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Abstract

We study the global character of solutions of the third order rational difference equation

xn+1 = βxn + δxn−2

A + Bxn + Cxn−1
, n = 0,1, . . . ,

where the parametersβ, δ, A are nonnegative,β+δ > 0,B,C > 0, the initial conditionsx−2, x−1, x0
are nonnegative real numbers and the denominator is always positive.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We study the global character of solutions of the third order rational difference equ

xn+1 = βxn + δxn−2

A + Bxn + Cxn−1
, (1)

where the parametersβ, δ, A are nonnegative,β + δ > 0, B,C > 0, the initial conditions
x−2, x−1, x0 are nonnegative real numbers and the denominator is always positive.
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Whenδ = 0, Eq. (1) was studied in [3]. Whenβ = 0, the following theorem holds:

Theorem A (see [1]). Assume that β = 0, A � 0 and B,C > 0. Then the solutions of the
equation

xn+1 = xn−2

A + Bxn + Cxn−1
, n = 0,1, . . . , (2)

have the following period-three trichotomy behavior:

(a) When

A > 1,

every solution of Eq. (2) converges to zero.
(b) When

A = 1,

every solution of Eq. (2) converges to a period-three solution of the form

. . . ,0,0, φ,0,0, φ, . . . ,

with φ � 0.
(c) When

0� A < 1,

Eq. (2) has unbounded solutions.

For the rest of the sequel, we assume thatβ, δ > 0. Using an appropriate change
variables Eq. (1) becomes

xn+1 = βxn + xn−2

A + Bxn + xn−1
, (3)

whereA � 0, β,B > 0, the initial conditionsx−2, x−1, x0 are nonnegative real numbe
and the denominator is always positive.

Equation (3) has one or two equilibrium points. Whenβ + 1 � A, Eq. (3) has only the
zero equilibrium. Whenβ + 1> A, andA > 0, Eq. (3) has two equilibrium points, name
the zero equilibrium and the positive equilibrium̄x = β+1−A

B+1 . WhenA = 0, Eq. (3) has
only the positive equilibrium̄x.

A question of great importance in the study of difference equations is whether o
the solutions are bounded. The following theorem which was established in [2] sho
existence of unbounded solutions of Eq. (3).

Theorem B. Assume that

β < B(1− A). (4)

Let {xn} be a solution of Eq. (3) such that

0< x−1 < 1+ ε, 0< x0 <
β + ε, x−2 > max{K,L}, (5)

B
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where

K = α + β(
β
B

+ ε) + δ(1+ ε)

ε
, L = α + 1+ ε + δ(

β
B

+ ε)

Bε

and

0< ε <
1− A − β

B

B + 1
.

Then

lim
n→∞x3n+1 = ∞, lim

n→∞x3n+2 = β

B
, lim

n→∞x3n+3 = 0.

2. Global analysis of solutions of Eq. (3)

The following lemmas will be useful in the sequel.

Lemma 2.1. Assume that A = 1. Let {xn} be a solution of Eq. (3) for which there exists
N > 0 such that

0< xN−2, xN−1, xN <
β

B
. (6)

Then it holds

xN+1 <
β

B
.

Proof. In view of Eq. (3), we get

xN+1 = βxN + xN−2

1+ BxN + xN−1
<

β
B

(β + 1)

1+ β
= β

B
.

The proof is complete. �
Lemma 2.2. Assume that A = 1. Let {xn} be a solution of Eq. (3) for which there exists
N > 0 such that

xN+1 � β

B
. (7)

Then it holds that

xN−1 <
β

B
. (8)

Proof. Suppose for the sake of contradiction that

xN−1 � β

B
.

Then in view of Eq. (3), we get

xN−2 � β
(

1+ β
)

and xN−4 � β
,

B B B
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which implies that

xN−5 � β

B

(
1+ β

B

)2

and xN−7 � β

B
.

Inductively, we get

xN−3k−2 >
β

B

(
1+ β

B

)k+1

, k = 0,1, . . . ,

which is a contradiction and the proof is complete.�
Theorem 2.1. Assume that A � 1. Let {xn} be a solution of Eq. (3). There exists N > 0
such that

xn <
β

B
, n � N. (9)

Proof. We will consider two cases. First assume that

A = 1.

In view of Lemma 2.1 it suffices to show that there existsN > 0 such that (6) holds. Fo
the sake of contradiction and in view of (7), (8) assume that there existsN > 0 such that
for all n � 0,

0< x3n+N,x3n+N+1 <
β

B
< x3n+N−1.

From Eq. (3), we get

x3n+N+2 = βx3n+N+1 + x3n+N−1

1+ Bx3n+N+1 + x3n+N

< x3(n−1)+N+2.

