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Abstract
We study the global character of solutions of the third order rational difference equation
8xy_
Xpp1 = Pintdinz —,_o1,..,

A+ Bxp+Cx,—1

where the parametefs §, A are nonnegativg +3 > 0, B, C > 0, the initial conditions_», x_1, xg
are nonnegative real numbers and the denominator is always positive.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We study the global character of solutions of the third order rational difference equation
Bxn + 6xy-2 (1)
A+ Bx, +Cx,_1’

where the parametefs §, A are nonnegative + § > 0, B, C > 0, the initial conditions
Xx_2,Xx_1, xo are nonnegative real numbers and the denominator is always positive.

Xn+1 =
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When$ = 0, Eq. (1) was studied in [3]. Wheti= 0, the following theorem holds:

Theorem A (see [1]) Assumethat 8 =0, A > 0and B, C > 0. Then the solutions of the
equation

Xn—2
A+ Bx, +Cx,_1
have the following period-three trichotomy behavior:

Xp4l = , n=01,..., (2)

(a) When
A>1,
every solution of EqQ. (2) convergesto zero.
(b) When
A=1,
every solution of Eq. (2) converges to a period-three solution of the form
...,0,0,¢,0,0,9,...,
with¢ > 0.
(c) When
0<A<],
Eq. (2) has unbounded solutions.

For the rest of the sequel, we assume that > 0. Using an appropriate change of
variables Eg. (1) becomes

Bxp +xu—2 (3)
A+ Bx, +xp-1

whereA > 0, 8, B > 0, the initial conditionsc_», x_1, xg are nonnegative real numbers
and the denominator is always positive.

Equation (3) has one or two equilibrium points. When- 1 < A, Eq. (3) has only the
zero equilibrium. Wher8 +1 > A, andA > 0, Eq. (3) has two equilibrium points, namely
the zero equilibrium and the positive equilibriutn= ﬁ;i’lA. WhenA =0, Eq. (3) has
only the positive equilibriundt.

A question of great importance in the study of difference equations is whether or not
the solutions are bounded. The following theorem which was established in [2] shows the
existence of unbounded solutions of Eq. (3).

Xn+l1=

Theorem B. Assume that
B < B(1— A). (4)
Let {x,} be a solution of Eq. (3) such that

O<x_1<1l+e, 0<xo<%+e, x_2>maxKk, L}, (5)
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where
K_a+/3(%+e)+8(1+e) L_a+1+e+5(%+e)
o € ’ o Be
and
1-A-£
O<e<— 8B,
B+1
Then
. _ . _ B . _
lim X3p4+1 = OQ, lim X342 = —, lim X3n+3—0.
n—o00 n—o00 B n—o00

2. Global analysis of solutions of Eq. (3)

The following lemmas will be useful in the sequel.

Lemma 2.1. Assume that A = 1. Let {x,} be a solution of Eq. (3) for which there exists
N > 0 such that

0<xy—2,XN—1,XN < % (6)
Then it holds
AIN+1 < E

Proof. In view of Eq. (3), we get

o Brvtan <%w+h_g
N = T Bay +av 1 1+8 B’

The proof is complete. O

Lemma 2.2. Assume that A = 1. Let {x,} be a solution of Eq. (3) for which there exists
N > 0 such that

XN+ 2 % ()

Then it holds that

)CN71<E. (8)

Proof. Suppose for the sake of contradiction that

B
XN-12 E

Then in view of Eq. (3), we get

=™

B B
o> —(14+ = and 4>
XN-2 B +B XN—4
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which implies that

2
XN-5 = g<1+ é) and xy_7>

L2}
B B’

Inductively, we get

3k 1+ = k=0,1,...,
XN -3k 2>B +B ) ,

which is a contradiction and the proof is completex

Theorem 2.1. Assume that A > 1. Let {x,} be a solution of Eq. (3). There exists N > 0
such that

Xp<—, n=N. (9)

Proof. We will consider two cases. First assume that

A=1
In view of Lemma 2.1 it suffices to show that there exists- 0 such that (6) holds. For
the sake of contradiction and in view of (7), (8) assume that there eXist9 such that
foralln >0,

0 < X3u4-N, X3u4N+1 < < FanN-1-
From Eg. (3), we get
BX3u+N+1 + X3n+N-1
1+ Bxgntn+1+ X30+N

