
JOURNAL OF COMPUTER AND SYSTEM SCIENCF~: 4, 220--249 (1970)

On Formalised Computer Programs

D. C. LucKri~w

Stanford University (Artificial Intelligence project),
Stanford, California 94305

D. M. R. PARK

University of Warwick, Coventry, England

AND

M. S. PATERSON

Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139

Received August 29, 1969

1. INTRODUCTION

In [2] Ianov introduced a simple abstract model of a computer program (called
a program schema) based on the notion of a program as a finite linear sequence of
instructions of two types: computational instructions and conditional binary transfer
instructions. The transfers, controlling the order in which instructions are executed,
depend on the value of propositional truth functions of a finite number of variables,
the values (true or false) of which may be changed by the execution of any computation.
Each computational instruction and Boolean function is uninterpreted (i.e., its
meaning or interpretation is left open) so that a program schema may be thought
of as representing a family of computer programs, each member being a possible
interpretation of the schema. Properties of abstract schemas of this type are
independent of any particular computer or programming language, and will be true
of programs written in any language which possesses the basic sequential and control
characteristics assumed in the model. Ianov's principal results are that there exist
algorithms for deciding whether or not, under all interpretations, a given pair of
schemas represent the same programs (i.e., are equivalent), and for reducing a schema
to an equivalent simple canonical form. These results are concisely presented by

220

FORMALISED COMPUTER PROGRAMS 221

Rutledge [8] who also mentions a direct relation between Ianov schemas and finite
automata (so that results from other areas of the theory of computation may be
interpreted in a "program-oriented" way).

One of the principal aims of investigating the properties of these abstract schemas
is to approach the problem of optimizing programs on a general basis. Algorithms
for eliminating instructions from schemas or for merging and shortening loops while
preserving equivalence should provide a basis for practical simplification. However,
Ianov's model is too elementary, and further "general" properties of computer
programs must be incorporated--for example, the dependence or independence of
computational instructions within the program.

In Section 2 we present a natural extension of Ianov schemas by introducing free
variables. Computational and transfer instructions are expressed as functions of
variables, and the value of each computation is assigned to a variable. Intuitively,
the abstract schema now represents also the "flow of information" in the
program.

Although our formalism possesses certain Algol-like features, these are easily
shown to be inessential; program schemas can be represented, for example, by sets
of recursion equations, so that the results of the following sections hold true of
programs written in this formalism too.

The question of the solvability of the equivalence of program schemas is closely
connected with the existence of algorithms for simplification. If the equivalence
problem was solvable, then an algorithm for reducing a schema to simplest (in some
sense) possible form would exist in principle. In Sections 4 and 5 we shall show
that for almost any reasonable notion of equivalence between computer programs,
the two questions of equivalence and nonequivalence of pairs of schemas are not
partially decidable. (Here, "partially decidable" means "recursively enumerable":
a relation r(a, b) is partially decidable but not decidable if there is an algorithm for
generating the list of all pairs (a, b) such that r(a, b) holds, but no algorithm exists
for listing those pairs such that r(a, b) does not hold.) It follows from this that
optimizing algorithms for completely reducing a schema to, e.g., shortest possible
form do not exist. In fact such algorithms will be shown not to exist even in the
case of highly restricted classes of schemas. Section 4 establishes the basic nonpartial-
decidability result for strong equivalence, ([3] contains an earlier proof), and Section 5
extends the result to weaker notions of equivalence. The proofs depend on some
properties of multihead automata which are presented in Section 3.

In Section 6 we show the equivalence between a particularly simple class of schemas
and multitape automata. It follows that Ianov's schemas are equivalent to program
schemas containing one free variable. Finally, to counteract the rather negative
results of Sections 4 and 5, we give a brief survey of classes of schemas for which
the equivalence problem is decidable and optimizing algorithms do exist, and we
list some of the open questions.

222 LUCKHAM, PARK, AND PATERSON

2. PROGRAM SCHEMAS

We adopt a formal language containing the following symbols:

numerals,
FI t, F21, Fat,..., F1 ~, F2 ~, Fa2,... (operator symbols),

(i)
(ii)

(iii) L1,L2,L3,. . . (location symbols),
(iv) T1, T2, T 3 ,... (transfer symbols),
(v) : = (assignment symbol),

(vi) STOP,
(vii) (,) , and comma (auxiliary symbols).

The permissible statements (or instructions) of the language are of three types
(symbols other than L, F, STOP, denote numerals; in each case k is called the prefix
or address of the instruction):

(i) Assignment instructions 1

k. L~ : = Fjn(Lkl , Lk~ Lk,).

(ii) Transfer instructions

k. Ti(L~) m, n,

where m, n are numerals (transfer addresses).

(iii) Stop instruction
k. STOP.

A Program Schema, P, is a finite sequence of permissible instructions such that (i)
the prefix of each instruction is its position in the sequence, (ii) all transfer addresses
are prefixes of P, and (iii) the last instruction is either a transfer or STOP.

It will often be convenient to represent schemas by flow diagrams; Diagram 1
is a representation of the schema,

1. L~ : = FI(L~),
2. Ti(L1) 5,5,
3. L2 := F~(L1,L~),
4. L1 :---- F3(Li),
5. TI(Li) 6,3,
6. STOP.

Note that instruction 2 is an "unconditional" transfer and is not explicitly represented
in the flow diagram.

' Also called computational or operator instructions.

FORMALISED COMPUTER PROGRAMS 223

L 2 := FI(L2).] I L2::F2(LIL2)~Iq

:=~)i []

D IAGRAM I
Intuitively, a program schema is intended to represent a family of possible computer

programs in the following sense. I f the operators and transfers of a schema P are
given a particular interpretation (as, respectively, functions and characteristic func-
tions, not necessarily constructive) the schema becomes a program which can be
executed by an idealized computer. The computation proceeds sequentially by
executing the instructions in the order in which they occur in the schema (except
when transfer instructions are encountered) starting with the first instruction and an
initial set of data assigned to the locations of P, say L x , L~ ,..., L~ . At each step one
of two types of instruction is executed: i f L w : = F~(Lul ,..., Lug) is executed then the
result of a certain computation involving the contents of locations Lu, ,..., L ~ (which
remain unchanged), is assigned to L~ ; if T~(Lw) u, v is executed then a decision is
made to execute either the u-th or the v-th instruction next, depending on the contents
of Lw. I f the computer executes T/Lw) u, v, and Tj(Lw,) u', v' at different steps with
the same contents of L~o and Lw, , then it must decide to execute S~ (the u-th
instruction) at one step if and only if it decides to execute S u, at the other step; in
other words the decisions must be made consistently. I f the computation stops (by
executing a S T O P instruction) its value is the final vector of values assigned to the
locations L 1 L~ . T h e computation sequence chosen will in general depend on
the interpretation as will the nature of the individual steps. We shall say that program
schemas are intended to represent uninterpreted computer programs, in the sense
that we are interested in their behaviour over a very wide class of interpreta-
tions.

The schema of diagram 1 computes the factorial function under some interpretations
over the integers; for example, I(F1)(x) = 1, I(F2)(x, y) = x • y , I(F3)(x) = x - -1 ,
and I (T i) (x) ~ 0 if x = 0 and 1 if x > O. Under other interpretations, over
list structures, it computes the function reverse(x) McCarthy [4]; for example,
I(Fa)(x) = NIL, t(F2)(x , y) ---- Cons(Car(x), y), I(F3)(x) = Cdr(x) and I(rx)(X) = 0
if Null(x) and 1 otherwise.

Formally, an interpretation I of P is a mapping from the location, operator, and

224 LUCKHAM, PARK, AND PATERSON

transfer symbols of P into a set D and the set of functions and characteristic functions
such that

(i) Each location symbol L~ is assigned an element I (L i)~ D.

