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Let n binary numbers of length n be given. The Boolean function ``Mul-
tiple Product'' MPn asks for (some binary representation of ) the value of
their product. It has been shown (K.-Y. Siu and V. Roychowdhury, On
optimal depth threshold circuits for multiplication and related problems,
SIAM J. Discrete Math. 7, 285�292 (1994)) that this function can be
computed in polynomial-size threshold circuits of depth 4. For many
other arithmetic functions, circuits of depth 3 are known. They are mostly
based on the fact that the value of the considered function modulo some
prime numbers p can be computed easily in threshold circuits of depth 2.
In this paper, we investigate the complexity of computing MPn modulo m
by depth-2 threshold circuits. It turns out that for all but a few integers
m, exponential size is required. In particular, it is shown that for
m # [2, 4, 8], polynomial-size circuits exist, for m # [3, 6, 12, 24], the
question remains open and in all other cases, exponential-size circuits are
required. The result still holds if we allow m to grow with n. ] 1996

Academic Press

1. INTRODUCTION

In the last few years, threshold circuits of constant depth have been studied inten-
sively. Although a threshold gate is a rather simple device which can only decide
whether the number of 1's in its input is above some threshold, it seems rather
difficult to prove any superpolynomial lower bound even for circuits with depth
bounded by 3. The first exponential lower bound for threshold circuits of depth 2
is by [1] for the ``Inner Product modulo 2,'' defined by IPn : [0, 1]2n � [0, 1],
IPn(x1 , y1 , ..., xn , yn) :=x1y1 � } } } �xnyn . Providing ``projection reductions'' from
the inner product made it possible to prove that many (more interesting) functions
could not be computed in polynomial size and depth 2.

Further techniques for depth 2 were developed, but could not be extended to
depth 3. The lack of negative results was then complemented by a series of results
which proved threshold circuits to be surprisingly powerful. If we abbreviate by
TC 0

k all Boolean functions which can be computed in threshold circuits of polyno-
mial size and depth k, then the following complex Boolean functions are now
known to be contained in TC 0

3 : Sorting of n binary numbers which have length n
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each; multiplication of two binary numbers of length n ; computing the n th power
of an input number; computing an approximation of the division of two binary
numbers of length n. If we want to add n numbers of length n, we even get away
with TC 0

2 . Relevant (survey) articles in this area which also provide lower bounds
are, e.g., [2�4, 9�12].

One of the few exceptions among arithmetic functions where we know of a small-
depth (actually, depth 4, see [11]) threshold circuit, but of no TC 0

3 circuit, is the
``multiple product'' which computes the binary representation of >n

i=1 zi for n
binary input numbers zi .

The technique which was used in realizing complex functions such as division
consisted of computing the result modulo small prime numbers and then
reconstructing the result via Chinese remaindering.

A notion which also turned out to be rather useful is that of 1-approximability.
For a formal definition, we refer the reader to, e.g., [4]. Informally, a
1-approximable function can be computed in TC 0

2-circuits which have some special
property. Namely, on any input, the number of ones which are fed into the output
gate is restricted to some small range. This means that the output gate has a weak
task and can be omitted if there are other gates underneath.1

The set of 1-approximable functions is a proper subclass of TC 0
2 .

Though it may seem a random decision to consider ``multiple product,'' it should
be seen that this function is close to the boundary of what we know. It seems
natural to investigate whether the decomposition via Chinese remaindering can be
successful when applied to the multiple product.

The first results in this direction were obtained by Krause [5] who has shown
that for all O(log n)-bit numbers m which have a prime factor larger than 3, the
problem of computing the multiple product modulo m is not 1-approximable. The
proof showed that if the multiple product modulo m was 1-approximable, then one
could construct from this a small probabilistic communication protocol which is
known to not exist. This was a first hint that the usual approach via Chinese
remaindering might not be useful for the multiple product.

