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Epalrestat (EPS) is the only aldose reductase inhibitor that is currently available for the treatment of
diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular
levels of glutathione (GSH) in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells
from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels
in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs),
an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH
levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing
the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of
thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial
cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the
expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA
suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression.
Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH
synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS
reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in
protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new
beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels
through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases
caused by oxidative stress.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Epalrestat (5-[(1Z,2E)-2-methyl-3-phenyl propenylidene]-4-oxo-
2-thioxo-3-thiazolidine acetic acid; EPS; Ono Pharmaceuticals, Osa-
ka, Japan), which received approval for use in Japan in 1992, is
currently being used for the treatment of diabetic neuropathy. EPS is
an inhibitor of aldose reductase, a rate-limiting enzyme in the polyol
pathway. Under hyperglycemic conditions, EPS reduces intracellular
sorbitol accumulation, which is implicated in the pathogenesis of
diabetic complications [1]. EPS is easily absorbed by neural tissue
and inhibits aldose reductase with minimum adverse effects [2]. A
recent study showed that treatment with EPS at an early stage de-
layed the progression of diabetic neuropathy and prevented the
onset/progression of retinopathy and nephropathy [3].

The vascular endothelium, which regulates the passage of
macromolecules and circulating cells from blood to tissues, is the
B.V. This is an open access article u
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major target of oxidative stress and plays a critical role in the
pathophysiology of several diseases and disorders [4]. Endothelial
dysfunction is an early event in atherosclerotic disease. Impaired
endothelial function is noted in patients with coronary artery
disease, diabetes mellitus, hypertension, and hypercholester-
olemia. Inflammations and infections, which are often character-
ized by the excessive production of reactive oxygen species (ROS),
impair endothelial function. Future research will focus on ways to
prevent oxidative damage to the endothelium. Reduced glu-
tathione (GSH) plays a crucial role in protecting endothelial cells
from ROS, thereby preventing endothelial dysfunction in arteries
exposed to oxidative stress [5]. It is important to find ways to in-
crease the intracellular GSH level in order to prevent and/or
minimize oxidative damage to the endothelium.

Glutamate cysteine ligase (GCL) is an enzyme that catalyzes the
first and rate-limiting step in de novo GSH synthesis [6]. The reg-
ulation of GCL expression and activity is critical for GSH home-
ostasis. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key
transcription factor that plays a central role in regulating the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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expression of antioxidant genes, including GCL [7–9]. Nrf2 usually
binds to Kelch-like ECH associated protein-1 (Keap1) in the ex-
tranuclear space, and after suitable stimulation, Nrf2 translocates
into the nucleus where it acts as a transcription factor, regulating
the expression of many cytoprotective genes. Therefore, Nrf2 is
important for the maintenance of intracellular GSH levels and
redox homeostasis. Moreover, Nrf2 controls not only GCL gene but
also the genes of many antioxidative proteins, such as thioredoxin
(Trx) [10] and heme oxygenase-1 (HO-1) [11–13]. Trx, which is
ubiquitously expressed in endothelial cells, regulates cellular re-
dox status and protects cells from oxidative stress, in a similar
manner to GSH [14]. Trx-1 has multiple functions in the cell, in-
cluding antioxidant, anti-inflammatory, and anti-apoptotic activ-
ities. A recent study has shown that Trx-1 promotes anti-in-
flammatory macrophages of the M2 phenotype and antagonizes
atherosclerosis [15]. HO-1, a representative Nrf2 target gene pro-
duct [16], has important redox regulatory functions in endothelial
cells [17,18]. There is evidence that the induction of HO-1 leads to
several vascular-cell-specific protective activities in the setting of
inflammatory atherosclerotic diseases [19].