(ii) Each operator symbol F~ n is assigned an n-ary function, I(Fi n) : D n --+ D.

(iii) Each transfer symbol Ti is assigned a characteristic function on D,
I(T~) : D -+ {0, 1}.

Notation

and P((r) denote, respectively, a possible sequence of instructions of the schema P
(i.e., a path through the flow diagram of P), and the sequence of vectors of values
assigned to (L 1 ,..., L ,) when a is executed. ~(i) is the i-th member of a, P(~)(i) is
the vector after or(i) is executed and P(a)(i , j) is its j - th component. Su denotes the
u-th statement of P. The execution and computation sequences, a z and P1(~I),
corresponding to a given interpretation I are defined inductively as follows:

(i) at(l) = S 1 .

(ii) PI(al)(O) = (I(L~),...,I(L,,)).

(iii) If at(i + 1) is the assignment

then

and

(iv)

then

and

k.L~ : = F~(/ , , , ,..., L~o),

ai(i + 2) = Sk+l,

Pt(az)(i + 1,j) ---= P~(ax)(i,j) if j 4 w ,

P1(a1)(i + 1, w) -= I(F~)(PI(aI)(i, ux),..., P1(ol)(i, u~)).

If ax(i -]- 1) is the transfer

T~(Lw) u, v,

~i(i + 2) -~ Su if I(Tj)(Pt(at)(i, w)) = O,

~i(i + 2) = So if I(Tj)(P~(at)(i, w)) = 1,

P~(,~i)(i + 1) - - P~(e~)(i).

If ~x is finite (of length m say) then the value of the computation of P under I [notation:
Val(PI)] is defined to be the final vector of P1(ax), i.e., Val(P1) = P1(a1)(m).

If a sequence a is executed under some interpretation, we shall call it an execution
sequence.

FORMALISED COMPUTER PROGRAMS 225

Consider an interpretation 1, over the class of strings of operator and loca-
tions symbols of P, such that I(L~) = L~, and, if ~1 , e~ are any strings, then
l (F~)(al ,..., ~v) = Ft~aa "'" ~ , the result of concatenating Ft ~, ~1 ,..., ~ . Such an
interpretation will be called a free interpretation.

It is easily seen that any execution sequence a is executed under some free interpreta-
tion; for consider the associated free computation sequence P(a):

(i) P(a)(O) = (L~,. . . ,L, ,) .

(ii) If a(i + 1) is the assignment,

t ~ : = F , v (L , 1 ,..., L ,o) ,

then P(a)(i § 1,j) = P(~)(i,j) i f j 4: w, and P(a)(i + 1, w) is the string obtained by
concatenating F~ ~, P(a)(i, ul),..., P(a)(i, u,,) in that order.

With each transfer Tj in P we associate two sets, ~q~j(a) and ~j(a): for each i, if a(i)
is a transfer instruction of the form Tj(Lw) u, v and u 4: v, then P(a)(i, w) ~ .~(a)
if and only if cr(i + 1) is S, , , and P(a)(i, w) ~ ~ (a) if and only if ~(i + 1) is S~.
Since a is an execution sequence, ~c~j(a)n ~ j (a) = ~ . Therefore there is a free
interpretation I such that if a ~ ~,-(a), then I(T~)(o~)= 0 and if c~ ~ ~j(a), then
I(T~)(o 0 = 1. Clearly az = a. We shall denote the free interpretation value of a
by Val(P(a)).

DEFINITION 1. Program schemas P and P ' are strongly equivalent (P = P') if
and only if for all interpretations 1, Val(P1) = Val(Pi) whenever either value is
defined.

This appears to be the strongest possible notion of equivalence and may be thought
of intuitively as demanding that equivalent program schemas behave in the same
way on all idealized computers. It might be argued that this is too restrictive a notion
although it is easy to see that it coincides with the notion obtained by considering
only free interpretations or (by Godel-numbering the formal strings) interpretations
over the domain of natural numbers. We may obtain more "constructively acceptable"
notions of equivalence by restricting the interpretations in Definition 1. Among
these possibilities we mention finite equivalence (P =--r P' if P ~ P ' for all interpreta-
tions on finite domains 2) and recursive equivalence (P =--R P' if P ~ P ' for all
interpretations in which the domain and functions are general recursive). Finally,
it may be of interest in discussing the problem of simplification to consider a notion
of weak equivalence: P and P ' are weakly equivalent (P ~ P ') if and only if for all
interpretations I, Val(Pi) = Val(Pi) whenever both values are defined. (Note that
weak equivalence is not an equivalence relation.) For the moment we restrict our
attention to strong equivalence.

Henceforth called finite interpretations.

57I/4/3-3

226 LUCKHAM, PARK, AND PATERSON

There is a simple syntactic characterisation of strong equivalence in terms of the
execution sequences through P and P ' . A set of sequences {ai} over some schema
or schemas is said to be consistent if, for each T~. occurring in the schema(s)

U n U :
i i

Thus o is an execution sequence if and only if {~} is consistent.

TrtEOR~t 2.1. P =-- P' i f and only i f for all consistent pairs of sequences cr through P
and ~r' through P', Val(P(~)) = Val(P'(cr')) whenever either value is defined.

Proof. (=~) Suppose that P = P ' and that ~ and o' are consistent.
T h e consistency of cr and ~' implies that there is a single free in terpreta t ion, / ,

over the domain D of components of the vectors of P(o) and P ' (C) such that a t ---- a
and o 1' ~ or'. (Simply define I(T~) for any ~ E D by: I(Tj)(o 0 ---- 0 if and only if

~ .~j(a) u .~(a'), I(Tj)(~) ---- 1 otherwise.) Since VaI(PI) = Val(Pi) if either value
is defined, it follows that either Val(P(o)) ----- Val(P'(e ')) or both values are undefined.

(r I f I is any interpretation of P and P ' then the pair (~z, ~ is consistent; hence
Val(P(ol)) = Val(P'(crl)) if either value is defined. But Val(P1) is the interpretation
of Val(P(~x)) (i.e., if ~ is a component of a vector of P(ol) , say Fi'~F/*... Lk ' " , then its
interpretation is I(~) = l(Fim)(l(Fjn)("'" I(L~)'")), and if c~ = (cq ,..., c~n) is a vector of
P(ol), then its interpretation is I(~) ----- (I(~a),..., I(n~)).) Therefore Val(P1) = Val(PI')
if either value is defined.

I t might be hoped that strong equivalence would have a "compactness" property
(i.e., that finite equivalence and strong equivalence should define the same relation
on schemas); but this is not the case.

TrmOREM 2.2. P ~ F P ' # P ~ P ' .

Proof. Let P be the schema of diagram 2 and P ' be the simple chain,

1. L 1 : = F(La),

2. L 2 :----- F(La),

3. STOP.

A straightforward induction argument establishes that if ~i is an infinite execu-
tion sequence through P, then the successive values of I(T) on the sequence
F~L1 ,F~L1 ,F4L1 ,... are 0, 1, 0, 1, 1, 0, 1, 1, 1, 0,... (FriLl denotes F concatenated with
F"-IL1). Therefore I cannot be a finite interpretation, and P halts on all finite inter-
pretations with the same values as P ' . Thus P ~ r P ' but P ~ P ' .

T h e four relations on schemas defined so far can be put in a sequence of strictly
increasing strength.

FORMALISED COMPUTER PROGRAMS 227

0

§
L 2 := F(L I)

L I :: F(L I)

LI:=F(LI) I
!

L I := F(L I)

L 2 := F(L 2)

,t'
L 1 := F(L 3)

L2:= F(L31 i

DIAGRAM 2

THEOm~M 2.3.