In this paper, we improve upon this result in two respects. First, we show
that the above negative statement can be strengthened to TC 0

2 instead of
1-approximability. Our proof is rather simple in that it uses projection reductions
only. Second, we are able to extend the statement to numbers m which consist of
c } n bits (for some constant c). (Note that if m is even larger than 2cn, then com-
puting the product of just two numbers of length approximately cn�2 modulo m
means computing the product exactly. In [1], a reduction is given which shows
that such a multiplication of two numbers cannot be computed in TC 0

2 . Hence,
considering moduli m which have at most linear length is not really a restriction.)

We then extend our investigations to numbers which have not been tackled in
[5]. In particular, we are able to classify for exactly which numbers of the form
m :=2i the multiple product modulo m can be computed in TC 0

2 .
Considering powers of 2 is perhaps the most natural case since it corresponds to

computing the actual bits in the output of the multiple product. In this respect, we
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are able to design TC 0
2-circuits which compute the 3 least significant bits of the

multiple product. The way the circuits are designed also reveals that those 3 bits are
actually 1-approximable. We are also able to show that higher order bits are not
computable in TC 0

2 . Finally, the negative results are extended to all moduli m
which are divisible by 16 or 9.

2. DEFINITIONS AND BASIC PROPERTIES

Let us recall some basic number theoretic notions. For a natural number m, let
Zm be the residue class modulo m, and let Z*m denote the multiplicative group
modulo m. For a # Z*m , we denote��slightly abusing notation��by 1�a the multi-
plicative inverse of a. The modulus will be clear from the context.

Let ordm(a) denote the order of a, i.e., the smallest i�1 such that ai#1 mod m.
An element a # Z*m is called a ``primitive root'' modulo m if ordm(a)=|Z*m |.2

Throughout this paper, we will assume that z1 , ..., zn are binary input numbers of
length n each. If the number of factors is not equal to their length, then we
implicitly pad with dummy inputs. We identify the zi with the natural numbers they
represent and denote by MP (m)

n (z1 , ..., zn) the binary representation of the value
>n

i=1 zi mod m. A projection reduction from a Boolean function f (x1 , ..., xn) to a
function g( y1 , ..., yt) is a mapping p : [1, ..., t] � [0, 1, x1 , ..., xn , x1, ..., xn] such
that f (x1 , ..., xn)= g( p(1), ..., p(t)). A projection reduction is called polynomial if t
is bounded by a polynomial in n. As an example, consider the projection reduction
sketched in Fig. 1. Multiplying, modulo 16, the three given binary numbers (corre-
sponding to the rows) means computing the four least significant bits of
(4y+1)(10x+1)(12y+2x+1). It turns out that in the result, bit 3 is equal to the
AND of x and y. I.e., Fig. 1 describes a projection reduction from the AND-
function to the Multiple-Product modulo 16.

Projection reductions are ``depth-preserving'', i.e., if there is a polynomial projec-
tion reduction from f to g, and f needs exponential size in threshold circuits of
depth 2, then so does g. The same holds if we have a projection reduction from f�
(the complement of f ) to g.

In this paper, we provide polynomial projection reductions from IPn to MP (m)

showing that computing multiple product modulo m is difficult in depth-2 threshold
circuits.

As in Fig. 1, projection reductions to the multiple product can be described as
the product of some linear terms. This motivates the following definition where we
consider linear terms which contain at most two variables.

Definition 1. Let m�2 be an integer. Call a polynomial of the form
ax+by+c, where a, b, c # Zm , a linear combination. A polynomial f (x, y) which is
the product of linear combinations is called a PLC.

In the rest of this paper, we will construct PLCs which have certain properties.
We want to use them to construct projection reductions, so we have to transform
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FIGURE 1

them into rows. Unfortunately, for even moduli m, this is not always possible. For
example, the linear combination 2x+2y+1 cannot be turned into a row modulo
16, since the values of all bit positions larger than 3 are equivalent to 0 modulo 16,
so we have the bit with value 2 only once at our disposal. Nevertheless, we need
it twice to represent 2x and 2y. (Using negations of variables also will not help.)
This motivates the following definition:

Definition 2. (a) Three binary numbers a*, b*, and c* are said to be
collision-free if for every i, at most one of the bits ai* , bi* , or ci* is 1.