X3n+N+2 = < X3(n—1)+N+2-

Let

S=limsupx, = Iim xz,y 5= liM x3,4n2= liM x3,,nv-1> —.
=00 n—00 n—00 n—00 B

In addition there exist subsequences, namgly, n1a}, {x3n;+n+3}, {*¥3n,+N+1},
{x3n, 4N}, Such that

la=lim x3,, 4 N4, I3=lim x3,,1n43,
1—> 00 1—> 00
I i <P
I1=lim x34;, 4841, lo= lim xz,, 48 < .
i—>00 i—00 B

From Eg. (3), we get

B+
1+ Bli+1o
If I[p > 0, we get
B Bl1

ZLKS=
B Bl1+1p

which is a contradiction.

B
<L
B
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On the other hand, i = 0, it follows thatl/s, /3 > 0 and so
Bla B
<

- Bls+13 B
which is also a contradiction and the proof of (9) is complete whenl.
Assume that
A>1

For the sake of contradiction assume that there exisssich that
Bxn +xn_2 B
ANl = ————— > T (10)
A+ Bxy +xy-1 B
Eqg. (10) implies that
Bxn-3+xXN_5 B
XN—2= >—A
A+ Bxy_3+xy—4 B

which in addition implies that

B

xnv_5> A2L.

N-5 B
Inductively we have that

XN—3k—2 > Ak+l§, k=0,1,...,

which is a contradiction and so the proof of (9) is complete.

Lemma2.3. Assumethat 1 < A < 8+ 1. Let {x,} be a positive solution of Eq. (3). Then it
holds that

S =limsupx, > 0. (11)

n—oo

Proof. Assume for the sake of contradiction ttfa& 0. There existg > 0, m > 0, where
O<m= w <1 (12)
B+1
Without loss of generality assume that
O<x, <€, n>=-2
ChooseN large enough. From Eg. (3), we get

v PAINEIN2
N+t A+ Bxy +xn-1

which implies
min{xy_2, xy} <em
from which it follows that

min{xy_s, Xy_3, xn—1} < €m?.
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Sufficient repetition of that argument leads to a contraction and so the proof of (12) is
complete. O

Theorem 2.2. Assume that

1< B < +4o0, 1<A<B+1 (13)

Then every positive solution {x,,} of Eq. (3) convergesto the positive equilibrium of Eqg. (3).

Proof. In view of Theorem 2.1, the solutiox,,} of Eq. (3) is bounded from above by the
positive constang. Let

S =limsupx, < +o0, I =liminfx, >0.
n—0oo

n—od
Then in view of Eq. (3), we get
S< B+DS
A+ BS
and so in view of (12)

schri=A
B

Assume thatS = %. There exist subsequences, namety, 11}, {xn,}, {x,—1},
{x4,—2}, {xn;—3} such that

S=lim x,;41, li=1lmx,_, t=0123.
1—>00 1—>00
Then
Blo+1_2
T At Bloti

which implieslp =/_» = S and/_; = 0. From Eq. (3), we get

lp=S= I3 < L

A+S A4S

which implies thatS < 1 — A, a contradiction, and so

S < w. 14)

There exiskt > 0,m > 0andN >0
O<m<min{xy_2,xy_1, XN}

and

1-A
S+e<ﬂ+T<ﬂ+1—A—Bm, whenB > 1

or

S+e<pB+1—A—-m, whenB=1
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such that
Xp<S+e<pf+1—A—Bm, n>=N-2.

In addition

Bxn +xn-1 - (B+1m _
A+Bxy+xy_1 A+Bm+B+1—A—Bm

Inductively we have that

XN41=

m<x,<B+1—A—Bm, n>=N-2
Hencel > 0. Then, in view of Eg. (3), we get
B+1S
T A+BS+I1
which implies that
BS+I<B+1-A

and also
B+DI
T A+BI+S’
which implies that
BI+S>p+1—A.
Combining the inequalities, we get that
B-D(S-1<0

and so/ = S whenB > 1.
On the other hand, wheB = 1, we get

_ Blo+1_2 < B+DS
A+lo+ly  A+S+I
which implies that

S<B+1-A-1
AssumethaS=+1—A—1andS > I. Then
lo=1_2=S, I_1=1.