Proof. The first strict inclusion is obvious, the second follows from the proof
of Theorem 2.2, and the third is proved in [5].

Finally we note that although we have adopted an ALOof-like formalism, it is possible
to represent program schemas by systems of recursion equations without given
(basis) functions, for example, McCarthy's system [4], so that the undecidability
results of Section 4 hold true for the latter formalism too. Given a schema P with n
locations Lx,...,Ln, w e construct recursion equations, E(P), on n variables
X = (x 1 ,..., x~}. First introduce a function symbol f~ for each operator F k in P,
and a predicate Pk for each transfer Tk. E(P) contains equations defining functions
gil g~,~ for each instruction S~ as follows: if S~ is the assignment,

i. Lw := Yk(L,l ,..., L,,,)

228 LUCKHAM, PARK, AND PATERSON

E(P) contains equations,

g i J (X) = g i+Id (X l X t o - l , fk (x~, ,..., xu~),..., xn), j <~ n;

for each transfer,
i. T~(Lw) u, v,

E(P) contains the conditional forms,

gij(X) = (P~(xw)-,. g,,s(X), r - -~ g~j(X)), j <~ n.

I f Si is the stop instruction, the corresponding equations are gii(X) = x i , j ~ n.
The values of the functions gil(X),..., gin(X) when defined, are the final values
assigned to L I ,..., Ln , respectively, in a halting computation of P starting at Si
under the interpretation I such that I(L~) = x j , I(Fk) = f~ and I(Tk) = Pk. I t is
easily seen that P ~ P ' if and only if, for every i ~ n, gxi = g'li is true.

3. MULTITAPE AND MULTIHEAD AUTOMATA

Rosenberg [7], and independently the authors, has discovered a number of
undecidability results concerning "two-headed" automata. I t turns out that two-
location schemas may be used to "simulate" these automata, in a certain sense,
and we will use this result to establish the undecidability of a number of forms of
the halting problem and equivalence problem for program schemas.

T h e multihead automata considered by Rosenberg are closely related to the multitape
one-way finite automata introduced by Rabin and Scott ([6], Definition 15). One
obtains a multihead automaton from a multitape automaton by requiring that the
tapes be identical. Clearly such a machine can also be regarded as a one-tape automaton,
with the heads independently scanning the tape, all being positioned initially over
the start of the tape.

A multitape or multihead automaton, A, is specified by an alphabet, 2: =
{bl, b2 , bn}, a finite set of states, Q, and a transition table. Q is partitioned into
a set of live states, Q' = {q0, ql ,..., qm} with a distinguished initial state, q0, and
a set of dead states, Q - Q ' , with a distinguished accept state, a. Q' is partitioned
into disjoint subsets, Qj , one for each reading head (the heads being on separate
tapes in the multitape case, and on the same tape in the multihead case); if qi ~QJ
we shall use the notation qi j to indicate that A reads the symbol scanned by the j - th
head when in state qi �9 The rows of the transition table of A have the form,

qi j, $1 --~ ?i l } qiJ~ $2 --~ ri2 , ' " qi y, Sn --~ t i n

FORMALISED COMPUTER PROGRAMS 229

for 0 ~ i ~< m. Each row specifies the next state rik ~ Q depending on the symbol sk
read from head j. After reading a symbol, the head j moves on to the next symbol
on the tape (the head may only move in one direction). On reaching a dead state
the automaton "stops".

Our automata differ in one important respect from those of Rabin and Scott or
Rosenberg; they are considered as operating on infinite tapes (elements of 2:~; i.e.,
infinite sequences from Z). For each tape there are three possibilities distinguished
here. If _a is reached, the tape is accepted. If any other dead state is reached, the tape
is rejected. Otherwise, the automaton diverges on the tape. An automaton A therefore
determines a threefold partition of 27 ~ into Ja(A), ~(A), Ja(A), the classes of tapes
which A accepts, rejects, and on which it diverges.

Given a Turing machine M and an initial tape configuration IT, there is an
effective method for obtaining a two-headed automaton A which checks that its tape
describes the computation of M from IT. A tape is accepted if it has an initial segment
which, subject to certain conventions, "describes" a completed computation of M
from IT; A diverges if the tape "describes" a nonterminating computation of M
from IT; otherwise the automaton reaches a dead state _r, and the tape is rejected.
To "describe" the computation, in the sense intended here, the segment of tape
takes the form of the sequence of "instantaneous descriptions" (following Davis [1])
of successive steps of the computation, satisfying (for future convenience) the
following constraints:

(a) The initial description of I T is fixed in such a way that the initial state symbol
is not its first or last symbol.

(b) Each subsequent description is obtained by adding a "blank" symbol to both
ends of the description which results from applying one of the rules of M to its
predecessor (and which is the same length).

(c) Descriptions are separated by some symbol fl not in the alphabet of M.

The action of A is as follows [for an alternative description, see Rosenberg [7]
Theorem 9(a)]: A first checks the initial description with head 1; A then compares
each description in turn against the previous one, using head 1 to scan the succeeding
description while head 2 scans the predecessor. After each comparison the heads
are correctly positioned for the next. The comparison of two descriptions proceeds
as follows: a blank is read by head 1; symbols from the two descriptions are then
compared in turn, until a state symbol is read under either head; the succeeding
pairs of symbols in the two descriptions are then read. The tape is rejected unless
the resulting triples satisfy the appropriate rule of M; for example if Qj, Qz are state
symbols of M, then the pair must be of the form (Qjsks~, s~Qd~) or (s~,Q~sk, Q~s~,sk)
or (Qjs~s~, Qzsis~) , depending on whether the appropriate quadruple (in the notation
of Davis [1]) is Qjs~RQ~ or Qjs~LQ~ or QjsksiQ ~ . t f the triple from head 1 indicates

230 LUCKHAM, PARK, AND PATERSON

a terminal configuration, the tape is accepted; otherwise symbols from the two
descriptions are compared again until a fl is read under head 2; head 1 then reads
a "blank" and a fl, and the comparison process is entered again. During this process
there are only a fixed finite number of situations which need be distinguished, and
so given M and IT, we can construct a finite automaton A to perform the comparison.
Moreover this construction is effective on M and 1T. Further details are omitted here.

The automaton A has the properties:

-r M fails to halt from IT.

It is well-known that the last property is not partially decidable. This establishes:

THEOREM 3.1. For two-headed automata A, the properties

(a) ,,Ca(A) ---- ;~,

(b) z ,

are not partially decidable.

The simulation of automata by schemas is most easily applied to binary automata,
automata over the alphabet {0, 1}. 3.1 must first be established for binary automata A
alone.

Notation. Denote by i, for any i /> 0, the string consisting of i occurrences of "1"
followed by one "0".

For strings, tapes, sets of tapes, etc. over 27 ----- {sl, s2 ,..., s,} let ~ be the trans-
formation to binary strings, tapes, etc., generated, in the natural way, by taking

g(s3 = i

~(s~w) ---- _~(w) for strings of the form s~w, etc.

LEMMA 3.2. There is an effective transformation ~ from automata over X to binary
automata, such that

C a) ~r ~ <*-,,Ca(A) = ;~,

(b) Ja(~(A)) = ~(Je(A)).

Proof. Rows of the table specifying A have the form

qi ~, $1 "'+ r i l , qi j, $2 ' + rt2 , . . . , qi j , sn ~ t i n �9

FORMALISED COMPUTER PROGRAMS 231

The table for ~ (A) is to be obtained by including, for each such row of A ' s table
the n + 1 rows

q j , 0 -+ _r', q j , 1 ~ ~1 ,

q~l, 0 -+ ri l , q~l, 1 -~ q~2,

q~2, 0 --+ ri2, q~2,1 -~ q~a,
, , o

q~j, 0 -~ r ~ , q~., 1 ~ r",

where the q~k, 1 <~ k <~ n, are new states, not occurring in the table for A , and
r ' , r" are (for future convenience) additional dead states. Otherwise the live and dead
states of ~ (A) are those of A.

