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Coincidence of the properties of ligand binding pockets in native proteins with those in proteins gener-
ated by computer simulations without selection for function shows that pockets are a generic protein fea-
ture and the number of distinct pockets is small. Similar pockets occur in unrelated protein structures, an
observation successfully employed in pocket-based virtual ligand screening. The small number of pockets
suggests that off-target interactions among diverse proteins are inherent; kinases, proteases and phos-
phatases show this prototypical behavior. The ability to repurpose FDA approved drugs is general, and
minor side effects cannot be avoided. Finally, the implications to drug discovery are explored.
� 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction: Despite the tremendous effort that goes into
designing a small molecule drug that uniquely binds to a specific
protein, often that drug binds other, sometimes evolutionarily
unrelated, proteins.1,2 This interaction promiscuity leads to unex-
pected side effects, which depending on their nature, could result
in the drug failing a clinical trial or being repurposed to treat other
diseases.3 These results imply that the number of distinct small
molecule binding sites or pockets must be reasonably small; other-
wise, the likelihood that two evolutionarily unrelated proteins
would share similar stereochemical shapes and environments
would be inconsequential. Indeed, the widespread prevalence of
drug side effects raises a plethora of questions: (1) how special
are the observed small molecule ligand binding pockets? Are they
just a byproduct of protein structure and amino acid composition
or do they require evolutionary selection for them to occur? (2)
How many distinct ligand binding pockets are there? (3) Is the
space of ligand binding pockets complete; that is, are all small mol-
ecule binding pockets known? (4) What is the relationship
between the global fold of a protein and the structure of their
ligand binding pockets? Must two proteins have the same global
fold for them to share similar pockets or is pocket geometry weakly
coupled to global fold? (5) Conversely, if two proteins have high
sequence and structural similarity, must they have very similar
pockets? (6) To what extent can one infer similar protein–ligand
interactions by the similarity of their ligand binding pockets? (7)
Can one use these insights to design better virtual screening algo-
rithms based on ligand binding pocket similarity?4–7 (8) For possi-
ble off target interactions of the major classes of drug targets,
kinases, proteases and phosphatases,8 how often do their pockets
match those in other protein families? (9) What are the conse-
quences of such promiscuity for the development of better drug
discovery paradigms? In what follows, we address each of these
questions and suggest possible answers.

Simulations to tease out inherent protein properties: To separate
out the intrinsic properties of proteins from those due to evolution,
in principle one could design proteins without any selection for
function, solve their structures, assay them for ligand binding
and explore the similarity between their pockets and those in
native proteins.9–12 To cover all representative protein folds and
pocket geometries would be a long, expensive process, that is, at
present, impractical. Rather, we chose to perform a series of com-
puter experiments where a library of compact homopolypeptides
from 40 to 250 residues in length were generated using the TASSER
structure prediction algorithm.13 Then, sequences with protein-
like composition are selected by optimizing their thermodynamic
stability (using potentials describing secondary structure, burial
and pair interactions) in the putative fold of interest.14 We then
compare the properties of the pockets found in these artificial,
ART, proteins with those found in the PDB.15 The qualitative results
that emerge are independent of the particular potential used to
select the sequences, thereby suggesting that the results are
robust. Parenthetically, we note that the set of folds in the ART
library matches those in the PDB,16 as does its set of protein–
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protein interfaces.17 Thus, with regards to a variety of other struc-
tural features, the PDB and ART libraries are very similar. The reca-
pitulation of many native like protein properties lends credence
that ART proteins might also recapitulate many features of pockets
in native proteins.

Pocket comparison algorithm: We first address the requirements
to generate native-like protein pockets in single domain protein
structures. To do so, one needs an algorithm that can compare
the structures of protein pockets. Here, we employ the APoc pocket
structural alignment algorithm.18 Pockets are ranked using a
pocket structural similarity, PS-score that goes from 0 to 1 (identi-
cal pockets). A PS-score of 0.38 has a P-value of 2.6 � 10�3

. We use
this as the threshold that a pair of pockets is structurally related. The
PS-score offers the advantages that its mean is pocket size indepen-
dent and its statistical significance is provided. We further note that
structural fluctuations have a marginal effect on pocket identifica-
tion and the resulting overlap between a pair of pockets.14

Software tools: For the convenience of the reader, Table 1 pro-
vides a summary of the computational tools used to generate the
data in this review as well as the URL where the software can be
obtained.