Recently, we found that EPS increased GSH levels in rat Schwann
cells by up-regulating GCL via Nrf2 activation [20]. We hypothesized
that if EPS could increase GSH levels in endothelial cells, EPS would
help prevent or minimize oxidative damage to the endothelium. The
purpose of the present study was to determine (1) whether EPS in-
creases GSH levels, (2) whether EPS affects HO-1 and Trx-1, which
have redox regulatory functions, (3) whether the Nrf2 pathway is
involved in the effects of EPS on GSH synthesis and the redox reg-
ulating proteins, and (4) whether EPS protects oxidative cell damage,
using a culture system of bovine aortic endothelial cells (BAECs) as an
in vitro model of the vascular endothelium.
Materials and methods

Endothelial cell culture and treatment with EPS

BAECs were purchased from Dainippon Sumitomo Pharma Co.,
Ltd. (Osaka, Japan). Cells were grown to 80–90% confluence in
DMEM containing 10% fetal bovine serum (FBS), L-glutamine
(4 mM), penicillin (100 U/ml), and streptomycin (100 mg/ml) at
37 °C in a humidified atmosphere of 5% CO2 and 95% air. Then, the
cells were passaged by trypsinization.

Before treating the cells with EPS (Wako Pure Chemical In-
dustries, Ltd., Osaka, Japan), the culture medium was replaced
with DMEM containing 2% FBS because serum may include anti-
oxidants, chelates of transition metal ions, and high-density lipo-
proteins [21]. EPS (10, 50, and 100 mM) was subsequently added to
the medium.

Cell viability

Cell viability was assessed by measuring acid phosphatase ac-
tivity. Acid phosphatase activity, which is an accurate indicator of
the number of endothelial cells in culture, was assayed using the
method of Connolly et al. [22]. BAECs on 96-well plates were
treated with EPS. After the treatment with EPS, acid phosphatase
activity was measured. The medium containing detached BAECs
was removed. Cells remaining on the 96-well plates were washed
with DPBS and incubated with 100 ml of 0.1 M sodium acetate
buffer (pH 5.5) containing 0.1% Triton X-100 and 10 mM p-ni-
trophenyl phosphate at 37 °C for 20 min. The reaction was stopped
by adding 10 ml of 1 M NaOH. Produced p-nitrophenol was mea-
sured at 405 nm using a Bio-Rad iMark microplate reader (Tokyo,
Japan). Acid phosphatase activity was expressed as the ratio of the
number of surviving cells to that of control without EPS.
Determination of nuclear Nrf2 translocation

Nuclear extracts of BAECs were prepared using an Active Motif
Nuclear Extract Kit (Tokyo, Japan) according to the manufacturer's
protocol. The amount of active Nrf2 in the nuclear extracts was
determined by subjecting 20 mg of protein sample to assay with a
TransAM Nrf2 DNA Binding ELISA Kit (Active Motif). The assay was
performed according to the manufacturer's protocol. As a positive
control, BAECs were incubated with a known Nrf2-activator sul-
foraphane. In addition, COS-7 cells (Nrf2 transfected) nuclear ex-
tracts provided by the manufacturer were used as a positive
control in each experiment.

Knockdown of Nrf2 with small interfering RNA (siRNA)

Oligonucleotides directed against bovine Nrf2 (Sigma-Aldrich
Co., St. Louis, MO, USA) and control siRNA (Ambion, Austin, TX,
USA) were transfected into BAECs using Lipofectamine RNAiMAX
(Invitrogen, Eugene, OR, USA) according to the manufacturer's
protocol. Briefly, both Nrf2 siRNA and control siRNA were diluted
with Opti-MEM medium and then, diluted Lipofectamine RNAi-
MAX was added. The transfection mixture was incubated at room
temperature for 20 min. When BAECs reached 30–50% confluence,
the culture medium was replaced with DMEM (without FBS) and
the transfection mixture was added to each well. The final con-
centration of siRNA was 20 nM.