Clearly, A, starting from state qi , with its heads over final segments t 1 , t 2 of its
tape, moves immediately to state ri~ with its heads over tl ' , t 2' if and only if ~ (A)
starting from state qi over M(tl) , ~(tz) moves, after k + 1 state transitions, to state
rik with its heads over M(tl'), ~(t2 '). So, by induction on the number of state transitions
of A, A accepts or diverges on t if and only if ~ (A) accepts or diverges on ~(t) .
Hence J a (~ (A)) 3- ~(Ja (A)) and Ja(~(A)) 3_ ~ (~ (A)) .

On the other hand, if a binary tape t ' is not rejected by ~ (A) , neither _r' nor r"
are reached, so that the initial segment scanned is an initial segment of some :~(t).
I f ~ (A) accepts t', then ~ (A) also accepts ~(t) , which differs from t' only on an
unscanned portion; hence A accepts t. Therefore ~ (~ (A)) :# ;3 =~ oCt(A) :# ~ . I f
~ (A) diverges on t', then t' = ~ (t) and A diverges on t. Therefore J a (~ (A)) C_ ~l (Ja(A)) .

Lemma 3.2 follows.

4. BASIC UNDECIDABILITY RESULTS

The way in which schemas may be used to simulate two-headed binary automata
can now be described. For these results it will suffice to consider schemas involving
one monadic function letter F, one transfer letter T, and registers L1,L~ ,. . . . T h e
notions "interpretation", "expression", etc. are to be understood as limited to
interpretations, expressions, etc. arising in connection with such schemas.

Notation. ~ denotes the class of schemas containing at most the storage locations
L1 , L2 ,..., L i .

DEFINITION.
the binary tape

where

Let E be an expression and I an interpretation, the I - tape of E is

t l(E) = %q~2 ,

e o = T,(I (E))

232 LUCKHAM, PARK, AND PATERSON

and
e, = T~F{(I(E))) i >/1.

Given a binary two-headed automaton B, the construction described below is
to produce an incomplete schema, denoted by P(B), which contains a pair of instruc-
tions (an assignment followed by a transfer) corresponding to each live state of B,
and is incomplete in that some of its transfer addresses are represented by "symbolic
labels" to be specified when the schema is completed. For any interpretation /,
P(B) simulates the behaviour of B on the tape tl(F(La)) in the following sense.The
computation of B is the state-symbol sequence, qo~xqqE2q~ea ' ' ' if and only if the
execution sequence al of P(B) is the sequence of those pairs of instructions corre-
sponding to qo, qi 1 , qi2 ,. . . . P(B) eventually reaches a label corresponding to the
dead state reached by B on tI(F(L1)), or diverges if B diverges on this tape. By
incorporating P(B) in other schemas, various equivalence-preserving transformations
of automata into schemas will be obtained.

Suppose the rows of the table specifying B are

qi j, 0 --~ rio , q j , 1 --~ ril

for 0 ~< i ~< N. Then P(B) is to be obtained by combining the following N + 2
incomplete schemas

+
L2:= F(L 1)

L I := F(L I)

+
q;

using the states of B as labels. P(B) results from identifying labels in the above
incomplete schemas, and has "terminating labels" corresponding to the dead states
of B.

If the dead states of B are a, r, r',..., r (n), we use the notation

for the result of this "combining" process.

FORMALISED COMPUTER PROGRAMS 233

It is easy to show, by induction on j, that if P(B) reaches label qi after executing
j + 2 assignment statements, and at that point L 1 ,L 2 "hold" expressions E l , E~
respectively, then, after j state-transitions of B on tI(F(LI)), B is in state qi, with
its heads over t/(Ea) , t1(E2) respectively. Therefore P(B) simulates the action of B
on tI(F(L1)) in the sense outlined above.

On the other hand, given a binary tape t = El~2 "", for B, P(B) can simulate
the action of B on it, by choosing I with the property that t = tt(F(La)). To achieve
this, I may be chosen as any free interpretation (whose domain is the class of
expressions), with Tz(Fi+IL1) = El, i /> 1. Therefore all and only computations of B
are simulated by P(B).

Notation. Denote by D the trivial schema,

Denote by Z the schema,

1. T(L~), 1, 1.

1. L 1 : = F(L3),

2. L z : = F(La),

3. STOP.

THEOREM 4.1.

(a)
(b)
(r
(d)
(e)
(f)

The following properties of schemas P in ~ are not partially decidable.

P diverges under all interpretations.

P diverges under all finite interpretations.

P diverges under some interpretations.

P halts under allfinite interpretations.

P ~ D .

P ~ v D .

The following are not partially decidable for schemas P in 5:3 .

(g) P ~ Z .

(h) P ~ v Z.

(i) P ~_ Z.

Proof. (a) Consider the schema PI(B) of Diagram 3. This is effective on B, and
diverges for all interpretations if and only if ~ (B) = ~. The result follows from
3.1(a) and 3.2(a).

(b) is equivalent to (a). If P ever halts it does so on a finite interpretation.

(c) The schema P2(B) of Diagram 3 is effective on B, and diverges for some
interpretation if and only if Ya(B) @ ~. The result follows from 3.1(b) and 3.2(b).

234 LUCKHAM, PARK, AND PATERSON

PI(B)

P3 (A)

I P(~(A)) I

STOP [

P2(B) ~,

P(B)

~ ~ ~///J
I ToP I

P4 (B)

I l

L 1 := F(L 3)
L 2 := F(L 3)

STOP

P5 (A)

P6(A))

k 2 := F(L 3)
STOP

O IAGRAM 3

(d) Recall the automaton A constructed for 3.1, and effective on a Turing machine
and initial configuration. A could diverge only if its tape described a divergent Turing
machine computation. Note that A does not diverge on an ultimately periodic tape
since the number of symbols between successive occurrences of the delimiter /~
grows without bound. Therefore A halts on every ultimately periodic tape. 3.1
therefore holds when restricted to automata A with this property. The transformation

of 3.2 preserves this property of A. Finally, note that if I is a finite interpretation,
then tj(E) is ultimately periodic, for any E, since for some i ~ j, FI~(I(E)) = Fr~(I(E)).
So P(~(A)) can diverge on no finite interpretation, if A has the above property.
Also if _a can be reached in this schema, it can be reached in a finite interpretation.
Therefore, if A halts on every ultimately periodic tape, then the schema P3(A) of

FORMALISED COMPUTER PROGRAMS 235

diagram 3 halts under all finite interpretations if and only if ~(~(A)) = ;~. The
result follows from 3.1 restricted as above, and 3.2(a).

(e), (f) are equivalent to (a), (b).

(g) The schema Pa(B) is effective on B, and P4(B) ~ Z .,~ ,.Ca(B) =/: ~ . Hence
the result, as in (c).

(h), (i) Apply the argument of (d) above to Ps(A); P5(A) "-' Z ~ Ps(A) ---~ Z
Ja(~(A)) = ;~. If _a can be reached, it can be reached in a finite interpretation which
spoils equivalence (=--r or ~) to Z, by suitable choice of I(L3).

Note that P ~--- D is always true, therefore decidable. It is worth noting that the
complementary properties to those of 4.1 are all partially decidable. These are implied
by the following results, which hold for schemas P without restriction.

THEOREM 4.2. Let Q be any schema which halts under all interpretations, and R
be any schema. The following properties of schemas P are partially decidable.

(a) P halts under some interpretation.

(b) P halts under some finite interpretation.

(c) P halts under all interpretations.

