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Abstract

Let Z be a path connectedH -space withH ∗(Z;Zp) concentrated in even degrees. Then
Eilenberg–Moore spectral sequences associated to the path loop fibrations

ΩZ → PZ →Z,

Ω2Z → PΩZ →ΩZ

collapse at theE2 term.
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1. Introduction

In this note we prove the following theorem:

Theorem 1. Let p be a prime. Let Z be a path connected H -space with H ∗(Z;Zp)

concentrated in even degrees. Consider the path loop fibrations

ΩZ → PZ → Z, (1)

Ω2Z → PΩZ → ΩZ. (2)
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The Eilenberg–Moore spectral sequences associated to the path loop fibrations (1) and (2)
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collapse at the E2 term. Hence

TorH ∗(Z;Zp)(Zp,Zp)∼= GrH ∗(ΩZ;Zp)

and

TorH ∗(ΩZ;Zp)(Zp,Zp)∼= GrH ∗(Ω2Z;Zp

)
.

We note by [7, Proposition 2.8], there are coalgebra isomorphisms

TorH ∗(Z;Zp)
∼= H ∗(ΩZ;Zp)

and

TorH ∗(ΩZ;Zp)
∼=H ∗(Ω2Z;Zp

)
.

If X is a simply connected finite H -space, then ΩX is a path connected H -space with
H ∗(ΩX;Zp) concentrated in even degrees [8,11,12]. Hence letting Z = ΩX, Theorem 1
resolves the following conjecture of Choi and Yoon [4].

Corollary 1. The Eilenberg–Moore spectral sequences for the path loop fibrations
converging to the mod p homology of the double and triple loop spaces of any simply
connected finite H -space collapse at the E2 term.

The homology of the triple loop spaces of finiteH -spaces has been studied by ma
authors [1,2,4,5]. For compact simply connected Lie groupsG, there is an inclusion o
the space of based gauge equivalence classesMk to a space that is homotopy equivale
to Ω3

kG [1]. As k increases more elements of the homology ofΩ3
kG are contained in

the homology ofMk . Collapse of the Eilenberg–Moore spectral sequences facilitat
computation ofH∗(Ω3

kG;Zp).
There are also many other path connectedH -spaces with modp cohomology

concentrated in even degrees. We note ifY is a simply connected space withH ∗(Y ;Zp) an
exterior algebra on odd degree generators, then TorH ∗(Y ;Zp)(Zp,Zp) is even dimensiona
Therefore since differentials alter the total degree by 1, the Eilenberg–Moore sp
sequence associated to the path loop fibration

ΩY → PY → Y

collapses. HenceH ∗(ΩY ;Zp) is concentrated in even degrees. For example, the ho
logy of Ω2(SU(n + 1)/SU(m + 1)) is studied in [16]. One notesH ∗(ΩSU(n + 1)/
SU(m+ 1);Zp) is concentrated in even degrees becauseH ∗(SU(n+ 1)/SU(m+ 1);Zp)

is exterior. By Theorem 1, the Eilenberg–Moore spectral sequence associated to t
loop fibration

Ω2(SU(n+ 1)/SU(m+ 1)
) → PΩSU(n+ 1)/SU(m+ 1)

→ ΩSU(n+ 1)/SU(m+ 1)

collapses.
In this paper we make the following assumptions. All spaces are connecte

endowed with a basepoint. All homologies and cohomologies will be of finite
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and will have coefficients inZp , the integers modp for some primep. Given a
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connected Hopf algebraA,P(A) andQ(A) will denote the module of primitives and th
module of indecomposables, respectively. The Eilenberg–Moore spectral sequence
abbreviated EMSS.

The ideas of this paper were first formulated in the Spring, 2002, while the autho
visiting Kochi University in Japan. I am indebted to Yutaka and Keiko Hemmi for t
wonderful hospitality and support during my stay. Also special thanks to Mamoru Mi
who brought this problem to my attention. Finally thanks to the referee for many u
comments.

2. Some known results

For any spaceZ, the evaluation mapε :ΣΩZ → Z defined byε(s, λ) = λ(s) induces
the suspension map

σ ∗ :H ∗(Z)→H ∗(ΣΩZ)∼=H ∗−1(ΩZ).