Matching of pockets: Figure 1 plots the cumulative fraction of
proteins whose best PS-score matches a pocket that exceeds the
given threshold. Every native pocket has a statistically significant
match in the ART library and vice versa. Both ART–PDB and ART–
ART libraries have somewhat lower quality matching pockets than
those found in the PDB–PDB comparison. This is partly because
PDB structures have a somewhat greater number of larger pockets
Figure 1. For different size pockets, cumulative fraction of proteins whose best PS-sc

Table 1
Computational tools used in this review

Protein 3D structure prediction
http://cssb.biology.gatech.edu/skolnick/webservice/TASSER-VMT/index.html
http://cssb.biology.gatech.edu/TASSER-VMT-Lite/index.html
Comparison of protein global structural similarity
http://cssb.biology.gatech.edu/fr-tm-align
Comparison of protein pocket/local structural similarity
http://cssb.biology.gatech.edu/APoc
Comparison of ligand 3D structural similarity
http://cssb.biology.gatech.edu/LIGSIFT
than are found in ART proteins. Large pockets can be a source of
many matches to small pockets. The fact that all PDB pockets up
to 60 residues in size have a statistically significant match to pock-
ets in the ART library suggests that the library of native pockets is
likely complete. Since ART pockets are generated without any func-
tional selection or evolution, this implies that the space of protein
pockets is mainly determined by the compact packing of secondary
structural elements, as the volume of pockets is very tiny in com-
pact proteins lacking secondary structure.16 This is an important
conclusion with implications for the origin of the biochemistry of
life.

Number of pockets: Next, in Figure 2, we compute the number of
representative pockets as a function of PS-score. For PDB–PDB,
PDB–ART and ART–ART pocket pairs above the random threshold
(PS-score = 0.38), there are roughly 200–300 representative pock-
ets that cover the entire pocket space. PDB or ART pockets tend
to find a larger similarity among themselves than to each other.
Again, this reflects the fact that the current ART library has fewer
large pockets that can cover many smaller pockets than are present
in the PDB. Thus, there is a larger fraction of PDB pockets matched
at higher PS-scores. This deficit of larger pockets is likely an artifact
of the way the ART library was prepared. Nevertheless, the ART
library covers all PDB pockets at a statistically significant level.
From Figures 1 and 2, we conclude that the library of PDB pockets
is likely complete and covered by a rather small set of distinct
pockets.

Relationship between global fold similarity and pocket similarity:
To assess global protein structural similarity, we employ the TM-
score,19–21 whose value ranges from 0 to 1.0; proteins with globally
related structures have a TM-score P0.4 (a statistically significant
score with a P-value of 3.4 � 10�5).21 Figure 3 shows the distribu-
tion of PS-scores for a given extent of global structure similarity.
For globally unrelated proteins, with a TM-score = 0.18, their best
matching pocket structures are mostly unrelated; yet, even here,
3.5% of pockets are structurally similar. For globally similar proteins
with a TM-score = 0.40, 39% of proteins have structurally similar
pockets, with virtually identical behavior when all three sets
(PDB–PDB, PDB–ART, ART–ART) are compared. Comparison of
PDB–ART structures clearly shows that even when one has high glo-
bal structural similarity (TM-score = 0.6) and high pocket similarity
ore to a pocket in the given structural library P the specified PS-score threshold.
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Figure 3. At a given level of global structural similarity as assessed by the TM-score, the cumulative fraction of proteins whose best PS-score to a pocket in the given
structural library P the specified PS-score threshold.

Figure 2. (A) Number of representative pockets for a given PS-score threshold versus PS-score in the PDB–PDB, PDB–ART and ART–ART pocket libraries. (B) Fraction of
matched pockets in the PDB–PDB, PDB–ART and ART–ART libraries.
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(PS-score >0.5), the proteins need not be evolutionarily be related.
Hence, care has to be taken to infer evolutionary similarity even
when their global fold and pockets are structurally similar.
Conversely, for structurally very similar proteins, with TM-scores
of 0.55 and 0.60, there is still a significant fraction of unrelated
pockets for PDB–PDB (>60%), PDB–ART (>20%) and ART–ART
(>10%) structures. Thus, while pocket similarity tends to increase
with increasing global similarity, one can always find pockets in
globally similar proteins that are very different. This is a feature
of protein structure. Indeed, for native proteins, their pockets are
even less coupled to the global fold than are the ART proteins.