(d) P diverges under some finite interpretations.

(e) P r O .

(f) P ~F D (a special case of (h)).

(g) P -

(h) P ~ F R.

(i) P ~ R.

Proof (in outline). On a finite interpretation I of n elements, P may be viewed
as a finite state machine with p �9 n k states, where k is the number of locations and p
the number of instructions in P. Each property except (c) and (g) may be verified
by enumerating the class of finite interpretations until one is found with an appropriate
property. The tests applied to each finite interpretation are recursive, by well known
properties of finite-state machines. The tests needed are, for (a), (b), (d), (e), (f)
tests for halting or divergence, for (h), (i) tests for "strong" and "weak" equivalence,
respectively, for finite-state machines (defining these notions by analogy with those
defined above).

To verify properties (c) and (g), one can effectively enumerate all possible execution
sequences through P. If P converges on all interpretations, this process terminates
(one may list finite paths from the start of P, discarding any which are inconsistent
in the sense of Section 2, and only choosing to examine paths which extend previously
retained ones; if this process continues indefinitely, the hypotheses of Koenig's

236 LUCKHAM, PARK, AND PATERSON

Lemma are satisfied, implying that there is an infinite consistent path, and hence
a possible divergence, by Section 2.) Property (c) is then verified. For property (g),
one must check that terminal expressions are identical for consistent pairs of execution
sequences through P and Q.

Note that the equivalence problem for the class of schemas which always halt
is decidable, although membership of this class is not.

5. 'REASONABLE' NOTIONS OF EQUIVALENCE

Theorem 4.1(e), (f), (h), (i) established the basic results concerning the partial
undecidability of equivalences between schemas. In this section some more general
results will be obtained. Firstly (5.1), the basic result is extended to cover a wider
class of equivalence concepts. Secondly (5.2), this result is established also for a more
restricted class of schemas, schemas which halt on all finite interpretations.

It seems reasonable to assume of a general notion of equivalence between schemas,
both that it should hold between schemas which behave identically on all inter-
pretations, finite or infinite, i.e., between schemas which are strongly equivalent,
and that it should fail to hold between schemas which can demonstrably produce
different results on the same interpretation (finite, if need be), i.e., between schemas
which are not weakly equivalent. Some equivalence notions which do not satisfy
these constraints are the various notions of "provable" equivalence (relative to some
recursively axiomatisable formal system). In particular, "provable" strong equivalence
is strictly stronger than strong equivalence, since the device of enumerating theorems
of the formal system would otherwise constitute a partial decision procedure for
P : D, in contradiction to 4.1(e). We will not pursue these notions here.

DEFINITION. Let P ~ Q be any relation between schemas P, Q. ~ is reasonable

on a class of schemas, 5 ~, if, for all P, Q in ~c~,

(i) P~-Q ~ P N Q ,
(ii) P ,.~ Q :> P ~ Q.

Note that ~ , = R , ~ F , ~ are reasonable relations on the class of all schemas.
A reasonable relation is not assumed to be symmetric or transitive, although it must
be reflexive, by virtue of (i). For example, the relation ~ is symmetric but not
transitive. The relation > is transitive but not symmetric, where P > Q if, whenever
Val(Qx) is defined, then so is Val(PI), and Val(Pi) = Val(Qt).

DEFINITION. A binary tape (or finite string) is terminated if it starts with "0",
or contains two adjacent occurrences of "0".

FORMALISED COMPUTER PROGRAMS 237

Let Y denote the following schema:

k 2 := F(L l)

k 1 := F(L l)
STOP

Then clearly Y diverges just on those interpretations I for which tt(F(gl)) is
unterminated.

THEOREM 5.1. I f "~ is any reasonable relation on 5~ , then P ~.~ Y is not partially
decidable.

Proof. Let A be any two-headed automaton constructed in 3.1 : Recall that.4 has just
one rejecting state_r, and in any computation of.4, at no time does head 2 lead head 1.

P6iA) i

[p(~(A))

Consider now the schema P6(A), effective on A. (_r', _r" are the dead states introduced
by the construction 5~ of 3.2). Note that on any interpretation I for which ~ (A)
does not accept tz(F(L1)), P6(A) and Y are arranged to produce the same results,
or to diverge together in case tx(F(L1)) is not terminated; note that _r' is reached if a
termination is encountered in the computation of ~(A); if_r is reached, the preceding
symbol was "0", or no symbol has been read; if_r" is reached, the preceding symbol
was "1". Therefore

J~(~(A)) = ~ :~ Pn(A) ~ Y. (1)

238 LUCKHAM, PARK, AND PATERSON

On the other hand, suppose ~(A) accepts some tape t. Choose a free interpretation I
such that tl(F(La)) agrees with t on the segment scanned by ~(A), and is terminated
(at some point beyond the segment). Then both Val(YI), Val(Pe(A)1) are defined,
and Val(YI) # Val(P6(A)I). Therefore

~(~(A)) # z * &(A) ~ Y. (2)

But if ,~ is a reasonable relation, then from the definition and (1), (2)

~(~(A)) # z ~ Po(A) # r .

So that ~ (~ (A)) ----- Z -~ P 6 (A) ~ Y. The former property of A is not partially
decidable by 3.1, 3.2, and P6(A) is effective on A. The result follows.

It is essential to 5.1 that Y be a schema which diverges on some interpretation,
since if Q always halts, P ---- Q is partially decidable, from 4.2(g). However, we remark
in passing that even in this case at least one o f P ~ Q, P # Q is not partially decidable,
for any reasonable ~ . The proof (details omitted) proceeds by describing an effective
construction, given an integer x, of a schema Pz such that

9x(x) = 0 * P~ --- Q

and
9x(x) = 1 ~ P , * Q ,

~Oo, 91 , 9 , ,... being a Godel-numbering of all partial reeursive functions. If Px ,-, Q
is decidable, there is a total recursive function 9, such that

and

P~ ~ Q =~ 9,(x) = 1

P~ + 9 =~ 9z(x) = O.

But then 9,(z) = 0 ~-9z(z) = 1. Essentially this is a proof of the "recursive
inseparability" of the sets {PI P --= Q} and {P] P �9 Q), and in fact goes through
for any Q which halts on some interpretation (though of course not if Q always
diverges).

In the following result we show that the fact that Y diverges on some interpretations
is not necessarily a flaw in the stronger result 5.I. What is shown is that an analogue
of 5.1 holds over a particular class of schemas which halt on all finite interpretations.
Membership in this particular class is decidable. It follows that it could not be a
subclass of any class of schemas which escapes the nonpartial-deeidability result;
so that any such class must exclude some schemas which, among other properties,
always halt when interpreted as digital computer programs.

FORMALISED COMPUTER PROGRAMS 239

THEOREM 5.2.

(i)
(ii)

(iii)

Proof.

There is a schema Y, and a class ~ C ,902 of schemas such that

consists of schemas which halt on all finite interpretations.
P ~ ~ is decidable.

,~ P is not partially decidable, for any reasonable ,~, and for P ~ ~ .

As in 5.1 we must find an automaton _d and a class of automata {A'} which
can check Tur ing machine computations, such that any A' always has the action of A,
unless its Tur ing machine computation converges. In addition, A must converge
on all tapes t1(E), such that I is a finite interpretation.