σ ∗ annihilates decomposables and its image lies in the primitives. Hence we often w

σ ∗ :QH ∗(Z)→ PH ∗−1(ΩZ). (3)

Given the path-loop fibration

ΩZ → PZ → Z

there is an associated second quadrant Eilenberg–Moore spectral sequence (EMSS

E2 = TorH ∗(Z;Zp)(Zp,Zp) andE∞ = GrH ∗(ΩZ;Zp). (4)

The suspension mapσ ∗ can be described via the EMSS [5]. We have

QH ∗(Z;Zp)∼= Tor−1,∗
H ∗(Z;Zp)

(Zp,Zp)=E
−1,∗
2 → E−1,∗∞ ⊆H ∗(ΩZ;Zp). (5)

If Z is anH -space the EMSS is a spectral sequence of differential Hopf algebras

Lemma 1. Let Z be a path connected H -space. The EMSS collapses if and only if

σ ∗ :QH ∗(Z;Zp)→ PH ∗−1(ΩZ;Zp)

is a monomorphism.

Proof. By [6] the differentials in the EMSS send algebra generators to Tor−1,∗
H ∗(Z;Zp)

(Zp;Zp)

By (5) the EMSS collapses if and only ifσ ∗ :QH ∗(Z;Zp) → PH ∗(ΩZ;Zp) is a mono-
morphism. ✷
Theorem 2. Let Z be a path connected H -space. Then

(a) σ ∗ :QHk(Z;Zp) → PHk−1(ΩZ;Zp) is monic if k 
≡ 2 mod 2p. σ ∗ is epic if
k − 1 
≡ −2 mod 2p.
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(b) If Z is simply connected, then ker σ ∗ �
∑∞

i=1 imβi where βi is the ith Bock-

s by

the

he
1.

l
t of
stein. If H ∗(Z;Zp) is concentrated in even degrees, then TorH ∗(Z;Zp) (Zp,Zp) ∼=
GrH ∗(ΩZ;Zp) and the EMSS converging to H ∗(ΩZ;Zp) collapses.

(c) Let A be a bicommutative Hopf algebra. There is an exact sequence

0 → P(ξA) → P(A) → Q(A)→Q(λA) → 0.

Hence if k 
≡ 0 modp, Pk(A)∼=Qk(A).

Proof. (a) is proved in [3]. (b) is proved in [9, Theorem B] and the EMSS collapse
Lemma 1. (c) is shown in [13]. ✷
Corollary 2. Let X be a finite simply connected H -space. The EMSS associated to the path
loop fibration

Ω2X → PΩX →ΩX

collapses.

Proof. By [11,12],H ∗(ΩX :Zp) is concentrated in even degrees. By Theorem 2(b)
result follows. ✷

3. The path loop fibration Ω2Z → PΩZ → ΩZ

LetZ be a path connectedH -space withH ∗(Z;Zp) concentrated in even degrees. T
Bockstein sequence impliesH ∗(Z;Z(p)) is torsion free, becauseβi increases degree by
Hence

H 1(ΩZ;Z(p))= Z(p) ⊕ · · · ⊕ Z(p).

There exist maps

S1 × · · · × S1 f→ΩZ
g→ S1 × · · · × S1

such thatgf is a modp homotopy equivalence. Hence if̃Z is the 2-connective cover ofZ,
we have

ΩZ �p S
1 × · · · × S1 ×ΩZ̃ and

QH 2np+2(ΩZ;Zp)∼=QH 2np+2
(
ΩZ̃;Zp

)
.

(6)

Now consider the EMSS associated to the path loop fibration

Ω2Z → PΩZ → ΩZ.

By (6) and Theorem 2(a),σ ∗ :QH 1(ΩZ;Zp) → H 0(Ω2Z;Zp) is monic. Hence if there
is a nontrivial differential in the EMSS forΩZ, there will also be a nontrivial differentia
in the EMSS forΩZ̃. By Lemma 1 and Theorem 2(a) there will be a nontrivial elemen
QH 2np+2(ΩZ̃;Zp)∩ kerσ ∗.
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Theorem 3. Let p be an odd prime. Let Z be a path connected H -space with H ∗(Z;Zp)

e

-

nts.

s,
mod 8.
concentrated in even degrees. Then the EMSS associated to the path loop fibrationΩ2Z →
PΩZ → ΩZ collapses.

Proof. By Lemma 1 and Theorem 2(a), it suffices to prove

σ ∗ :QH 2np+2(ΩZ̃;Zp)→ PH 2np+1(Ω2Z̃;Zp)

is monic. We have

QH 2np+2(ΩZ̃;Zp

) ∼=QH 2np+2(ΩZ;Zp) by (6)

∼= PH 2np+2(ΩZ;Zp) by Theorem 2(c)

∼= σ ∗QH 2np+3(Z;Zp) by Theorem 2(a)

= 0 becauseH ∗(Z;Zp) is even dimensional.

Henceσ ∗ is monic. ✷
The argument for the prime two is slightly different.