(b) A linear combination ax+by+c can be represented modulo m if there are
collision-free numbers a*, b*, and c* such that a#a*, b#b*, and c#c*, modulo
m. The maximum length of a*, b*, and c* is called the representation size.

(c) A PLC can be represented modulo m if all of its linear combinations can
be represented modulo m.

If a, b, and c are collision-free, then we can transform a PLC ax+by+c into a
row by putting the variable x into all positions where ai=1, the variable y into all
positions where bi=1, etc.

For odd moduli, small representations of the linear combinations are easy to
obtain, as the following lemma reveals.

Lemma 3. If m is odd, then any linear combination ax+by+c can be represented
modulo m, using O(log m) bits.

Proof. Let j :=Wlog mX. Since m is odd, the inverses of powers of 2 exist. We
binary encode the numbers a, b�(2 j), and c�(22j) with j bits each. We then plug the
encoding of these numbers into the bit positions 0, ..., j&1, j, ..., 2j&1, 2j, ..., 3j&1,
respectively. The representation size is O(log m). K

We now show how we can deal with the cases where the modulus m is even,
assuming that we can handle the powers of 2:

Lemma 4. If the linear combination ax+by+c can be represented modulo 2k,
then it can be represented modulo m :=2k } r, for all odd r, with O(log m) bits.

Proof. We take the representation of ax+by+c modulo 2k (which occupies the
least significant k bits only). Let a*, b*, and c* be the corresponding collision-free
numbers. We then represent

(a&a*)
2k x+

(b&b*)
2k y+

(c&c*)
2k modulo r,
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using the collision-free numbers a$, b$, and c$. This is possible by Lemma 3. It is
easy to see that the three numbers 2ka$+a*, 2kb$+b*, and 2kc$+c* are collision-
free and that 2ka$+a*#a mod 2k and 2ka$+a*#a mod r, which by the Chinese
Remainder Theorem means that 2ka$+a*#a mod(2k } r). Analogous statements
hold, of course, for b and c. The representation size is k+O(log r)=O(log m). K

We want to use the PLCs to simulate the behaviour of the inner product func-
tion. If we feed the variable pairs one by one into the inner product function, then
it changes its output each time a pair has the value (1, 1). We want to achieve
similar behaviour with PLCs, hence the following definition is motivated:

Definition 5. We call a PLC f a 2-PLC modulo m if it has the following
property: f (0, 0)# f (0, 1)# f (1, 0)#1 mod m, and ordm( f (1, 1))=2.

Analogously, a PLC f is called a 3-PLC if f (1, 1) has order 3 instead of 2. (Note
that 3-PLCs will be useful in dealing with the Inner Product modulo 3 instead of
the Inner Product modulo 2.)

For example, f (x, y) :=(3x+3y+1)2 is a 2-PLC modulo 5 since f (0, 0)=1,
f (0, 1)= f (1, 0)=16 are equivalent to 1 modulo 5 and f (1, 1)=49 is equivalent to
&1 modulo 5, which is an element of order 2.

We have reduced the problem of finding a projection reduction to the problem
of finding a 2-PLC f modulo m which is representable (modulo m). The reason is
the following: For every pair of variables (xi , yi), we take the PLC f (xi , yi) and
consider the linear terms as rows of the multiple product.

The rows which correspond to a variable pair (xi , yi){(1, 1) only contribute a
factor of 1 modulo m. Let t be the number of variable pairs (xi , yi)=(1, 1). The
output of MP(m) is f (1, 1)t. Since the order of f (1, 1) is 2, this is equal to f (1, 1) if
t is odd and 1 if t is even. As a consequence, there is one bit in the output of MP(m)

which is 1 iff t is odd. Hence, this bit is identical to IPn(x1 , y1 , ..., xn , yn).
The 2-PLCs we construct consist of 3 linear combinations which are represen-

table with at most c$ log m bits. This has the following consequence: Given n rows
consisting of n bits each, we can store the PLCs of n�3 variables in those rows if
c$ log m�n ; hence for all m�2cn, the PLCs can be used to give a polynomial pro-
jection reduction from IPn�3 to MP (m)

n . This then yields that MP (m)
n needs exponen-

tial size in threshold circuits of depth 2.
Again, we note that as sketched in Section 1, the condition m�2cn is not really

a restriction.
We can now concentrate our attention on finding appropriate 2-PLCs.