In the proof of 4.1(d) we pointed out that the automata A used in 3.1 had this
latter property, since successive segments between occurrences of the marker symbol,
/3, increase in length (by exactly two symbols) in any tape on which A diverges,
and also that ~ preserves this property so that such a tape cannot correspond to a
finite interpretation. So we might choose A to be an automaton which checks the
spacing of/3's along its tape, diverging if the spacing grows in the correct way, and
rejecting if it does not. However, there are two further considerations:

(a) Since A has a finite alphabet, the class of Turing machine computations
checked by {A'} must have a finite number of states and symbols, and still have
an undecidable halting problem. This can be achieved by restricting the class to
computations of a particular universal Tur ing machine M 0 . T h e alphabet 2:0 of A
and of the automata {A'} then consists of tape-symbols and state-symbols for M o ,
together with the delimiter symbol/3. We will suppose Z' 0 = {/3, s 2 , s 3 , s~}. The
design of the A' is then to be effective on an initial configuration IT, and have the
property that

J~(A') = ;~ ~ M 0 diverges on IT.

The latter property, again, is well-known not to be partially decidable.

(b) The initial instantaneous descriptions checked by A' are to be unbounded
in length as A ' varies. One must avoid constructing ~ so that it would diverge, say,
on a tape containing no occurrences or fi, which it would be forced to do if the tapes
for A' were to have the form assumed for the construction of 3.1. T o avoid this
difficulty, _~, A' are to obey the following rules.

For any string w over X0, let l(w) denote the length of w.

(i) A is to diverge just on tapes of the form

t = w0/ wl/ w2/3 "",

where the w i are strings over 270 - - (/3), and l(wi) = 2i + 1, i ~> 0. A rejects every
other tape.

(ii) Given IT, choose in some effective manner an initial instantaneous descrip-

240 LUCKHAM, PARK, AND PATERSON

tion w of I T such that l(w) = 2K + 1, for suitable K. Then A ' is to accept any
tape with an initial segment of the form

where the w i are strings over Z 0 - - {fl}, and l(wi) = 2i + 1, 0 ~ i < N , such that
w ---- w/~, and WKflWK+lfl"" flWN describes a complete computation of M 0 from I T
according to the constraints sketched in the proof of 3.1. On any other tape, A '
behaves as .~.

The transition table for A can now be specified. This consists of the following rows:

qo l, ~ ~ r_, q01, si ~ ql ,

ql 1, 3 --* qz, ql 1, si --~ r,

q21, fl ~ r, q l, si ~ (13,

q3 2, fl -'* q0, q3 2, si -+ q2,

2 <~ i <~ n.

A' will only be described insofar as we contrast its action with that of A in the proof
of 3.1. A ' first checks with head 1 that its tape has an initial segment Wo[3Wxt~ ... wK_l[3,
satisfying the above conditions; if not, state r is entered. In the meantime head 2
keeps pace with 1. I f this initial check succeeds, both heads are then over the start
of w K . From this position A ' simulates the computation of A (in 3.1) unless a move
to the reject state, r, is reached. I f fl is encountered anywhere but as the terminator
of a complete instantaneous description, or if an instantaneous description is not
terminated by/3, A ' moves to state r; otherwise, wherever A moves to r, A ' continues
to compute, but now simulates .ff from that point on. Just as in 3.1, there is a finite
number (depending effectively on I T) of situations which need to be distinguished
in the operation of A', so that A ' can be designed as a finite-state automaton.

Note that, if a tape is rejected by both t i and A' , head 1 comes to rest at the same
point on both tapes; this holds also for ~(A) , ~ (A ') .

Now let PT(A) be the transformation from automata A into schemas of the following
form

P/(A)
P(~(A)) I

~L2 := F(L1 ~' ~')~
L I := F(L 11 STOP

FORMALISED COMPUTER PROGRAMS 241

Let Y = Pv(A). Then, from the above construction,

- , = P F (A ') M 0 diverges from I T ~ J~(N(A)) ~ ~ Y.

On the other hand, if M 0 halts from IT, then A' accepts some tape t which
rejects; for example, let t be a tape which departs from the format rule (i), and has
an initial segment describing the computation from IT . But then, choosing I such
that tt(F(L1)) = t, both of Val(PT(A')t) and Val(Yy) are defined (and differ), so that
P7(A') c# ~. Therefore M o halts from I T ~ PT(A') c/~ Y.

Combining the results of the last two paragraphs, we have M o diverges from
I T <=~ PT(A') ~-~ Y, for any reasonable ~ , arguing as in 5.1. This establishes 5.2.

We end this section with a result which summarises the consequences of 5.1, 5.2
so far as program simplification is concerned. Clearly any simplification algorithm
which enables one to obtain a canonical form for schemas, under a reasonable N
which is an equivalence relation in the strict sense, is excluded by 5.1, 5.2, under
not very stringent conditions on ~ which would permit such an algorithm to be
embodied in a partial decision procedure for P ~ Q. On the other hand, one might
expect any "exhaustive" simplification algorithm to provide such a canonical form,
by reducing a schema to its "simplest" equivalent. Below we point out certain
assumptions about ~ and about the simplification method which enable this argument
to go through. Not every reasonable ,-~ will satisfy these assumptions. The algorithm
which consists of choosing D, the one-instruction schema which halts on no inter-
pretation, is an exhaustive simplification algorithm with respect to ~ , in a suitable
sense of "simplification", so that ~ will not satisfy the assumptions to be given.
We assume as little as we can about the notion of "simplicity" involved.

By a simplification method for ~-~ we will understand an effective method, given P,
of listing an infinite sequence P', P",... of (not necessarily distinct) "simplifications"
of P such that for all n, P ~-~ P~"). An exhaustive method is one such that whenever
P ~-- Q, there exist m, n such that p~m) _= Q<~). In particular, if some method always
produces a "simplest" schema, if ~ is an equivalence relation, and if P ~-~ Q is (par-
tially) decidable for "simplest" schemas, then it can be extended to one which is
exhaustive in the above sense. Similar conditions can be formulated for those cases
in which there do not necessarily exist "simplest" versions of schemas.

THEOREM 5.3. I f ,~ is reasonable, and

P ~ R & Q ~ R ~ P ~ _ Q , (,)

then there is no exhaustive simplification method for ,,~.

Proof. Suppose there is such a method; we obtain a contradiction to 5.2 (or
alternatively to 5.1). Note first that for P ~ , Y ~ P c : ~ Y ~ P ~ > Y , ' ~ P .

57t/4[3-4

242 LUCKHAM 7 PARK, AND PATERSON

Consider the partial procedure of simultaneously listing the sequences P ' , P",..., and
Y', Y",..., and checking for a common element. I f Y N P, then Y ~ P, so the
process is successful for P, from the assumption of exhaustiveness; on the other
hand if the process succeeds for P, then Y ~ P, from (.), but then Y ,-~ P also.
Hence Y ,~ P if and only if the process succeeds for P, contra 5.2. This establishes 5.3.

Note that (*) holds for any reasonable ~ stronger than the relation " < F " , where
P < F Q if P ~ Q and if Q halts on every finite interpretation on which P halts,
but does not hold for __~, or for the relation > r which is the inverse of < F (though
simplification with respect to these latter notions is not a particularly desirable end),

6. MONAOlC PROGRAM SCHEMAS

As regards the goal of developing practical techniques for optimizing computer
programs and formal systems for proving statements about them, the main results
of the previous sections can only be looked on as negative. In this section we present
some results in a more positive direction.

We first consider the relationship between program schemas and other abstract
models of computational processes. Schemas all of whose operators are one-place
symbols will be called monadic schemas. A particularly simple subclass of the monadic
schemas is obtained if one makes the further restriction that all assignment statements
have the property that the assignment location is the same as the retrieval location
(e.g., L s : = Fi(L~)); these are called the independent location schemas. This class of
schemas turns out to be strongly related to the multitape Rabin-Scott automata [6].
We shall show that not only are the equivalence problems for multitape automata
and independent location schemas interchangeable (i.e., either problem may be
reduced to the other), but that there is an algorithm for constructing a schema which
simulates the behaviour of a given automaton, and vice versa. Thus it is reasonable
to claim that multitape automata are models for those computer programs in which
the result of any computation on one set of data is never used by any computation
on another set of data.