Let

S = lim sup
n→∞

xn = lim
n→∞x3n+N+5 = lim

n→∞x3n+N+2 = lim
n→∞x3n+N−1 � β

B
.

In addition there exist subsequences, namely{x3ni+N+4}, {x3ni+N+3}, {x3ni+N+1},
{x3ni+N }, such that

l4 = lim
i→∞x3ni+N+4, l3 = lim

i→∞x3ni+N+3,

l1 = lim
i→∞x3ni+N+1, l0 = lim

i→∞x3ni+N � β

B
.

From Eq. (3), we get

S = βl1 + S

1+ Bl1 + l0
.

If l0 > 0, we get

β

B
� S = βl1

Bl1 + l0
<

β

B

which is a contradiction.
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On the other hand, ifl0 = 0, it follows thatl4, l3 > 0 and so

S = βl4

Bl4 + l3
<

β

B

which is also a contradiction and the proof of (9) is complete whenA = 1.
Assume that

A > 1.

For the sake of contradiction assume that there existsN such that

xN+1 = βxN + xN−2

A + BxN + xN−1
>

β

B
. (10)

Eq. (10) implies that

xN−2 = βxN−3 + xN−5

A + BxN−3 + xN−4
>

β

B
A

which in addition implies that

xN−5 > A2 β

B
.

Inductively we have that

xN−3k−2 > Ak+1 β

B
, k = 0,1, . . . ,

which is a contradiction and so the proof of (9) is complete.�
Lemma 2.3. Assume that 1� A < β + 1. Let {xn} be a positive solution of Eq. (3). Then it
holds that

S = lim sup
n→∞

xn > 0. (11)

Proof. Assume for the sake of contradiction thatS = 0. There existsε > 0, m > 0, where

0< m = A + (B + 1)ε

β + 1
< 1. (12)

Without loss of generality assume that

0< xn < ε, n � −2.

ChooseN large enough. From Eq. (3), we get

xN+1 = βxN + xN−2

A + BxN + xN−1
< ε

which implies

min{xN−2, xN } < εm

from which it follows that

min{xN−5, xN−3, xN−1} < εm2.
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12) is

e

Sufficient repetition of that argument leads to a contraction and so the proof of (
complete. �
Theorem 2.2. Assume that

1� B < +∞, 1� A < β + 1. (13)

Then every positive solution {xn} of Eq. (3) converges to the positive equilibrium of Eq. (3).

Proof. In view of Theorem 2.1, the solution{xn} of Eq. (3) is bounded from above by th
positive constantβ

B
. Let

S = lim sup
n→∞

xn < +∞, I = lim inf
n→∞ xn � 0.

Then in view of Eq. (3), we get

S � (β + 1)S

A + BS

and so in view of (12)

S � β + 1− A

B
.

Assume thatS = β+1−A
B

. There exist subsequences, namely{xni+1}, {xni
}, {xni−1},

{xni−2}, {xni−3} such that

S = lim
i→∞xni+1, li = lim

i→∞xni−t , t = 0,1,2,3.

Then

S = βl0 + l−2

A + Bl0 + l−1
,

which impliesl0 = l−2 = S andl−1 = 0. From Eq. (3), we get

l0 = S = l−3

A + S
� S

A + S

which implies thatS � 1− A, a contradiction, and so

S <
β + 1− A

B
. (14)

There existε > 0, m > 0 andN > 0

0< m < min{xN−2, xN−1, xN }
and

S + ε <
β + 1− A

B
< β + 1− A − Bm, whenB > 1

or

S + ε < β + 1− A − m, whenB = 1
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such that

xn < S + ε < β + 1− A − Bm, n � N − 2.

In addition

xN+1 = βxN + xN−1

A + BxN + xN−1
>

(β + 1)m

A + Bm + β + 1− A − Bm
= m.

Inductively we have that

m < xn < β + 1− A − Bm, n � N − 2.

HenceI > 0. Then, in view of Eq. (3), we get

S � (β + 1)S

A + BS + I

which implies that

BS + I � β + 1− A

and also

I � (β + 1)I

A + BI + S
,

which implies that

BI + S � β + 1− A.

Combining the inequalities, we get that

(B − 1)(S − I ) � 0

and soI = S whenB > 1.
On the other hand, whenB = 1, we get

S = βl0 + l−2

A + l0 + l−1
� (β + 1)S

A + S + I
,

which implies that

S � β + 1− A − I.

Assume thatS = β + 1− A − I andS > I . Then

l0 = l−2 = S, l−1 = I.

