j

for 0 � i � j � l, and

ρiρN−jDj−i = σiz
iσN−j z

N−j z2(j−i) = σiσj σNzN−i+j = σN−i z
N−iσj z

j = ρN−iρj

for 0 � i < j � l. It is an elementary exercise to show that modulo these relation
arbitrary monomial ofD, ρ1, . . . , ρN can be rewritten into a monomial contained inB(N):
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using the relations of the first type we can get rid of those products of the gene
which contain at least two factors from{ρl+1, . . . , ρN }. In the caseN = 2l, by the relation
ρN−iρl = ρiρlDl−i (the special casej = l of the second type relations) we eliminate t
products which containρl and a factor from{ρl+1, . . . , ρN }. By the relationsρN−jDj =
ρjρN (the special casei = 0 of the second type relations) we get rid of the products wh
contain the subwordρN−jDj for j = 1, . . . , l if N = 2l + 1 and forj = 1, . . . , l − 1 if
N = 2l. Take a product of the generators which is not ruled out by the above reduc
and which is not contained inB(N). Then it must contain a subwordρN−j ρiDj−i with
1 � i < j � l (respectively 1� i < j � l − 1) whenN = 2l + 1 (respectivelyN = 2l).
Replace this subword byρjρN−i , using the second type relations. In this way we incre
the index of the unique factor of this monomial from the set{ρl+1, . . . , ρN−1}. After finitely
many such steps we end up inB(N) or with a monomial eliminated already. So we ha
proved that the elements inB(N) spanA(O(N))coc. We know from Theorem 2.4(iii) an
(v) thatσ i1

1 · · ·σ il
l , σ2l+1σ

j1
1 · · ·σjl

l (is, js ∈ N0) are linearly independent inO(O(2l + 1)),

andσ
i1
1 · · ·σ il

l , σ2lσ
j1
1 · · ·σjl−1

l−1 (is, js ∈ N0) are linearly independent inO(O(2l)). Using
again the embeddingι we easily get that the elements ofB(N) are linearly independen
in A(O(N)). Finally, the fact thatB(N) is a basis ofA(O(N))coc implies that the se
of relations used to rewrite arbitrary products of the generators as linear combin
of elements ofB(N) is complete: namely, the ideal ofrelations among the generato
D, ρ1, . . . , ρN is generated by the relations given in the statement of Theorem 3.3.

Appendix D

Here we give a direct proof of the fact that forG = O(N) or Sp(N), the algebraA(G)

defined in terms of generators and relations (6) in Section 3, coincides with the coor
ring of the Zariski closureM of the coneCG, whereG is embedded intoM(N,C) in
the usual way; that is,G = {A ∈ M(N,C) | AC−1AT C = I }, where C is the matrix of a
symmetric (respectively skew-symmetric) non-degenerate bilinear form (the matrix=
C(1) is specified in Section 3). In other words, we claim that the vanishing idealI (M) of
M in O(M(N,C)) = C[ui

j | i, j = 1, . . . ,N] is generated by the entries of K(1)u1u2 −
u1u2K(1) (notation explained in Section 3). WriteB for the set of entries of this matrix
and write〈B〉 for the ideal generated by these homogeneous quadratic elements. On
directly from the definition of K(1) that 〈B〉 ⊆ I (M), see, for example, the proof of [1
9.3.1 Lemma 12]. SinceCM = M, the idealI (M) is homogeneous. Take an arbitra
f ∈ I (M). Our aim is to show thatf is contained in〈B〉. We may assume thatf is
homogeneous of degreed . Clearlyf ∈ I (G), sinceG ⊂ M. Now Theorems (5.2 C) an
(6.3 B) of [26] assert thatB andD − 1 generateI (G) in a nice way; that is, there ar
elementsfb,h ∈ C[ui

j ] (b ∈ B), such that

f = (D − 1)h +
∑

bfb, (12)

b∈B
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moreover, deg(fb) � d − 2 and deg(h) � d − 2. We may assume thath has the minima
possible number of non-zero homogeneous components. Suppose thath 
= 0. Write h =
ĥ + h̃, whereh̃ is the minimum degree homogeneous component ofh. Then

(D − 1)h = −h̃ + higher degree terms.

Since deg(h̃) < d = deg(f ), it follows from (12) that−h̃ is killed by the appropri-
ate homogeneous component of

∑
b∈B bfb, henceh̃ = ∑

b∈B bhb for somehb, with
deg(hb) � d − 4. Thus we have

f = (D − 1)ĥ +
∑
b∈B

b
(
fb + hb(D − 1)

)
. (13)

Note that in (13) we have deg(fb + hb(D − 1)) � d − 2, andĥ has fewer non-zero ho
mogeneous components thanh in (12). This contradiction implies thath = 0 in (12), so
f = ∑

b∈B bfb is contained in〈B〉.
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