3. NUMBERS CONTAINING A PRIME FACTOR LARGER THAN 3

In this section, we give 2-PLCs for every number m which contains a prime
larger than 3 in its prime factorization.

Lemma 6. The following PLC f is a 2-PLC modulo m for every m�5 which is
neither divisible by 2 nor 3: (&2x+1& y�3) } (&2x+3y+1) } (1&(5�8) y).
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Proof. Since m is not divisible by 2 or 3, the existence of 1
8 and 1

3 is guaranteed.
We have f (x, 0)=(&2x+1)2=1 for x # [0, 1]. Furthermore, f (0, 1)=(1& 1

3) }
4 } ( 3

8)#1 mod m, and f (1, 1)=(&1& 1
3) } 2 } ( 3

8)#&1 mod m. Since ordm(&1)=2,
we have shown that f is a 2-PLC modulo m. K

Lemma 6 leaves open the question what we can show for numbers which are
divisible by 2 or 3. The next lemma provides us with a method of obtaining 2-PLCs
and 3-PLCs for numbers m which contain at least one other prime besides 2 and
3 in their factorization.

Lemma 7. Let m1 , m2�2 be relatively prime. Assume that f is a 2-PLC modulo
m1 . Let f = f1 } } } fk be the factorization of f into its linear combinations. There are
two numbers r1 and r2 which depend only on m1 and m2 such that f $ :=
>k

i=1 (r1 } fi+r2) is a 2-PLC modulo (m1 } m2).
The same holds with 2-PLC replaced both times by 3-PLC.

Proof. By the Chinese Remainder Theorem, we can choose two numbers r1 and
r2 such that r1 #1 mod m1 , r1 #0 mod m2 , and r2 #0 mod m1 , r2 #1 mod m2 .
This yields that f $(x, y)# f (x, y) mod m1 and f $(x, y)#1 mod m2 . We apply
ordm1 } m2

(a) = lcm(ordm1
(a), ordm2

(a)) to a := f $(x, y) and find that since
ordm2

(a)=1, f $(x, y) has the same order modulo (m1 } m2) as f (x, y) has modulo
m1 . Hence, f $ is a 2-PLC modulo (m1 } m2) if f is a 2-PLC modulo m1 . The same
arguments can be applied in the case of 3-PLCs. K

It should be noted that we need not know a 2-PLC modulo m2 in the above
lemma; hence it can also be applied if, e.g., m2=3.

We are allowed to apply Lemma 7 to construct 2-PLCs in the case when one of
m1 , m2 is even. But, in order to get a projection reduction from these 2-PLCs, we
also have to ensure that the PLCs can be represented. We now show that 2-PLCs
constructed according to Lemma 7 have this property if we apply it carefully.

Assume therefore that we apply Lemma 7 with m1=2i, m2 odd, and a PLC f
modulo m1 which is representable modulo m1 . A linear combination ax+by+c
within this PLC is turned by the technique of Lemma 7 into a linear combination
which is equivalent to ax+by+c modulo m1 . Lemma 4 shows that all linear com-
binations in the PLC f $ can be represented modulo m1m2 .

The other case is when we apply Lemma 7 with m1 odd and m2=2i. In that case,
every linear combination within f $ is equivalent to 1 modulo m2 which is surely
representable modulo m2 . Applying Lemma 4 again yields that f $ is representable
modulo m1m2 . Altogether, we have proved the following theorem:

Theorem 8. For every m�5 which contains a prime factor larger than 3, one can
construct a 2-PLC modulo m which is also representable modulo m with only
O(log m) many bits. As a consequence, there is a constant c such that if m�2cn has
a prime factor larger than 3, then MP (m)

n needs exponential size when computed in
threshold circuits of depth 2.