Measurement of GCLM, Nrf2, HO-1, and Trx-1 mRNA levels

GCL is the rate-limiting enzyme in de novo GSH synthesis and is
a heterodimeric protein composed of catalytic (GCLC) and modifier
(GCLM) subunits. We examined the effect of EPS on GCLM, which
is limiting in most cell types and tissues [23]. Quantitative RT-PCR
analysis was used to measure mRNA levels. Total RNA from treated
cells was extracted with RNAspin Mini (GE Healthcare, Buck-
inghamshire, UK) according to the manufacturer's protocol.
mRNAs were reverse-transcribed into cDNA with a High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Foster City,
CA, USA). Quantitative RT-PCR was performed with a 7500 Fast
Real-Time PCR System (Applied Biosystems). Primers for bovine
GCLM (Bt03232353-m1), bovine Nrf2 (Bt03251879-m1), bovine
HO-1 (Bt03218621-m1), and bovine Trx-1 (Bt03222877-g1) were
purchased from Applied Biosystems. mRNA levels were acquired
from the value of the threshold cycle (Ct) of GCLM, Nrf2, HO-1, or
Trx-1 normalized to that of GAPDH. Relative mRNA levels were
compared and expressed as percentage of control levels. Data are
representative of three experiments.

Measurement of GCLM, HO-1, and Trx-1 protein levels

GCLM, HO-1, and Trx-1 protein levels were analyzed by Wes-
tern blotting. After BAECs were treated with EPS, the cells were
washed with DPBS and lysed in radioimmunoprecipitation assay
(RIPA) buffer (Pierce, Rockford, IL, USA) containing protease in-
hibitors. The lysate was centrifuged at 10,000g for 15 min and
15 mg of protein in the supernatant was resolved by 12% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
The separated proteins were blotted onto a nitrocellulose or PVDF
membrane. The membrane was incubated with primary anti-
bodies for GCLM, HO-1, Trx-1, or β-actin and with horseradish-
peroxidase-conjugated secondary antibodies. Chemiluminescence
was detected with an ECL Plus Western blot detection kit (GE
Healthcare, Buckinghamshire, UK). Band intensities were quanti-
fied using ImageJ software.

In addition, we measured HO-1 and Trx-1 protein levels by
fluorescence microscopy studies and flow cytometry, respectively.
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Briefly, BAECs treated with EPS were fixed with 4% p-for-
maldehyde. HO-1 and Trx-1 proteins were detected by reacting
with phycoerythrin (PE)-conjugated anti-rabbit HO-1 monoclonal
antibody (Cell Signaling Technology, Cambridge, UK) and PE-con-
jugated anti-mouse Trx-1 monoclonal antibody (GenWay Biotech,
Inc., San Diego, CA, USA), respectively. Following incubation with
the antibody, the cells were washed with DPBS and analyzed by
fluorescence microscopy (Carl Zeiss, Jena, Germany) or flow cyto-
metry (Beckman Coulter, Fullerton, CA, USA). Fluorescence was
detected with fluorescence channel 2 (FL2).

Determination of mitochondrial damage

Mitotracker Red CMXRos (Molecular Probes, Eugene, OR, USA)
was used to estimate mitochondrial damage in BAECs. After
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Fig. 1. Effect of EPS on GSH and GCLM levels in BAECs. (A) Intracellular GSH levels. BAEC
GSH levels. BAECs were treated with 50 mM EPS for the indicated times. GCLM protein (C
PCR analysis, respectively, after treatment with 10, 50 or 100 mM EPS for 24 h (E) GSH l
sorbinil (SORB), and alrestatin (ALR), for 24 h. Values are means7SD of three experime
exposing BAECs to oxidizing agent, the cells were incubated in the
medium containing Mitotracker Red CMXRos (25 nM) for 30 min.
Then, the cells were washed with DPBS and fixed with 4% p-for-
maldehyde. Changes of the mitochondrial membrane potential
were visualized as red fluorescence by using a confocal microscope
(Carl Zeiss). Fluorescence intensities were quantified using Zeiss
ZEN software.

Other procedures

Intracellular GSH levels were measured by spectrophotometric
methods, as described previously [24]. Aldose reductase activity
was measured according to the method described by Kawasaki
et al. [25] with DL-glyceraldehyde as the substrate. Lactate dehy-
drogenase activity was measured using lithium DL-lactate as the
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substrate. Protein concentrations were determined using the
Bradford method with bovine serum albumin as the standard.