Pocket similarity in globally very similar structures: In Figure 4, for
each of the ART structures, we generated a set of 20 sequences
selected for stability (whose backbone structure is the same) and
examined the resulting PS-score distribution. Clearly, in these pro-
teins with virtually identical global protein structures, pockets
range from being highly similar to completely unrelated. This
effect can be understood by the following: Imagine, for a same
fixed backbone structure, one had nothing but GLY residues. Then,
the entire protein interior is a pocket. Conversely, consider the case
of nothing but TRP residues. Now, because TRP is a large amino
acid, the pockets will be very tiny. For sequences with protein like
composition, pockets can grow when a bulky amino acid is
replaced by a small amino acid. Conversely, pockets can shrink or
even bifurcate if a bulky amino acid is added. Interestingly, both
ART and PDB structures explore the same range of pocket similar-
ity for very similar global structures. This once again clearly indi-
cates that there is a rather weak coupling between global fold
and pocket similarity and the general features of protein pockets
do not require evolution for them to be reproduced.



Figure 4. Relationship of protein sequence and PS-score for a fixed protein backbone structure for ART proteins and closely related PDB structures, whose TM-score P 0.6.

Figure 5. For a given PS-score, the cumulative fraction of proteins whose TM-score 6 the given threshold.
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Distribution of global structures at fixed pocket similarity: We now
further explore the coupling of pocket similarity to global protein
structure. On comparing PDB–PDB or ART–ART structures (Fig. 5),
at fixed pocket similarity, the cumulative TM-score curves are very
similar up to a PS-score of 0.55. Thus, the ART library of pockets
recapitulates the coupling (or more accurately the lack thereof)
of a given pocket with its occurrence across both related and unre-
lated global folds. Even for a highly significant PS-score of 0.5,
about 12% of similar pockets are in unrelated structures (TM-
score = 0.30). However, in this high pocket similarity regime, most
pockets are found in globally related structures (even if they are
unrelated by evolution). Overall, on comparing PDB pockets that
match those in the ART library, for ART proteins, matching pockets
are more likely found in globally dissimilar proteins. This further
reinforces the idea that pocket geometry and global protein fold
are weakly coupled.
Sequence conservation in similar pockets: Thus far, we focused on
protein structural properties and did not consider the explicit role
of protein sequence. However, even if two pockets have very sim-
ilar geometric shapes, whether or not they interact with a given
ligand also depends on the sequence of residues that line the
pocket. Often, sequence conservation of pocket residues is used
to infer an evolutionary, or more precisely, functional relation-
ship.22,23 Since native protein pockets are the convolution of phys-
ical interactions and evolution, to tease out these effects, in
Figure 6, we compare the fraction of proteins that have a given
number of pocket residues conserved at a given equivalenced posi-
tion in the pocket as a function of PS-score for ART and PDB pro-
teins. Interestingly, up to a PS-score of 0.4, the sequence
conservation behaviors of PDB–PDB, PDB–ART and ART–ART sets
of pockets are virtually identical. For PDB–PDB pockets, a slight
echo of evolutionary conservation possibly occurs around a



Figure 6. For a given PS-score, the fraction of proteins with a given number of conserved residues when PDB–PDB, PDB–ART and ART–ART structures are compared.

Figure 7. Tanimoto coefficient between pairs of ligands for a given P-value of the PS-score for pairs of proteins with similar (A), and different (B), global folds.
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PS-score of 0.5, where higher sequence conservation is just barely
seen in PDB–PDB pairs of pockets. Thus, pockets that are entirely
unrelated by evolution (PDB–ART or ART–ART) but that are struc-
turally similar (PS-score = 0.40, P-value �10�3) have virtually the
same degree of sequence conservation at fixed pocket positions
as native proteins. This is suggestive of the origin of functional pro-
miscuity conjectured by Jensen24 and Tawfik.25–27 The ability to
bind similar ligands perhaps arises from protein sequences that
have thermodynamically stable native protein structures. Once
again, this reinforces the point that care needs to be taken to infer
whether a pair of proteins is evolutionarily related. They can have
similar structure, similar pockets and similar pattern of conserved
residues, and yet need not be related by evolution.