Proof. We apply Lemma 6 to the largest number which divides m and which is
not divisible by 2 or 3, and then use Lemma 7 in case m is divisible by 2 or 3. The
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fact that the second statement in the theorem is a consequence of the first was
already discussed in Section 2. K

Example 1. Let m1=52 and m2=22. Modulo m1 , we have 1�3=17, 1�8=22.
Lemma 6 yields the 2-PLC f :=(&2x+1&17y)(&2x+3y+1)(1&10y) modulo 25.
Applying Lemma 7 (with r1=76, r2=25), we find (48x+8y+1) (48x+28y+1)
(40y+1), which is the desired (representable) 2-PLC modulo 100.

The only moduli m which remain to be investigated are of the form 2i3 j. The next
two sections are devoted to numbers of this form.

4. POWERS OF 2

Computing MP (2i)
n corresponds to determining the bits 0, ..., i&1 of MPn . This

means that MP (2i+1)
n contains MP (2i)

n as a subproblem. Thus, from a statement such
as ``MP (2i)

n cannot be computed in TC 0
2 ,'' it follows immediately that MP (2i+1)

n can-
not be computed in TC 0

2 . Nevertheless, this would not tell us anything about
whether we could compute bit i in TC 0

2 or not.
Hence, to make our statements as strong as possible, we consider in this section

the functions bitn
i which are 1 iff bit number i in MPn is 1. (To simplify notation,

we will assume n to be fixed and suppress it in the notation.)
In the following two subsections, we will prove the following theorem:

Theorem 9.

biti{can be computed in TC 0
2 ,

can not be computed in TC 0
2 ,

if 0�i�2
if 3�i�n2&4n+3.

4.1. Bits 0, 1, and 2

Since we are dealing with the three least significant bits, we need only know the
three least significant bits of the input numbers zj , hence we can assume that zj=
(zj, 2 , zj, 1 , zj, 0).

The idea behind the computation is simple: If we want to compute biti (i�1),
and one of the input numbers zj is even, then we can replace zj by zj�2 and compute
biti&1 of the resulting product.

On the other hand, if we know that all input numbers are odd, then this
knowledge can also be exploited appropriately. The following definitions will thus
be useful.

Definition 10.

testi (z1 , ..., zn) :={z1, 0 7 } } } 7 zi&1, 0 7 zi, 0,
z1, 0 7 } } } 7 zn, 0 ,

if 1�i�n
if i=n+1.

shifti (z1 , ..., zn) :=(z1 , ..., zi&1 , zi �2, zi+1 , ..., zn)

for 1�i�n and zi even.
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testi (1�i�n) is 1 if zi is the first even number and testn+1 is 1 if all input
numbers are odd. Note that exactly one of these test functions computes a 1. Note
also that the division by 2 in the definition of shifti is equivalent to a simple renum-
bering of the bits of zi .

Lemma 11. bit0(z1 , ..., zn)=testn+1(z1 , ..., zn). For k # [1, 2], we have

bitk(z1 , ..., zn)=testn+1(z1 , ..., zn) 7 (z1, k � } } } �zn, k)

6 �
n

j=1

testj (z1 , ..., zn) 7bitk&1(shiftj (z1 , ..., zn)).

Proof. For bit0 , the statement of the lemma is trivial since the product can only
be odd if all factors are odd. For bitk , k # [1, 2], we obtain the correctness by
observing the following: Either, one of the input numbers zj is even (which is tested
by testj), then the corresponding term in the ``big OR'' computes the correct value
(see the remarks before the lemma).

Now consider the remaining case when all input numbers zj are odd. It is
straightforward to verify that if we multiply zi=(zi, 2 , zi, 1 , 1) by zi $=(zi $, 2 , zi $, 1 , 1),
then the three least significant bits in the product are (zi, 2 �zi $, 2 , zi, 1 �zi $, 1 , 1).
Inductively, we then obtain bitk(z1 , ..., zn)=z1, k � } } } �zn, k for k # [1, 2]. This
completes the proof. K

It remains to show that the formulas in Lemma 11 can be realized in threshold
circuits of depth 2 and polynomial size.

Lemma 12. If i�2, then biti can be computed in TC 0
2 .