In addition

l0 = S = βl−1 + l−3

A + l−1 + l−2
<

(β + 1)S

A + S + I
,

which implies that

S < β + 1− A − I,
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a contradiction, and so eitherS < β +1−A− I or S = I . Assume thatS < β +1−A− I .
There exist subsequences, namely{xnj +1}, {xnj

}, {xnj −1}, {xnj −2}, {xnj −3} such that

I = lim
j→∞xnj +1, mt = lim

j→∞xnj −t , t = 0,1,2,3.

In view of Eq. (3), we get

I = βm0 + m−2

A + m0 + m−1
� (β + 1)I

A + I + S

and soS � β + 1− A − I , a contradiction. HenceS = I . The proof is complete. �
Conjecture 2.1. Assume that

1� A < β + 1, 0< B < 1.

Show that every positive solution of Eq. (3) converges to the positive equilibrium of Eq. (3).

Theorem 2.3. Assume that

β > B(1− A), 1 � A � 0, B � 1. (15)

Then (1− A,
β
B

) is an invariant interval for all positive solutions of Eq. (3).

Proof. Assume that{xn} is a solution of Eq. (3), with initial conditionsx−2, x−1, x0 such
that

1− A < x−2, x1, x0 <
β

B
.

Then

x1 − β

B
= Bx−2 − Aβ − βx−1

B(A + Bx0 + x−1)
<

β(1− A − x−1)

B(A + Bx0 + x−1)
< 0.

In addition

x1 − (1− A) = βx0 + x−2

A + Bx0 + x−1
− (1− A)

= [β − (1− A)B]x0 + x−2 − (1− A)(A + x−1)

A + Bx0 + x−1

>
(1− A)[β − (1− A)B + 1− A − β

B
]

A + Bx0 + x−1

= (1− A)(B − 1)[β − (1− A)B]
A + Bx0 + x−1

> 0.

Inductively the result follows. �
Theorem 2.4. Assume that

β > B(1− A), 1 � A � 0, B � 1. (16)

Then every solution of Eq. (3) with initial conditions in the invariant interval (1 − A,
β
B

)

converges to the positive equilibrium of Eq. (3).
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Proof. We will consider two cases. First assume thatB = 1. Let

S = lim sup
n→∞

xn, I = lim inf
n→∞ xn.

Then in view of Eq. (3), we get

S � (β + 1)S

A + S + I
,

which implies that

S � β + 1− A − I.

Assume thatS = β + 1 − A − I andS > I . There exist subsequences, namely{xni+1},
{xni

}, {xni−1}, {xni−2}, {xni−3} such that

S = lim
i→∞xni+1, lt = lim

i→∞xni−t , t = 0,1,2,3.

In view of Eq. (3), we have thatl0 = l−2 = S andl−1 = I . In addition

l0 = S = βI + l−3

A + I + S
<

(β + 1)S

1+ S + I

which implies that

S < β + 1− A − I,

a contradiction, and so eitherS < β + 1− A or S = I . Assume thatS < β + 1− A. There
exist subsequences, namely{xnj +1}, {xnj

}, {xnj −1}, {xnj −2}, {xnj −3} such that

I = lim
j→∞xnj +1, mt = lim

j→∞xnj −t , t = 0,1,2,3.

In view of Eq. (3), we get

I = βm0 + m−2

A + m0 + m−1
� (β + 1)I

A + I + S

and soS � β + 1−A− I , a contradiction. HenceS = I . The proof is complete in the cas
B = 1.

WhenB > 1, the convergence of{xn} is a consequence of the global stability res
Theorem A.0.5 in Ref. [3, p. 205] applied in the invariant interval[1 − A,

β
B

]. The only
hypothesis of Theorem A.0.5 remaining to be checked is whether the system{

M = (β+1)M
A+BM+m

,

m = (β+1)m
A+Bm+M

has a unique solution. This is clear because 0< B < 1. The proof is complete. �
Open Problem 2.1. Assume that (16) holds. Prove that every positive solution of Eq. (3)
converges to the positive equilibrium of Eq. (3).

Whenβ + 1 > A, the positive equilibrium̄x of Eq. (3) is locally asymptotically stabl
if and only if



E. Camouzis / J. Math. Anal. Appl. 316 (2006) 616–627 625

oints
equi-
s of
as

there
local

).
A � 1 (17)

or

A < 1 and β >
−1− A − 2B + √

(1+ A)2 + 4B(2+ (2− A)B)

2B
= β∗. (18)

In rational difference equations it often occurs, when we have two equilibrium p
one of which is zero and the other is positive, that the local stability of the positive
librium implies that the positive equilibrium is a global attractor of all positive solution
the equation. On the other hand, whenβ < B(1− A), Theorem B predicts that Eq. (3) h
unbounded solutions. When

1> A � 0, 1> B �
√

5− 1

2
or

1

2
� B �

√
5− 1

2
and

1> A >
B2 + B − 1

B2 − B
(19)

it holds that

β∗ < β < B(1− A)

and so the positive equilibrium of Eq. (3) is locally asymptotically stable and also
exist solutions of Eq. (3) which are unbounded. Therefore in this particular equation
stability does not imply global attraction.