Examination of pocket and ligand similarity: The preceding anal-
ysis was pocket centric and entirely ignored the identity and chem-
istry of the ligands that bind in the protein’s pocket. We now
examine the extent of pocket similarity in PDB proteins required
to infer that they bind similar ligands. This is a first step towards
the development of a pocket/ligand similarity based virtual screen-
ing algorithm.28 Figure 7A shows a violin plot of the Tanimoto coef-
ficient versus P-value of the PS-score for a representative set of PDB
pockets and associated ligands.28 About 13% of ligand pairs share
significant chemical similarity when their Tanimoto coefficients
(Tc) > 0.4 and 0.01 6 P-value < 0.05. This value increases to 37%
on increasing the pocket similarity to a P-value of 1 � 10�5.
However, the percent of similar ligands drops to 18% when pocket
P-value <1 � 10�5. This is due to the fact that many pockets are
promiscuous and interact with chemically different ligands (at
least as assessed by their Tc); however, a subset of the ligands
might adopt similar stereochemical shapes, this is not apparent
in their Tc scores.

Pocket similarity can imply binding ligand similarity: Next, we
examine how often protein-ligand interactions found in the PDB
can be matched to a template having a similar pocket that binds
a similar ligand? By way of illustration, we search for the best
pocket structural hit in a template protein whose global sequence
identity <30% and whose chemical similarity Tc of bound ligands is
above a specified value. As shown in Figure 8, at a significant Tc
>0.4, �86% of pockets find a template that binds similar ligands
whose pocket similarity PS-score P-value <0.05. More conserva-
tively, 72%, 60%, and 54% of ligands have pocket matches whose
P-values <0.01, 0.001, and 0.0001, respectively. At a highly signifi-
cant Tc >0.7, �50% of pockets match a template whose P-value
<0.01. Thus, structural comparison of pockets could be useful for



Figure 8. Cumulative fraction of pockets with a given Tc versus the log of the P-
value of the PS-score.

Figure 9. Binding site match between CFTR (green) and NS3 helicase (cyan). Their
TM-score is 0.35 and pairwise sequence identity is 4%; yet, the P-value of the pocket
similarity score is 1.1 � 10�3.18

Figure 10. Number of similar pocket hits to evolutionary distant, if not unrelated,
proteins in kinases, proteases and phosphatases with similar (pink) and different
(blue) folds.
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inferring ligand binding. Furthermore, many top structural hits
come from proteins with different global folds. If Tc >0.4 (0.7)
and the pocket P-value <0.05, about 35% (19%) of the top template
hits are from proteins whose TM-score <0.4; viz. they have differ-
ent global structures. Note that for all Tc values, there is a signifi-
cant fraction of pockets that are structurally unrelated, and yet,
they bind similar ligands. This could reflect the fact that ligands
have internal degrees of freedom and can adopt different shapes
that can bind to different pocket structures.

Application to virtual ligand screening: Can these ideas be trans-
lated into a practical, pocket similarity based virtual ligand screen-
ing algorithm? To demonstrate that pocket matching can
successfully predict ligands that bind to similar pockets that come
from globally dissimilar proteins, we tested our pocket matching
algorithm, on the nucleotide binding domain of CFTR, a Cystic
Fibrosis associated protein.29,30 From its experimentally measured
thermal shift, NSC 93739, a small molecule from the NCI diversity
set,31 identified on the basis of pocket similarity to NS3 helicase,
has a KD = 60 nM. As shown in Figure 9, the two proteins clearly
lack global fold similarity, with a TM-score = 0.35; yet, the P-value
of their pockets PS-score is 1.1 � 10�3. The best binder, NSC10447
with a KD = 16.5 nM, is from a similar pocket in cyclodextrin trans-
ferase. In total, 7/18 predicted ligands identified on the basis of
pocket similarity have a KD 6 100 lM. Thus, in practice a pocket
based virtual screening methodology finds a number of promising
leads, but far more validation is needed.