Proof. We first show that the formulas in Lemma 11 can be computed in
circuits of the form shown in Fig. 2, with polynomially many gates.

In words: The output OR-gate gets some AND-gates as inputs. The AND-gates
get either only literals as inputs or literals plus exactly one parity-gate which also
only gets literals as inputs. A literal is a variable or the negation of a variable. The
formulas for bit0 and bit1 lead directly to circuits of the above form. In order to
obtain a circuit for bitk , k=2, we observe that every term testj (z1 , ..., zn) 7

bitk&1( } } } ) can be computed by simply feeding the literals occurring in the test
function into the AND-gates of the circuit for bitk&1. The ``big-OR'' can be melted
together with the OR-gate of the circuit for bitk&1.

We now sketch how such a circuit can be transformed into a TC 0
2-circuit. Con-

sider an AND-gate which has a parity function and literals as input. Using a known
trick called ``wire-encoding'' (see, e.g., [4]), it can be computed by a ``symmetric''
gate. Let us sketch this briefly: Let the literals entering the parity gate be v1 , ..., vt

FIGURE 2
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and let the other literals be w1 , ..., wT . Then the output of the AND-gate only
depends on the value of (T+1) �t

i=1 vi+�T
i=1wi . Such ``symmetric'' functions are

easy to realize in depth-2 threshold circuits; furthermore, they are 1-approximable.
This means that the output OR-gate can be seen as a gate which gets

1-approximable functions as input. Hence, the whole circuit can be simulated in
polynomial-size, depth-2 threshold circuits.

(We only remark that due to the choice of our test functions, the above circuit
additionally shows that bit0 , bit1 and bit2 are not only in TC 0

2 , but also
1-approximable. Namely, at most one input of the OR-gate is 1. Therefore, the out-
put can be regarded as exactly representable by 1-approximable functions. As a
consequence, the function computed by the whole circuit is also 1-approximable.)

4.2. Bits 3, 4, 5, ...

Lemma 13. Let i�4 and a :=2i&2. The following PLC f is a 2-PLC modulo 2i

which is also representable modulo 2i:

f (x, y)=(ay+1) } (3ay+(a&2) x+1) } ((3a&2) x+1).

f also has the property that f (1, 1)#(2i&1+1) mod 2i.

Proof. For i�4, it holds that a2=22i&4#0 mod 2i. We conclude f (0, y)=
(ay+1) } (3ay+1)=3a2y2+4ay+1#1 mod 2i and f (1, 0)=(a&1) } (3a&1)=
3a2&4a+1#1 mod 2i. And, f (1, 1)=(a+1) } (4a&1) } (3a&1)#&(3a2+2a&1)
#1&2a#2i+1&2i&1#2i&1+1#2a+1 mod 2i. Since (2a+1)2=4a2+4a+1
#1 mod 2i, we have that f (1, 1) is an element of order 2. Hence, f is a 2-PLC
modulo 2i.

Every linear combination within f is representable modulo 2i: For the first and
third linear combination, this is obvious since a and 3a&2 are even numbers, for
the second linear combination it suffices to see that 3a=2a+a=2i&1+2i&2, and
a&2=2i&3+ } } } +21. K

Applying Lemma 13 with i=4, we obtain a 2-PLC modulo 16. Fig. 1 shows the
projection reduction which corresponds to this 2-PLC.

Looking at the way we construct projection reductions from PLCs, we find that
bit 3 in the multiplication of n binary numbers of length 4 is equal to IPn�3; hence
it is not in TC 0

2 .
In order to generalize this result to the other bits, we simply observe that by mul-

tiplication of one of the n input numbers in the reduction with 2, the hard bit in
the multiple product moves ``one to the left.'' Padding all input numbers to length
n in such a way, we obtain that all bits from position 3 to position 3+(n&4) }
n=n2&4n+3 cannot be computed in TC 0

2 . One could even extend this result to
higher order bits by observing that already a reduction from IPlog2n would prove
noncontainment in TC 0

2 , but we leave these extensions to the reader.
The following should be noted: There is a reduction in [1] which shows that the

multiplication of two numbers cannot be computed in TC 0
2 . More precisely, it is

approximately the middle bit in the multiplication of 2 numbers of length O(n log n)
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which is equal to the Inner Product modulo 2. This reduction can of course be used
to give exponential lower bounds if i grows with n. The strength of our reduction
is that it already works for very small i.