Statistical analysis

All experiments were performed independently at least three
times. Data were combined and expressed as means7SD. Statis-
tical significance between two groups was evaluated using Stu-
dent's t-test after analysis of variance or the Scheffé test after the
Kruskal–Wallis test. A P value of o0.05 was considered to be
significant.
Results

Effect of EPS on GSH in BAECs

BAECs were treated with EPS at 10, 50, and 100 mM for 24 h.
EPS, at the concentrations used, had little influence on cell viabi-
lity as estimated by monitoring acid phosphatase activity (control,
10075%; 10 mM, 10076%; 50 mM, 10076%; and 100 mM,
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the value of siControl treated with EPS (Po0.05).
9076%). Likewise, no release of lactate dehydrogenase was ob-
served at those conditions (data not shown). Fig. 1A shows the
intracellular GSH levels. Treatment of BAECs with EPS at 50 and
100 mM caused an increase in intracellular GSH levels. At those EPS
concentrations, the increases were 2.7- and 8.4-fold, respectively,
compared with control. When BAECs were treated with EPS at
50 mM, a significant increase in GSH levels was noted after 8 h
(Fig. 1B). Fig. 1C and D demonstrates that EPS at 50 and 100 mM
increased the protein and mRNA levels of GCLM. The treatment
with 10 mM EPS did not cause a significant increase in GSH and
GCLM levels. The results indicate that EPS increases intracellular
GSH levels in BAECs through transcription regulation. Two other
aldose reductase inhibitors, sorbinil [26] and alrestatin [27], failed
to increase GSH levels (Fig. 1E), implying that the inhibition of
aldose reductase does not contribute to the ability of EPS to in-
crease GSH levels.
Effect of EPS on Nrf2 in BAECs

Next, we examined how EPS increased the levels of GCL. Recent
studies have reported that Nrf2 plays a pivotal role in inducing the
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expression of genes encoding detoxifying/defensive proteins, in-
cluding GCL, by binding to the antioxidant response element (ARE)
[7–9]. Nuclear translocation is an important mechanism for the
activation of the transcription factor Nrf2 [28]. Fig. 2A demonstrates
that EPS caused an increase in the nuclear level of active Nrf2,
which was estimated by measuring the DNA binding activity of
Nrf2. The nuclear levels of active Nrf2 were increased by 1.6- and
1.9-fold by treatment with 50 and 100 mM EPS, respectively. EPS at
10 mM did not significantly increase the nuclear levels of active Nrf2.
The results in Fig. 2A were similar to those shown in Fig. 1A–D. As
can be seen from Fig. 2B, EPS failed to increase Nrf2 mRNA level.

We examined whether Nrf2 levels could alter the increases in
GCL and GSH levels in cells treated with 50 mM EPS, by means of
Nrf2 knockdown in BAECs. BAECs were transfected with control
siRNA (siControl) or Nrf2 siRNA (siNrf2). Nrf2 mRNA expression
levels in the cells transfected with Nrf2 siRNA were reduced by
approximately 85% relative to those in control siRNA transfected
cells (data not shown). As shown in Fig. 2C and D, the increase in
GCLM mRNA and GSH levels after EPS treatment was inhibited by
the knockdown of Nrf2 expression using siRNA. These results
suggest that EPS induces GSH biosynthesis by up-regulating GCL
via the activation of Nrf2 in BAECs.

Effect of EPS on HO-1 and Trx-1 in BAECs

Nrf2 controls not only GCL gene but also the genes of many
cytoprotective enzymes, such as HO-1 and Trx. To determine
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whether EPS could alter the levels of cytoprotective proteins other
than GCL regulated by Nrf2, we examined the effect of EPS on HO-
1 and Trx-1 in BAECs. HO-1 protein levels in BAECs treated with
EPS were estimated by fluorescence microscopy studies with PE-
conjugated anti-HO-1 monoclonal antibody (Fig. 3A) and by
Western blot analysis (Fig. 3B). Fluorescence microscopy studies
demonstrated that 50 mM EPS, which induced nuclear levels of
active Nrf2, increased HO-1 protein levels. Western blot analysis
revealed a dose-dependent increase in HO-1 protein levels in
BAECs treated with EPS. This was concomitant with the up-reg-
ulation of HO-1 mRNA (Fig. 3C). In BAECs treated with 10 mM EPS,
the concentration that had no influence on Nrf2, no significant
change was observed in HO-1 protein and mRNA levels. The
knockdown of Nrf2 by siRNA suppressed the increase in HO-1
mRNA levels after EPS treatment (Fig. 3D).