Uniqueness of pockets in drug targets: Here, we focus on three
classes of enzymes: kinases, phosphatases, and proteases, which
provide a rich list of potential drug targets.8 For each enzyme class,
we used enzyme EC numbers to search for protein structures in a
non-redundant set curated from the PDB.28,32 This yields 2052
kinases, 188 phosphatases, and 545 proteases. We further group
these proteins according to their EC numbers, resulting in 94, 16,
and 23 groups for kinases, phosphatases, and proteases, respec-
tively, at the four EC digit level (see Supplementary Tables 1–3).
Next, ligand-bound pockets in these protein structures were iden-
tified. For each target pocket, we then search for similar pockets in
other proteins, whose sequence identity with respect to the target
protein is less than 30% according to the global structural align-
ment. Here, we define a pocket as a hit if it shares with the target
pocket a significant PS-score >0.36 and a P-value <0.05 according
to APoc.18 As shown in Figure 10, for each EC group, the mean
number of hits is 678 for kinases, 411 for phosphatases, and 398
for proteases. Although it is expected that remote homologs may
share highly similar pocket as these enzymes have many paralogs,
many hits are from apparently unrelated proteins with different
structural folds. About 263 (39%), 369 (90%), 154 (39%) hits are
from proteins which have TM-score <0.4 in the global structure
alignment for kinases, phosphatases, and proteases, respectively.
The most significant hits to target pockets usually have a highly
similar pocket shape, with a mean PS-score of 0.60/0.52/0.59, mean
P-value of 3 � 10�7/4 � 10�5/1 � 10�6, mean pocket RMSD of 1.58/
1.93/1.64 Å, mean sequence identity (in the pocket alignment) of
42%/32%/36%, and alignment coverage of 88%/90%/89%, for
kinases/phosphatases/proteases, respectively.



Figure 11. (A) Example of Sorafenib that binds to two different kinases, B-Raf and VGFR2, with low sequence identity. (B) Example of progesterone that binds to two proteins
whose pockets are similar despite the fact that their global structural similarity is low. The RMSD of the pocket residues is indicated, as is the global TM-score.
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As an example, sorafenib is one of FDA approved anti-cancer
drugs that have multiple targets in the family of protein kinases.
Two of these kinases, B-Raf33 and VGFR2,34 have been crystallized
in complex with the drug molecule. Figure 11A, shows the super-
position of these two structurally similar complexes, which
demonstrate a high similarity in their drug-binding pockets at a
PS-score of 0.74, despite a low global sequence similarity of 30%.
Perhaps this result is not that surprising, given that protein kinases
share high level structural similarity in its catalytic domain.

We next turn to the example of a drug, progesterone, a steroid
that has many known targets, binding to a pocket found in two
proteins with globally different structures. As shown in Figure 11B,
two of its targets, the human progesterone receptor35 and the
human steroidogenic cytochrome P450 17A1,36 are resolved in
complex with progesterone. However, significant structural simi-
larity is detected in the progesterone-binding pockets at a PS-score
of 0.40. These two examples illustrate that the same drug molecule
can bind to similar pockets located in multiple targets, whether
they are structurally related or not at the global structural level.

More generally, protein tyrosine kinases (EC 2.7.10.2) and pro-
tein serine–threonine kinases (2.7.11.1) are two groups of kinases
frequently targeted by drugs to treat cancer.37 As shown in
Table S1, these two groups of kinases contain pockets that have
similar counterparts in over 1200 proteins, with �300 or so hits
to pockets in globally unrelated structures. Many have a highly sig-
nificant PS-score >0.60.

Recently, tyrosine phosphatases (EC 3.1.3.48) (see Table S2)
have been proposed as potential therapeutic targets for diabetes,
obesity, and cancer.38 We found fewer significant pockets hits for
these targets compared to kinases and proteases, but there are still
over 200 hits in evolutionary very distant if not unrelated proteins
whose global fold is different. Finally, the HIV protease family (EC
3.4.23.16) is another drug target.39 From Table S3, the main pocket
of this target can be found in more than 700 protein structures, 536
of which have unrelated global folds. The clear implication of this
analysis is that drugs, which target these pharmaceutically rele-
vant classes of proteins, likely have many off-target interactions.
Many might belong to proteins of entirely unrelated structures.
This clearly shows that promiscuous off target drug interactions
must be dealt with in drug discovery.