Proposition 1. Let p = 2. Let x̄ ∈QH 4"+2(ΩZ̃;Z2)∩ kerσ ∗.
We may choose a representative x ∈ H 4"+2(ΩZ̃;Z2) for x̄ that is primitive.

Proof. By Theorem 2(c) if there is no primitive representative, thenx̄ is dual to the squar
of an odd generator. Hence�∆x has the form

�∆x = y ⊗ y + im
(
1+ T ∗)

whereT :ΩZ̃ × ΩZ̃ → ΩZ̃ × ΩZ̃ is the twist map andy is an odd generator. Theo
rem 2(a) impliesσ ∗(y) 
= 0. Hence by [17]

c
(
σ ∗(x)

) = σ ∗(y)⊗ σ ∗(y)+ im
(
1+ T ∗) 
= 0.

This impliesσ ∗(x) 
= 0. Hence ifx̄ ∈ QH 4"+2(X;Z2) ∩ kerσ ∗, x̄ must have a primitive
representative. ✷
Proposition 2. Let Z be an H -space with H ∗(Z;Z2) concentrated in even degrees. Then

(a) PH 8m+2(ΩZ;Z2)= 0;
(b) If x̄ ∈ QH 8m−2(ΩZ;Z2) ∩ kerσ ∗, then there is a primitive representative x with

x = ϕ2k (y).

Proof. By [8, Section 29–5]PH ∗(ΩZ;Z2)/ imσ ∗ is spanned by transpotence eleme
Hence if x ∈ PH ∗(ΩZ;Z2) projects nontrivially toPH ∗(ΩZ;Z2)/ imσ ∗, there is an
algebra generatory ∈Ht(Z;Z2) truncated at height 2k andx is represented byϕ2k (y). We
have degreeϕ2k (y)= 2kt − 2, fork � 2. SinceH ∗(Z;Z2) is concentrated in even degree
t is even. Hence there are no transpotence elements in degrees congruent to 2
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PH 8m+2(ΩZ;Z2) = σ ∗QH 8m+3(Z;Z2)

= 0 sinceH ∗(Z;Z2) is even dimensional.

Now if x̄ ∈ QH 8m−2(ΩZ;Z2)∩kerσ ∗, by Proposition 1 there is a primitive representat
x for x̄. The elementx cannot be a suspension sinceQH 8m−1(Z;Z2) = 0. Hence
x = ϕ2k (y) for somey ∈Ht(Z;Z2) ✷
Theorem 4. Let Z be a path connected H -space with H ∗(Z;Z2) concentrated in even
degrees. Then the mod 2EMSS associated to the path loop fibration

Ω2Z → PΩZ → ΩZ

collapses.

Proof. By Theorem 2(a) and Lemma 1, it suffices to prove that

σ ∗ :QH 4"+2(ΩZ;Z2)→ PH 4"+1(Ω2Z;Z2
)

is monic. Letx̄ ∈ QH 4"+2(ΩZ;Z2)∩ kerσ ∗. By Proposition 1 and Proposition 2,x̄ has a
primitive representativex = ϕ2k (y) for k � 2 and degx = 8m− 2. A theorem of Kraines
[9, Theorem B] shows elements of kerσ ∗ in degrees 8m−2 must have one of the followin
forms

(i) β2Sq
4m−2Sq2m−1u2m.

(ii) β1w wherew has the formψr(v) [3, Section 3].

Supposex = β2Sq
4m−2Sq2m−1u2m. By Theorem 2(c)

Sq2m−1u2m = y + d wherey ∈ PH 4m−1(ΩZ;Z2),

d is decomposable andy = σ ∗(z) by Theorem 2(a). Hence

x = β2Sq
4m−2σ ∗(z)= β2σ

∗(Sq4m−2z
)
.

But Sq4m−2z is an integral class sinceH ∗(Z;Z2) is even dimensional. Hencex = 0. Now
supposex = β1w. Then sincex is indecomposable so isw. We may assumew is primitive
by Theorem 2(c).

By Theorem 2(a)w = σ ∗(u). Hencex = σ ∗(β1u) = ϕ2k (y). If x = σ ∗(β1u), thenx is
anA∞ class [14,15]. But ifx = ϕ2k (y) thenA2k−1(x) 
= 0 by [10, Theorem 4.7]. This is
contradiction. Henceσ ∗ :QH 4"+2(ΩZ;Z2)→ PH 4"+1(Ω2Z;Z2) is monic and the mod
2 EMSS collapses. ✷
Corollary 3. Let X be a simply connected finite H -space. Then the mod 2EMSS associated
to the path loop fibration Ω3X → PΩ2X →Ω2X collapses.

Proof. By [8,11,12] for any primep, H ∗(ΩX;Zp) is concentrated in even degrees.✷
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