Trx-1 protein levels were measured by PE-conjugated anti-Trx-
1 monoclonal antibody staining, followed by flow cytometry,
which can be distinguished from small changes in the amount of
the protein because it measures the amount of a protein within
each individual cell [29]. The fluorescence intensity of BAECs
treated with 50 mM EPS was shifted to the right side of the panel
compared with control, suggesting that EPS can increase Trx-1
protein levels (Fig. 4A). As shown in Fig. 4B, Western blot analysis
revealed that EPS at 50 and 100 mM stimulated Trx-1 protein ex-
pression in BAECs (Fig. 4B). This was concomitant with the up-
regulation of Trx-1 mRNA (Fig. 4C). The up-regulation of Trx-1
mRNA after EPS treatment was inhibited by the knockdown of
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Nrf2 by siRNA (Fig. 4D). It seems that EPS can induce some cyto-
protective proteins, including HO-1 and Trx-1, via the Nrf2
pathway.

Effect of phosphatidylinositol 3-kinase (PI3K) inhibitor on
EPS-stimulated GSH synthesis and Nrf2 activation in BAECs

PI3K is a key molecule in the Nrf2-mediated regulation of GCL
[30]. In order to determine whether PI3K was involved in the ef-
fect of EPS, we used a specific inhibitor of PI3K, LY294002 [31]. As
shown in Fig. 5A and 5B, LY294002 abolished the increase in GCLM
mRNA and GSH levels in BAECs treated with EPS. Inhibition of PI3K
by LY294002 acutely reduced the capacity of EPS to increase the
nuclear levels of active Nrf2 (Fig. 5C). These results indicate that
PI3K promotes EPS-induced GSH biosynthesis by activating Nrf2.

Effect of EPS on oxidative stress in BAECs

Finally, we examined whether EPS could protect BAECs from
oxidative stress. BAECs were pretreated with EPS (50 mM) for 16 h
and then exposed to peroxides. After exposure for 24 h, cell via-
bility was assessed by measuring acid phosphatase activity. The
exposures to H2O2 and tert-butylhydroperoxide (t-BHP) resulted in
approximately 80% cytotoxicity (Fig. 6A and B). EPS dramatically
reduced the cytotoxicity induced by the exposure to the peroxides.
DL-Buthionine-(S,R)-sulfoximine, an inhibitor of GCL, abolished the
protective effect of EPS on the cytotoxicity (data not shown). It is
known that the peroxides cause oxidative damage to mitochondria
[32]. Then, the oxidative damage to mitochondria during exposure
to t-BHP was estimated by using MitoTracker Red CMXRos, a red
fluorescent dye that stains mitochondria in live cells. As shown in
Fig. 6C and D, pretreatment of BAECs with EPS protected mi-
tochondria from the t-BHP-induced oxidative damage. Meanwhile,
LY294002 abolished the protective effect of EPS on the t-BHP-in-
duced oxidative damage. LY294002 alone, at the concentration
used, did not cause any significant decrease in fluorescence in-
tensity (data not shown).
Discussion

EPS is the only aldose reductase inhibitor currently available for
the treatment of diabetic neuropathy. Long-term treatment with
EPS is well tolerated; it can delay the progression of diabetic
neuropathy and ameliorate symptoms associated with the disease,
with minimum adverse effects [2]. The usual dosage of EPS for oral
use is 50 mg three times a day. The plasma EPS concentration of
3.9 mg/ml (12 mM) was observed 1 h after a single oral dose of
50 mg [33]. In this study, we examined the effects of EPS at near-
plasma concentration on BAECs, which are a commonly used and
well-characterized model for studying vascular endothelial dys-
function. Our new findings are that (1) treatment of BAECs with
EPS increases intracellular GSH through transcription regulation,
(2) EPS can also induce HO-1 and Trx-1 expression, (3) the Nrf2
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pathway is involved in EPS-induced GSH biosynthesis and the
expression of antioxidative proteins, and (4) EPS reduces the cy-
totoxicity induced by H2O2 and t-BHP.