Open Problem 2.2. Assume that (19) holds.

(a) Find the set of initial conditions x−2, x−1, x0 for which every solution of Eq. (1) is
unbounded.

(b) Find the set of initial conditions x−2, x−1, x0 for which every solution of Eq. (1) con-
verges to the positive equilibrium of Eq. (3).

When

1

2
< B <

√
5− 1

2
and A <

B2 + B − 1

B2 − B
or

0< B <
1

2
and 0� A < 1 (20)

it holds that

β∗ > β > B(1− A).

In this case numerical investigations indicate chaotic behavior of solutions of Eq. (3

Open Problem 2.3. Investigate the behavior of solutions of Eq. (3) when (20) holds.

Conjecture 2.2. Assume that

β > B(1− A).

Prove that all solutions of Eq. (3) are bounded.
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Theorem 2.5. Assume that

A � β + 1. (21)

Then every solution {xn} of Eq. (3) converges to zero.

Proof. Let {xn} be a solution of Eq. (3). In view of Theorem 2.1, the solution{xn} is
bounded from above. Let

S = lim sup
n→∞

xn.

Then from Eq. (3), we get

S � (β + 1)S

A + BS

and so

S � β + 1− A

B
� 0.

The proof is complete. �

3. Period-three solutions of Eq. (1)

In this section we prove the existence of a unique prime period-three solution of E
whenB = 1. Using an appropriate change of variables Eq. (1) becomes

xn+1 = xn + δxn−2

A + xn + xn−1
, n = 0,1, . . . (22)

whereδ > 0, A � 0, the initial conditionsx−2, x−1, x0 are nonnegative and the denomin
tor is always positive.

Whenδ > A + 1, there are values ofδ,A such that the positive equilibrium of Eq. (2
is locally asymptotically stable. On the other hand condition (4) of Theorem B, wiβ

replaced byβ
δ

andA replaced byA
δ

, andB = β = 1 becomes,δ > A + 1 and so in this
case, Theorem B predicts that Eq. (22) has unbounded solutions. The next theorem
that whenδ > A + 1, Eq. (22) has periodic solutions of period three.

Theorem 3.1. Eq. (22) possesses a unique prime period-three solution of the form

. . . , p, q, r,p, q, r, . . .

if and only if

δ > A + 1.

Furthermore p,q, r are the three positive solutions of the cubic equation

−Lx3 + 2(L2 + L + 1)x2 − (L3 + 3L2 + 3L + 2)x + L(L2 + L + 1) = 0, (23)

where L = δ −A− 1. In fact if p is one of the solutions of (23) the other two solutions are

q = δ − A − 1

1+ p + A − δ
, r = δ − A − p + A − δ + 1

p + A − δ
. (24)
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Proof. Let

x−2 = p, x−1 = q, x0 = r,

wherep,q, r are not all equal. Then the triplep,q, r is a prime period-three solution o
Eq. (22) if and only if

r + δp = Ap + rp + qp,

p + δq = Aq + qp + qr,

q + δr = Ar + qr + rp (25)

whereA + p + q, A + p + r > 0, A + q + r > 0. Using the change of variables

P = p − δ + A, Q = q − δ + A, R = r − δ + A,

we get that

R − P = R(P − Q),

R − Q = Q(P − R),

P − Q = P(Q − R). (26)

In view of (26), we have that

Q = − 1

1+ P
, R = −P + 1

P
.

SubstitutingP = p − δ + A, Q = q − δ + A andR = r − δ + A, we have

q = δ − A − 1

1+ p + A − δ
, r = δ − A − p + A − δ + 1

p + A − δ
.

Substitutingq andr in (25), we get

f (p)

(p + A − δ)(p + A − δ + 1)

= −Lp3 + 2(L2 + L + 1)p2 − (L3 + 3L2 + 3L + 2)p + L(L2 + L + 1)

(p + A − δ)(p + A − δ + 1)
= 0.

It holds that(p +A− δ)(p +A− δ +1) = 0 if and only ifp = q = r . Thereforef (p) = 0.
Similarly we can show thatf (q) = f (r) = 0. It can be easily shown that Eq. (23) has th
distinct positive solutions if and only if

δ > A + 1.

The proof is complete. �
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