5. POWERS OF 3

We start by showing that the situation for computing the multiple product
modulo 3 is different. Namely, we show that there is no projection reduction from
the Inner Product modulo 2 to MP (3)

n . This means that the reduction technique
which is behind Theorem 8 has to fail when applied to MP(3).

Theorem 14. For all n, the following holds:

There is no projection reduction from IP5 to MP (3)
n .

There is no projection reduction from IP5 to MP (3)
n .

Proof. In order to get a contradiction, let us assume that we can find a projec-
tion reduction. Again, we visualize the factors as rows where in the bit positions we
have variables or constants. (Negations of variables can easily be simulated since
&1=2 mod 3.) Let V :=[x1 , y1 , ..., x5 , y5] be the set of binary variables. We
recall that a row corresponds to an expression of the form a1x1+b1y1+ } } } +
a5 x5+b5y5+c, where all ai , bi , and c are taken from the set [0, 1, 2].

We consider first in which situations we can force the value of a row to 0
(modulo 3) by some variable assignment. Let the row be given by the above expres-
sion. If c=0, we can set all variables to 0 and force the value of the row to 0. If
c=1, and there is one variable v where the coefficient of v is 2, then we set v :=1,
and all other variables to 0. If c=1, and there are at least two variables v1 and v2

which have the coefficient 1, then we set v1 :=v2 :=1, and all other variables to 0.
The case c=2 can be treated analogously. Thus, the only rows which cannot be
forced to 0 are of the form 1, 2, (v+1), or 2(v+1) for some variable v.

We now return to the projection reduction. Assume that no row in this projec-
tion reduction can be forced to 0 by some variable assignment. By the above
arguments, the projection reduction then corresponds to a PLC f in which every
linear combination is of the form 1, 2, (v+1), or 2(v+1) for some variable v.

f has to depend essentially on all variables since IP5 depends essentially on all
variables. Furthermore, we have (v+1)2#1 mod 3 for v # [0, 1]. This means that
for some i # [0, 1], f is equivalent to 2i (x1+1)( y1+1) } } } (x5+1)( y5+1). Then we
have f (0, 0, 0, ..., 0)= f (1, 1, 0, ..., 0) mod 3, but IP5(0, 0, 0, ..., 0){IP5(1, 1, 0, ..., 0).
Thus, f cannot correspond to a projection reduction which yields a contradiction.
This contradiction was caused by the assumption that there is no row in the projec-
tion reduction which can be forced to 0.

We now investigate a row which can be forced to 0 and the corresponding
variable assignment more closely. Let the value of IP5 on this assignment be s. The
value of the multiple product modulo 3 on this assignment is of course 0.

For every pair (xi , yi), it holds that changing it either to (0, 0) or to (1, 1) will
change the output of IP5 . Hence, the value of the row under consideration also
needs to change since otherwise the multiple product would remain 0.
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For all pairs (xi , yi), we mark by which amount the value of the row will change.
Let us call this value di . We have just seen that di # [1, 2].

We have 5 variable pairs; hence, by the pigeonhole principle, there are at least
three di which are equal. Let us assume w.l.o.g. that d1=d2=d3 .

By changing the assignments of these pairs, the output of IP5 will change 3 times
and then is equal to s�1. On the other hand, the value of the row will be changed
by an amount of 3d1 #0 mod 3; hence the multiple product is still zero. This is a
contradiction. K

Three things should be noted: First, the proof of Theorem 14 shows more than
that there are no 2-PLCs modulo 3 since in general there might be projection
reductions which work in a different manner. This is why we have to deal with zero
rows in the above proof. Second, it can easily be seen that computing whether the
multiple product is divisible by 3 is in TC 0

2 . Nevertheless, this does not tell us any-
thing about how the bits in the representation can be computed. Third, it is easy
to see that 2-PLCs modulo 3i are also 2-PLCs modulo 3; hence, there are none.