Conclusions: Many biological activities originate from interac-
tions between small-molecule ligands and their protein targets in
pockets in the protein’s structure.28 In this work, the intrinsic abil-
ity of protein structures to exhibit the geometric/sequence proper-
ties required for ligand binding without evolutionary selection was
shown by the coincidence of properties of pockets in native, single
domain proteins with computationally generated, compact homo-
polypeptide, artificial structures, ART.14 The library of native pock-
ets is covered by a very small number of representatives (<400);
almost all native pockets have a statistically significant match to
the ART pocket library, suggesting that the library is complete.
The facts that structurally and sequentially similar pockets occur
across fold classes and the number of representative native pockets
is small imply that promiscuous interactions are inherent to pro-
teins. These results are consistent with a large-scale study on a
non-redundant set of �20,000 known ligand-binding pockets that
finds that their structural space is crowded, likely complete, and
represented by a similar number of pockets.28 Moreover, proteins
have pockets that can interact with diverse ligand scaffolds.28 Thus,
large scale drug repurposing, where FDA approved drugs are
applied to new uses,3,40–54 should be general. While pocket match-
ing is straightforward, specific ligand selection can be problematic
and requires the development of better tools.

This work rationalizes why drug side effects occur despite
focused attempts to design drugs that interact with a specific pro-
tein target. There are simply many similar pockets in the cellular
proteome, a fact clearly demonstrated for kinases, proteases and
phosphatases. While one might have expected cross reactivity
within a protein family, (although due to possible pocket diver-
gence within the family, this might not be as crucial as naively
expected, see Fig. 4), the fact that similar pockets occur in evolu-
tionarily unrelated proteins (see Fig. 11B) suggests that the best
drug design strategy would be to identify all putative pockets
across a proteome, identify proteins that are more likely to give
rise to side effects and then design inhibitors towards the protein
of interest and destabilize their interactions towards the other,
most deleterious protein targets. Of course, in reality one does
not always have the structures of these off target proteins. Here,
structure prediction can play a role to identify at least some off-tar-
get proteins, as �86% of the human proteome can be modeled at
the requisite level of resolution.

If the one small molecule-one protein target paradigm of Paul
Ehrlich were mostly true, then cellular regulation as well as drug
discovery would be relatively easy to achieve. Rather, the small
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number of ligand binding pockets suggests that the one small mol-
ecule-many protein targets (a given ligand likely has different
specificity for its protein targets) and the one protein-many small
molecule binders viewpoint is a closer approximation to reality.
Redundancy could provide for biological robustness and could
rationalize how biochemical processes evolved; yet, how to regu-
late and control such promiscuity is not readily apparent.

On average, a given single domain protein contains from 3 to 5
pockets whose volume is large enough to bind to a typical small
molecule ligand. For a given protein target, if one wants to identify
drugs with a novel mode of action, a possibility is to select another
pocket different from the one targeted by extant drugs. Of course,
one would still have to demonstrate that by modifying a secondary
pocket, the desired physiological response is achieved.

Overall, this work strongly suggests that a pocket centric view
of protein-ligand interactions is a powerful way of repurposing
FDA approved drugs, understanding minor side effects and finding
molecules with novel modes of interaction. We presented a prom-
ising example of how such an approach can predict novel nM bind-
ing molecules of the nucleotide binding domain of CFTR, a Cystic
Fibrosis associated protein.29,30 We also showed that drugs that
target kinases, proteases and phosphatases likely have off-target
interactions across a large set of diverse proteins. Because of the
rather small number of ligand binding pockets, a more effective
approach to drug discovery should consider these alternative inter-
actions in the design strategy. Here, one can view this as an optimi-
zation procedure to target the specific features of the pocket in the
protein of interest and design away from the other pockets. Such
types of approaches are currently being pursued, as well as ques-
tions concerning the completeness of the space of stereochemical
shapes adopted by drug like small molecules and how much of that
space is represented by FDA approved drugs. We further note that
the notion that binding sites with similar structures bind similar
ligands is embodied in the idea of similar ligand sensing cores in
the PSSC approach;55 however in PSSC, there is the assumption
such ligand sensing cores and their cognate natural products are
the product of evolution. Here, we show that such protein binding
sites likely arise from the intrinsic properties of proteins without
evolution. Thus, fundamental consideration of the physical chemi-
cal properties of proteins and their small molecule binding part-
ners can have practical applications to drug discovery.
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