In addition

_ Blaa+ls - B+DS
CA+latl A4S+
which implies that

lo=

S<p+1-A—-1,
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a contradiction, and so eithfr< f+1—A—TorS=1.Assumethal <g+1—A—1.
There exist subsequences, namily, 1}, {xx,}, {xn; -1}, {xn,—2}, {xx,—3} such that

I=1im x,; .41, my= lim x,._;, t=0,1,2 3.
jooo jooo

In view of Eq. (3), we get
_ _Pmotm_ S B+DI
A+mo+m_1~ A+I1+S
andsoS > 8+ 1— A — I, acontradiction. Hencg = I. The proof is complete. O

Conjecture 2.1. Assume that

1<A<pB+1, O<B<Ll
Show that every positive solution of Eq. (3) convergesto the positive equilibriumof Eg. (3).
Theorem 2.3. Assume that

B> B(l—-A), 1>A>0, B>1 (15)

Then (1— A, %) isaninvariant interval for all positive solutions of Eq. (3).

Proof. Assume thafx,} is a solution of Eq. (3), with initial conditions_», x_1, xg such
that

1-A<x_2,x1,x0< —.

B
Then
B Bx2—AB—Bx_1 B(l—A—x_1)
X1 — — = < <0.
B B(A+Bxo+x-1) B(A+Bxo+x_1)
In addition
Bxo+x_2
QA= 1A
x1 = ( ) A+ Bxg+x_1 ( )
_[B=Q—=A)Blxo+x_2—(1—A)(A+x_1)
- A+ Bxg+x_1
_A-AIF-A-AB+1-A- B
A+ Bxo+x_1
_A-AB-D[p-(1-A)B] -0
N A+ Bxo+x_1 ’
Inductively the result follows. O
Theorem 2.4. Assume that
B> B(1—A), 1>A>0, B>1 (16)

Then every solution of Eq. (3) with initial conditionsin the invariant interval (1 — A, %)
converges to the positive equilibrium of Eq. (3).
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Proof. We will consider two cases. First assume tRat 1. Let

S = limsupx,, I =liminf x,,.

n— 00 n—oo
Then in view of Eq. (3), we get
B+DS
TA+S+T
which implies that
S<B+1-A—1

Assume thatS =8+ 1— A — I and S > 1. There exist subsequences, namialy; 1},
{xn,-}y {-xni—l}l {xn,‘—z}, {xn,-—S} SUCh that

S=lim xp41. L= limx,_,, t=0123
1—> 00 11— 00

In view of Eq. (3), we have thdy =1_> = S andi/_; = I. In addition
Bl+1_3 - B+DS

A+IT+S 1+S5S+1

which implies that

S<B+1—A—1,

lo:S:

a contradiction, and so eith8r< 8+ 1— A or S =1. Assume thaf < 8+ 1— A. There
exist subsequences, namely, 1}, {xx,}, {xn;—1}, {xn,—2}, {x»,—3} such that

I = lim Xnj+1s m; = lim Xnj—t, 1=0,1,23
j—o00 j—o00

In view of Eq. (3), we get
_ Pmotma _ B+ DI
T Ad+mo+m_1” A+I+S
and soS > 8+ 1— A — I, a contradiction. Henc& = I. The proof is complete in the case
B=1.
When B > 1, the convergence df,} is a consequence of the global stability result,

Theorem A.0.5 in Ref. [3, p. 205] applied in the invariant interiial- A, %]. The only
hypothesis of Theorem A.0.5 remaining to be checked is whether the system

— _(B+HM
M = 2 Birem

(B+D)m

M= 21 Bm+m

has a unique solution. This is clear because B < 1. The proof is complete. O

Open Problem 2.1. Assume that (16) holds. Prove that every positive solution of Eg. (3)
converges to the positive equilibrium of Eq. (3).

Wheng + 1 > A, the positive equilibriunk of Eq. (3) is locally asymptotically stable
if and only if
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A>1 (7)

or

2
—1—A—ZB+/Q+A)+4MZ+Q—AW)ZW‘ 18)
2B

In rational difference equations it often occurs, when we have two equilibrium points
one of which is zero and the other is positive, that the local stability of the positive equi-
librium implies that the positive equilibrium is a global attractor of all positive solutions of
the equation. On the other hand, wher: B(1 — A), Theorem B predicts that Eq. (3) has
unbounded solutions. When

J/5-1
2

A<l and 8>

V-1

1>A>0, 1>B> 5

and

or <B<

NI =

B2+B-1
1>A> ——— 19
>A> 32 g (29)

it holds that

B*<B<BA-A)
and so the positive equilibrium of Eq. (3) is locally asymptotically stable and also there
exist solutions of Eq. (3) which are unbounded. Therefore in this particular equation local
stability does not imply global attraction.