Altogether, we have an indication that powers of 3 have to be treated differently.
One way out is to consider the ``inner product modulo 3,'' IP*, defined by
IP*=x1y1+ } } } +xnyn mod 3. In order to turn IP* into a Boolean function f (IP3),
we have to find some appropriate encoding. We choose f (IP3)=1 � IP*=0. It has
been shown in [7] that if we have a threshold circuit of depth 2 which gets binary
coded values from [0, 1, 2] as input and which has to compute some binary
encoding of IP* (over Z3), then this circuit needs exponential size. This result
can be used to show that the Boolean function f (IP3) cannot be computed in
TC 0

2 [6].
This suggests that one should try to find 3-PLCs modulo 3i. First, let us show

how we can exploit 3-PLCs to obtain projection reductions:

Lemma 15. Given a 3-PLC f modulo 3i, we can construct a polynomial projection
reduction from either f (IP3) or f (IP3) to MP(3i).

Proof. We construct the reduction similar to the remarks after Definition 5.
Depending on the value f (1, 1), we possibly add an extra row. Whether it is a
reduction from f (IP3) or from f (IP3) also depends on the value f (1, 1).

Let a= f (1, 1) be the element of order 3. As the output of MP(3i), we have either
a0=1, a1=a, or a2, depending on whether the number of (1, 1)-pairs in the input
is equivalent to 0, 1, or 2 modulo 3. In the binary representations of 1, a, and a2,
there is one bit position j which is not the same for all three numbers. Assume that
the j th bit of ak, k # [0, 1, 2], is 1 and that the j th bits of the other two numbers
are 0. (The other case is similar; we then consider f (IP3).)

We add an extra row which contains a factor ak. The output of MP(3i) is then ak

iff the number of pairs (1, 1) is divisible by 3.
Hence, the j th bit in the output of MP(3i) is equal to f (IP3). K

Let us now present the 3-PLCs that we have found. We need the following
number theoretic proposition (see, e.g, [8, p. 102]).
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Proposition 16. If p is an odd prime and g is a primitive root modulo p2, then
g is a primitive root modulo p: for :=3, 4, 5, ... . In particular, 2 is a primitive root
modulo 3i for all i�2.

Lemma 17. For i�2, let w=22 } 3i&2
, b=(w+1)�2&1, a=2�(w+1)&1. Then

the PLC f :=(&2x+1) } (&2x+ay+1) } (by+1) is a 3-PLC modulo 3i.

Proof. We first have to ensure that the inverses modulo 3i used in the definition
of the parameters do exist. For 1

2 , this is clear. w is a power of 4, hence w#1 mod 3,
and w+1#2 mod 3 has an inverse. Now, we evaluate f : f (x, 0)=(&2x+1)2=1,
f (0, 1)=(a+1)(b+1)#1 mod 3i, and f (1, 1)=(1&a)(b+1)#w mod 3i.

Two is a primitive root modulo 3i (see Proposition 16), hence it has order
2 } 3i&1. Thus, f (1, 1)#w has order 3. K

For example, (&2x+1) } (&2x+3y+1) } (6y+1) is a 3-PLC modulo 9.
Lemma 17 together with Lemma 15 shows that there is a bit in the binary

representation of MP(3i), i�2 fixed, which cannot be computed in TC 0
2 .

Lemma 7 can also be used to obtain 3-PLCs for numbers m which are of the
form 3i } r, i�2.

This yields that the only moduli that we were not able to classify are of the form
3 } 2i, i�3, since to all other numbers of the form 2i3 j, one of the PLC construction
methods can be applied.

6. FINAL REMARKS

We were able to classify, for all positive integers m � [3, 6, 12, 24], whether the
multiple product modulo m can be computed in polynomial-size threshold circuits
of depth 2. For m=24, we have the strange situation that we are able to provide
2-PLCs modulo 24, but, we have not found a 2-PLC which is also representable.

One example of such a PLC is (&2x+12y+1)(&2x+18y+1)(6y+1).
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