We represent the multitape Rabin-Scott automata as a subclass ~ S e of the multitape
automata defined in Section 3. The alphabets of automata in :~S~ are to contain
an "end-marker" symbol E, and these automata have the properties:

(i) A computation by an automaton A e ~ 6 e terminates if and only if each
tape contains an occurrence of E.

(ii) Any such computation terminates with each head immediately past the
first occurrence of ~ on its tape.

~ S p then "represents" the Rabin-Scott automata of [6] in the obvious sense;
there is an effective correspondence between the two classes with the property that

FORMALISED COMPUTER PROGRAMS 243

a Rabin-Scott automaton accepts or rejects the n-tuple (i , , i 2 ,..., i ,) of finite tapes
if and only if the corresponding automaton in ~ 6 a accepts or rejects any (t 1 , t, ,..., t ,)
of infinite tapes such that each t i has an initial segment ~ie.

DEFINITION. Two automata A, B are equivalent (written A -- B) if Jo(A) = Ja(B)
and ~r = J~(B).

In particular for A, B e ~ S f , A - B if and only if J a (A) = ~r since
J~(A) = X -- Ja(A), where Xis the set of all n-tapes over 2J each of whose components
has an endmarker occurrence.

Firstly, to reduce the equivalence problem for ~ automata to the (strong)
equivalence problem for independent location schemas, we show how to construct,
from an n-tape automaton A e ~ 5 ~ an n independent location schema/~(A). This
construction proceeds along lines very similar to those in Sections 3, 4.

For A e ~ 5 p, consider ~(A), where ~ is the transformation of Lemma 3.2; note
that for A, A'

n ~ A' ~ ~(A) ~ ~ (A ') -~ 6 (~ (A)) = Jo(a(A')) ,

from properties (i), (ii) above. ((i) ensures that A ~ A'~> ~ (A) = 0~a(A'); (ii)
ensures that ~(A), ~(A') enter r', r" on precisely the same set of tapes, where these
states are the dead states, introduced by 5~.)

Analogous to the construction of P (B) in Theorem 4.1, let if(A) be obtained
from the table of the binary automaton ~(A) by identifying labels in the following
incomplete schemas:

Lj:= F(Lj)]

Now let t = ,(t I , t 2 ,..., tn) be any binary n-tape and I any free interpretation,
such that t l (Li) = t i , 1 <. i <~ n. Clearly given any binary t there is an I related
to it in this way, and vice versa. Let m i be the length of the shortest initial segment
of t i of the form ~(w~) for some word w. Assuming each m~ is defined, let V(t) denote
the n-tuple (F ~ l + l L 1 , F"*+IL~ ,..., F '~,+IL~) of expressions. From the construction
of f i (A) , we have the following:

244 LUCKHAM, PARK, AND PATERSON

LEMM_A 6.1.

(i) ~ (A) accepts t i f and only i f ill(A) halts and Val(/~t(A)) = V(t).
(ii) I f ~ (A) , ~ (A ') reject t, then PI(A) halts and Val(/~I(A)) = Val(ff~(A')).

(iii) I f ~ (A) diverges on t, then (PlA) diverges.
From 6.1, and the remark above concerning ~ when restricted to ~ , we conclude :

LEMMA 6.2. For A, A ' ~ ~Y~, A =-- A ' i f and only i f f i (A) -~ P(A') . (More
strongly, A ~ A ' r P(A) ~-~ fi(A'), for any reasonable ~-~, since f i (A) ~- f i (A') ~ .
P(A) ~_ P(A')).

The converse problem is to describe an effective equivalence-preserving trans-
formation ~ from independent location schemas to ~ 5 f automata. Let P be an
independent location schema involving at most the location symbols L1, L~ ,...,Ln ,
monadic operator symbols F 1 ,F~ ,..., F~ and, for convenience, just one transfer
symbol T (the construction below can be modified in an obvious way to cover schemas
involving more than one transfer symbol). Let I be any free interpretation and suppose
Val(/~) : (E l , E 2 , E n >; then ~ (P) is to be an n-tape automaton over the alphabet
27 = {0, 1, L 1 , L2 ,..., L~ , F1, F~ ,..., Fro, r which accepts any n-tape t = <tl , t~. ,..., tn>
satisfying a certain condition determined just by I and the expressions Ea, E 2 , En ,
and independent of P. This condition is that each t~ have an initial segment of the
form w(I, E~)E, where w(I, E) for any expression E is determined as follows: Suppose
E is the expression

F : , ~ _ ~ --- F ~ L , 0 ,

then w(I, E) is the word

Lj0~0Fjx~l �9 .. F j ~ k

such that 3 i = Tt(Fr ""FiLr). The essential properties which 6g(P) is to have
are summarised in the following:

LEMMA 6.3. 6g(P) accepts < t l , t~ ,..., tn>, i f and only i f each ti has an initial
segment of the form w(I, E~)E such that I is a free interpretation, PI halts and Val(Pt) =

<El, E~ , . . . , E ,> .

The construction ~ is complicated by a technical difficulty; 0~(P) will be constrained
to move any tape immediately after reading a symbol from it; consequently if more
than one state transition is to be governed by a symbol on the tape, special steps
must he taken to record the symbol in the automaton's internal state. In designing
~ (P) to simulate P, this difficulty occurs over those symbols specifying values for
the branch function T I . To overcome this, either P may be transformed first of all
into an equivalent more restricted schema, in which locations are tested only

FORMALISED COMPUTER PROGRAMS 245

immediately after being assigned to (this is in effect the process of "freeing" a
"liberal" schema, of Paterson [5]), or ~ (P) may be taken first of all as an automaton
with some inessential additional facility for recording previously read symbols, or
one could describe a direct transformation. T h e second approach is adopted here.
We describe first of all an automaton 6g*(P) which is an automaton in the sense of
Section 3, but with the addition of certain "s tarred" states whose transformations
obey special rules. These states are indicated below by the presence of a supersc r ip t "*"
in transition table entries. The transitions of a state indicated by qe, say, depend on
the previous character read from tape i; obeying such a transition does not involve
any tape movement; if no character has yet been read from tape i, the "previous"
character is assumed to be "0" , say. The details of ~ * (P) are as follows:

(i) T o ensure that ~ (P) will be ~ 5 '~ each tape is read up to its end-marker
before ~ * (P) stops. The following 3n rows do this:

i* rl , ~ -+ r 2 ,

r l I, E ~ r 2

n* r n , E ---~ _r,

ff11~ E --+ a 2 ,

a n - 1
n_l ~ E--~ an ~

an n, E - - ~ a_,

r l ,

r l 1, ~ ---} r l

~n--1 I
~. , t - ~ r ' ~

~.~, ~ --~ ~

al I, ~ -~ ~t 1

an--I ~
n--1 , ~ -+ rn-1

a.", ~ -* ~ /

~ = ~ .

(b) I f S~. is a transfer

sj has the transitions

s~*, O---,. s,, ,

I f Sj is a S T O P instruction, sj is the state

at in (i).

j. T(L3 u, v

i* $j , 1 --+ $v.

(a)

All transitions not specified below are to r 1 .

(ii) Corresponding to the commands $1, S 2 ,..., S~ of P, 6g*(P) has states
s 1 , sa ,..., s~ determined as follows:

246 LUCKHAM~ PARK, AND PATERSON

(c) If S t is an assignment

j. L, : = Fk(L,),

the corresponding rules are

(iii)

s/,F,~ ~ 6 ,

6 i, ~ ~ s~+l,

~*(P) starts in state tl with rules

tl 1, L1 ~ tl

il a, 3 --~ t 2

t.", L . -+ i .

i . " , ~ Sl

8 = 0 , 1 .