Recently, we have shown that EPS affects GSH levels in rat
Schwann cells [20]. In the present study, we demonstrated that
EPS increased intracellular GSH and GCLM levels in BAECs
(Fig. 1A–D). Aldose reductase activity in BAECs was very low and
less than one-fifth of that in rat Schwann cells (data not shown).
Indeed, two other aldose reductase inhibitors, sorbinil [26] and
alrestatin [27], failed to increase GSH levels (Fig. 1E), suggesting
that the ability of EPS to increase GSH levels is independent of its
ability to inhibit aldose reductase. On the other hand, the knock-
down of Nrf2, which regulates GSH levels by controlling the ex-
pression of GCL gene [7–9], suppressed the increase in GSH and
GCLM mRNA levels after EPS treatment (Fig. 2C and D). Moreover,
the activation/nuclear translocation of Nrf2 was observed after
treatment with EPS, although EPS did not affect the mRNA level of
Nrf2 (Fig. 2A and B). These findings indicate that EPS stimulates
GSH biosynthesis in endothelial cells by up-regulating GCL via
Nrf2. Activation of Nrf2 involves regulation of a number of kinase
pathways like protein kinase cascades (MAPK), PI3K/Akt pathway,
protein kinase C (PKC), GSK-3β pathway and ERK signaling path-
ways [34]. Interestingly, LY294002, a specific inhibitor of PI3K [31],
almost completely abolished the EPS-stimulated GSH biosynthesis
and Nrf2 activation in BAECs (Fig. 5). The PI3K-mediated phos-
phorylation of Nrf2 leads to an increase in its stability and sub-
sequently, its transactivation activity [35]. Many studies have re-
ported PI3K mediates the downstream activation of Akt in Nrf2
phosphorylation and nuclear translocation [34,36]. Therefore,
we suggest that the PI3K/Akt-Nrf2 pathway is associated with
the EPS-stimulated GSH up-regulation. PI3K is activated by
15-deoxy-Δ12,14-prostaglandin J2 (15D-PGJ2), which bears two α,β-
unsaturated ketone moieties [37]. Because EPS contains an α,β-
unsaturated ketone moiety within its structure, EPS might act as a
PI3K activator.

Trx and GSH are the major thiol antioxidants that protect cells
from oxidative-stress-induced cytotoxicity. Trx is ubiquitously
expressed in endothelial cells and protects the cells from oxidative
stress [38]. Recently, Trx and GSH systems were found to be able to
provide electrons and to serve as a backup system for each other
[39]. In addition, the Trx system regulates the induction of HO-1
expression in BAECs [40]. The magnitude of HO-1 activation in a
pro-oxidant environment is critical for protection from the da-
maging effects of oxidative stress [40]. In this work, we demon-
strated that the treatment of BAECs with EPS induces HO-1 and
Trx-1 expression (Figs. 3 and 4). Knockdown of Nrf2 by siRNA
suppressed the induction of HO-1 and Trx-1 by EPS treatment,
indicating that the Nrf2 activation by EPS leads to HO-1 and Trx-1
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up-regulation. PI3K is a key molecule in the Nrf2-mediated reg-
ulation of HO-1 and Trx proteins [41]. We suggest that PI3K is an
upstream regulator of HO-1 and Trx-1, as well as GSH, via Nrf2
activation. Meanwhile, it was demonstrated that 15D-PGJ2 forms a
covalent adduct with Keap1 and induces GSH and HO-1 expression
in BAECs [42,43]. Electrophiles often interact with Keap1, leading
to Nrf2 activation [44]. However, at present, the contribution of
electrophilic EPS to Keap1 is unclear, and its evaluation will re-
quire further studies.