Open Problem 2.2. Assume that (19) holds.

(a) Find the set of initial conditions x_2, x_1, xg for which every solution of Eq. (1) is
unbounded.

(b) Find the set of initial conditions x_», x_1, xg for which every solution of Eg. (1) con-
verges to the positive equilibrium of Eqg. (3).

When
5-1 B2+ B -1
—<B<[ and A< T8
2 2 B2—B
1
O<B<§ and 0<A<1 (20)
it holds that

B*> B> B(1l— A).
In this case numerical investigations indicate chaotic behavior of solutions of Eq. (3).

Open Problem 2.3. Investigate the behavior of solutions of Eq. (3) when (20) holds.

Conjecture 2.2. Assume that
B> B(1—A).
Prove that all solutions of Eq. (3) are bounded.
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Theorem 2.5. Assume that
A>B+1 (21)
Then every solution {x,,} of Eq. (3) convergesto zero.

Proof. Let {x,} be a solution of Eqg. (3). In view of Theorem 2.1, the solutiap} is
bounded from above. Let

S = limsupx,,.

n— oo

Then from Eg. (3), we get

S< B+DS

A+ BS
and so
S< B+1-—A
B

The proof is complete. O

<0.

3. Period-three solutions of Eq. (1)

In this section we prove the existence of a unique prime period-three solution of Eq. (1)

whenB = 1. Using an appropriate change of variables Eq. (1) becomes
Xp + 8xp—2
xn+l_A+xn+Xn—1’ n=01,... (22)

wheres > 0, A > 0, the initial conditionsc_», x_1, xg are nonnegative and the denomina-
tor is always positive.

Whens$ > A + 1, there are values &f A such that the positive equilibrium of Eq. (22)
is locally asymptotically stable. On the other hand condition (4) of Theorem B, gvith
replaced by; and A replaced by%, andB = 8 =1 becomes§ > A + 1 and so in this
case, Theorem B predicts that Eq. (22) has unbounded solutions. The next theorem predicts
that whens > A + 1, Eq. (22) has periodic solutions of period three.

Theorem 3.1. Eq. (22) possesses a unique prime period-three solution of the form
R /7 I N /7 I R
if and only if
§>A+1
Furthermore p, ¢, r arethe three positive solutions of the cubic equation
L34 2(L2+ L+ D)x? — (L3 +3L% 4+ 3L+ 2x + L(L?+L+1) =0, (23)
where L =8 — A — 1. Infactif p isone of the solutions of (23) the other two solutions are

(24)
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Proof. Let
X-2=0p, X-1=¢, Xo=r,
wherep, g, r are not all equal. Then the triple, ¢, r is a prime period-three solution of
Eqg. (22) if and only if
r+ép=Ap+rp+qp,
p+8q=Aq+qp+aqr,
q+ér=Ar+qr+rp (25)
whereA+p+q, A+ p+r>0,A+q+r>0.Using the change of variables
P=p—-5§6+A, O=qg—-5+A, R=r—-3%64+A,

we get that
R—P=R(P-0Q),
R—Q0=0(P—-R),
P—Q=P(Q—-R). (26)
In view of (26), we have that
1 P+1
0=——"—, rR=_tt%
1+P P
SubstitutingP =p -8+ A, Q=g -5+ AandR=r —§ + A, we have
1 A—-6§+1
g=8—-A— — | res_a_btA—o+2
1+p+A-3$§ p+A—38
Substitutingg andr in (25), we get
f(p)

(p+A=38)(p+A-456+1)
_ —Lp*4+2(L2+ L+ 1)p?— (L3+3L2+3L+2p+L(L2+L+1)
B (P+A=8(p+A-35+1) B
Itholdsthat(p+ A —38)(p+A—5+1) =0ifand only if p = g = r. Thereforef (p) = 0.
Similarly we can show thaf (¢) = f(r) = 0. It can be easily shown that Eq. (23) has three
distinct positive solutions if and only if
§>A+1

The proof is complete. O

0.
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