3 = 0 , 1 .

~*(P) is then obtained as a "starred" automaton with 5n -}- 2m + l states, where
l, m are, respectively, the numbers of transfer and assignment instructions in P.

6~*(P) "simulates" P in an obvious sense: suppose at some point in a computa-
t ion/)1, L1, L2 L n "hold" El', E2',..., En', respectively, and instruction j is about
to be executed; then, if each ti has an initial segment w(I, Ei'), a point is reached
in the computation of ~*(P) on <t a , t 2 tn) when the heads lie just past these
initial segments, and ~*(P) is about to enter state s~-. Conversely, in any computation
of ~*(P), whenever s t is reached the heads lie just past initial segments of the form
w(I, Ei') such that there is a point in the computation PI when the locations "hold"
El', E2', En' and instruction j is about to be executed. These two properties of
~*(P) are established by induction on the lengths of incomplete computations of P,
~*(P), respectively; 6.3 follows for ~*(P), considering just thosej which are addresses
of STOP instructions in P.

It suffices now to reduce ~*(P) to an ~ (P) ~ ~ 5 r which accepts the same tapes.
This is done as follows: The states of ~(P) are to be a, _r, and states qq._~ indexed
by unstarred live states q of ~*(P) and n-tuples x ~ 27 ~. Let~(q) for arbitrary states q
of ~*(P) and n-tuples x E Z" be defined by

lp, if q is starred, where p is obtained from the rule qi., _x(i) ~ p;
f~-(q) = q, otherwise.

Let N be the number of starred states in ~*(P). Note that, if ~N(q) is unstarred,
then it is the first unstarred state to be entered in the sequence of transitions which

FORMALISED COMPUTER PROGRAMS 247

starts at q when the last character read by each head i is x(i), and that otherwise ~*(P)
enters a "loop stop" in this situation (i.e., diverges without moving any tape). Let
g(q, x_) be the following function to states of ~(P):

t
_a, if q' = a ,

g(q,x_)= r, if q '=_r ,
qq'.x, if q' is unstarred,

~ qldrl).~- , otherwise,

where q' = ~N(q) and r I is the state introduced in (i) above (note that ~(r l) is
unstarred). Suppose now a typical unstarred rule of ~*(P) is

qi, r

then for each x e 2: n the corresponding rule of ~(P) is

q~,~_, ~ --~ g(p, Y)

where y results from _x by changing x(i) to ~. This completes the construction of C/(P).
Note that on any n-tape the sequence of states followed by C/(P) correspond to the
sequence of unstarred states followed by C/*(P) neglecting _x components of the
state of C{(P), with the possible exception of some n-tapes which C{(P) rejects and
on which C{*(P) diverges. Therefore _a is reached by C/(P) if and only if g is reached
by C/*(P) on the same n-tape, so that both automata accept the same tapes. This
completes the proof of 6.3.

Since C/(P) 6 ~ 5 f, C{(P) ~ C{(Q) if and only if Ja(C/(V)) = Ja(C/(Q)); an immediate
corollary of 6.3 is therefore:

LEMMA 6.4. P ~- Q i f and only i f tTl(P) ~ ffl(Q).

If P contains r transfers the construction can be modified by requiring the words
w(I, E) to contain binary sequences of length r after each operator symbol; the j-th
member of such a sequence on tape i is interpreted as giving the "new" value of the
j-th transfer on L i .

We may speak rather loosely of two computational models being equivalent if the
problems of equivalence within the two models are interchangeable, and if given
an element in one model there is an algorithm for producing an element in the other
model which "simulates" it in some suitable sense. The discussion above may then
be summarized by,

THEOREM 6.5. The n-tape Rabin-Scott automata are equivalent to the independent
location schemas with n locations.

COROLLARY. Ianov schemas are equivalent to the monadic schemas with one location.

248 LUCKHAM, PARK, AND PATERSON

The corollary may be proved directly by constructions similar to those above,
or by appeal to the equivalence of Ianov schemas with finite automata, Rutledge [8].

At the time of writing it is not known whether the strong equivalence problem
for independent location schemas with n locations (n > 1) is solvable; the corre-
sponding problem for n-tape automata is also open!

Below we present a brief account of some classes of schemas for which decision
procedures for strong equivalence are known, and some for which the problem
remains open. Details of proofs are omitted and can be found in Paterson [5].

THEOREM 6.6. The equivalence problem for monadic schemas with nonintersecting
loops is decidable.

We have not yet been able to eliminate the restriction to monadic operators, but
we believe that the result would still hold. The decision procedure of the theorem
expresses the equivalence of two given schemas as a formula of the additive theory
of the natural numbers, a decidable theory.

A characteristic feature of the schemas with unsolvable decision problems that
we have been considering, is that most expressions which are calculated are recalculated
later on, a feature which would be unusual and undesirable in an actual computer
program. We therefore look at various restrictions which can be imposed on schemas
to prevent this repetitive behaviour.

DEFINITION. A schema P is free if any sequence through P is an execution sequence.

DEFINITION. A schema P is liberal if, in any sequence through P, no expression
is computed more than once.

THEOREM 6.7. Given any liberal schema there is an effective construction of an
equivalent free schema.

I t seems likely that the decision problem for the equivalence of free schemas is
solvable, and certainly none of the techniques we have used so far to prove unsolvability
is obviously applicable. Theorem 6.7 shows that, for practical purposes, any liberal
schema can be considered to be free, but the reverse is not the case, as is demonstrated
by the free schema:

L 2 : = F(L1),
a. L1 : = F(L1),

L 1 : = F(LI),
L~ : = F(L2),
T(L1) b, a.

b. STOP.

The difference between the two classes is apparent too in the next theorems.

FORMALISED COMPUTER PROGRAMS 249

THEOREM 6.8. Freedom is not a decidable property.

THEOREM 6.9. Liberality is a decidable property.

T h e proof of Theorem 6.8 involves a reduction from the Post correspondence
problem. For Theorem 6.9 we can show that there can be an effective and exhaustive

search for the first occurrence of illiberality.
To date, we have a decision procedure for only a subclass of liberal schemas.

DEFINITION. A schema is progressive if, in any sequence through it, the assignment
location of each computat ion instruction is taken as a retrieval location by the next

computat ion instruction, if any.

THEOREM 6.10. The equivalence problem for progressive schemas is decidable.

The decision procedure is similar to that used in deciding equivalence for finite

automata, but also involves the symmetric group of all permutat ions of the schema

locations.

REFERENCES

1. M. DAVIS, "Computability and Unsolvability," McGraw-Hill Book Co., New York, 1958.
2. Iv. I. IANOV, The logical schemes of algorithms, Problems of Cybernetics (USSR) 1(1960),

82-140.
3. D. LUCKHAM AND D. PARK, The undecidability of the equivalence problem for program

schemata, Bolt, Beranek and Newman Inc., Report No. 1141, Santa Ana, Calif., 1964.
4. J. McCARTHY, A basis for a mathematical theory of computation, in "Computer Programming

and Formal Systems," (P. Braffort and D. Hirschberg, Eds.), pp. 33-70, North-Holland,
Amsterdam, 1963.

5. M. PATERSON, "Equivalence Problems in a Model of Computation," Doctoral Dissertation,
Cambridge University, 1967.

6. M. RABIN AND D. SCOTT, Finite automata and their decision problems, IBM J. Res. Develop.
3 (1959), 114--125.

7. A. ROSENBERO, On multi-head finite automata, Proceedings of the Fifth Annual Symposium
on Switching Circuit Theory and Logical Design, pp. 221-228, 1963.

8. J. RUTLEDaE, On Ianov's program schemata, J. Assoc. Comput. Mach. 11 (1964), 1-9.