Oxidative stress impairs endothelial cells, thereby leading to
numerous pathological conditions, such as atherosclerosis, dia-
betes, neurodegeneration, inflammation, and infection [45–48]. It
is important to find ways to increase antioxidative ability in order
to prevent and/or minimize ROS-induced cellular damage. We
assumed that EPS played a role in protecting cells from oxidative
stress. To determine whether EPS indeed protects BAECs from
oxidative stress, we performed experiments by using H2O2 and t-
BHP as the source of oxidative stress. Pretreatment with EPS
clearly protected BAECs from toxicity induced by those oxidizing
agents (Fig. 6), suggesting that EPS acts to suppress oxidative da-
mage to cells. DL-Buthionine-(S,R)-sulfoximine (an inhibitor of
GCL) and zinc protoporphyrin IX (an inhibitor of HO-1) promoted
the proxide-induced cytotoxicity, though PX-12 (1-methylpropyl
2-imidazolyl disulfide, an inhibitor of Trx-1) had no effect on the
cytotoxicity (data not shown). Nrf2 controls not only GCL, HO-1,
and Trx genes but also the genes of many antioxidative enzymes,
such as superoxide dismutase, catalase, and glutathione perox-
idase [12,13,49]. It is possible that the EPS-induced resistance to
oxidative stress in BAECs is associated with the increased ex-
pression of some other cytoprotective enzymes. It was shown that
EPS improved impaired superoxide generation in streptozotocin-
induced diabetic rats [50]. In addition, EPS reduced plasma thio-
barbituric acid reactive substances [51] or lipid peroxide level [52],
an index of oxidative stress, in type 2 diabetic patients. Taken to-
gether, these results provide strong evidence that EPS has new
beneficial properties: it may prevent not only diabetic neuropathy
but also several vascular diseases caused by oxidative stress.

Drug re-profiling has emerged as a new strategy for drug dis-
covery and development and a way to identify new treatments for
diseases [53]. In this strategy, the pharmacological action of ex-
isting medicines, whose safety and pharmacokinetics have already
been confirmed clinically and whose use has been approved, is
examined comprehensively at the molecular level, and the results
are adopted for the development of new medicines. The results
can also be applied to the development of existing drugs for use as
medicines for the treatment of other diseases. Our present study



K. Yama et al. / Redox Biology 4 (2015) 87–96 95
may lead to breakthroughs in drug discovery and development.
We showed here that EPS induces GCL, Trx-1, and HO-1 expression
in endothelial cells, suggesting the beneficial effect of EPS. GSH,
the most abundant antioxidant, plays an essential role in main-
taining the cellular redox state [54]. Trx, a key regulator of cardi-
ovascular homeostasis, is an important future target for the de-
velopment of clinical therapies for cardiovascular disorders asso-
ciated with oxidative stress [14]. HO-1, which modulates the
generation of IL-1β, IL-6, and soluble intercellular adhesion mo-
lecule-1, is regarded as an anti-inflammatory enzyme in human
endothelial cells [55]. It is reported that studies on the regulation
and amplification of HO-1 by pharmacological approaches may
lead to the discovery of novel drugs for the treatment of a variety
of diseases [56]. Therefore, the therapeutic EPS dose might be a
new strategy against related diverse diseases, including vascular
disorders and inflammation. Meanwhile, it is reported that the
activation of the PI3K-Nrf2 system is a potential therapeutic
strategy for Parkinson's disease and other neurodegenerative dis-
eases [35]. EPS is likely to be beneficial for the development of
neuroprotective therapies for Parkinson's disease. Further ex-
tensive investigations are required to clarify the protective me-
chanism of EPS against oxidative stress. In addition, because
N-acetylcysteine as a GSH precursor is used to treat acute heavy
metal poisoning from a suicide or an accident, EPS might be
available for the treatment of acute toxicity.

In summary, we demonstrated for the first time that EPS at
near-plasma concentration increases intracellular GSH levels in
endothelial cells through transcription regulation by stimulating
the Nrf2 pathway. Nrf2 activation by EPS leads to HO-1 and Trx
up-regulation. Moreover, EPS enhances endothelial cell resistance
to oxidative stress. As oxidative stress is the key contributor to
aging and many diseases, EPS may be effective in preventing and/
or attenuating the progress of those processes.
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