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Abstract

We introduce notions of absolutely continuous functionals and representations on the non-
commutative disk algebr&l,,. Absolutely continuous functionals are used to help identify
the type L part of the free semigroup algebra associated ieeatendible representatios.

A x-extendible representation @, is regular if the absolutely continuous part coincides with
the type L part. All known examples are regular. Absolutely continuous functionals are intimately
related to maps which intertwine a givemextendible representation with the left regular
representation. A simple application of these ideas extends reflexivity and hyper-reflexivity
results. Moreover the use of absolute continuity is a crucial device for establishing a density
theorem which states that the unit ballafl,,) is weaks dense in the unit ball of the associated
free semigroup algebra if and only # is regular. We provide some explicit constructions
related to the density theorem for specific representations. A notion of singular functionals is
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also defined, and every functional decomposes in a canonical way into the sum of its absolutely
continuous and singular parts.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Free semigroup algebras were introducedlié] as a method for analyzing the fine

structure ofn-tuples of isometries with orthogonal ranges. The C*-algebra generated
by such ann-tuple is either the Cuntz algebi@, or the Cuntz—Toeplitz algebr§,.
As such, the free semigroup algebras can be used to reveal the fine spatial structure of
representations of these algebras much in the same way as the von Neumann algebra
generated by a unitary operator encodes the measure class and multiplicity which cannot
be detected in the C*-algebra it generates.

This viewpoint yields critical information in the work of Bratteli and Jorgensen
[6,7,21,22] who use certain representations @f, to construct and analyze wavelet
bases.

From another point of view, free semigroup algebras can be used to study arbitrary
(row contractive)n-tuples of operators. Frahzd8,19] Bunce[8] and Popescy24]
show that every (row) contractivetuple of operators has a unique minimal dilation to
ann-tuple of isometries which is a row contraction, meaning that the ranges are pairwise
orthogonal. Thus every row contraction determines a free semigroup algebra. Popescu
[27] establishes the-variable von Neumann inequality which follows immediately from
the dilation theorem. Popescu has pursued a program of establishing the analogues of the
Sz. Nagy—Foig, program in ther-variable settind25,26,28] the latter two papers deal
with the free semigroup algebras from this point of view. Free semigroup algebras play
the same role for non-commuting operator theory as the weakly closed unital algebra
determined by the isometric dilation of a contraction plays for a single operator.

In [13], the first author, Kribs and Shpigel use dilation theory to classify the free
semigroup algebras which are obtained as the minimal isometric dilation of contractive
n-tuples of operators on finite-dimensional spaces. Such free semigroup algebras are
called finitely correlated because from the wavelet perspective, these algebras corre-
spond to the finitely correlated representationsépfor O, introduced and studied
by Bratteli and Jorgensen. It is interesting that this class of representatiods, of
are understood in terms of amtuple of matrices, a reversal of the single variable
approach of analyzing arbitrary operators using the isometric dilation. Out of the anal-
ysis of finitely correlated free semigroup algebras emerged a structural result that ap-
peared to rely on the special nature of the representation. Howev@2]n two of
the current authors and Katsoulis were able to expose a rather precise and beauti-
ful structure for arbitrary free semigroup algebras. This structure plays a key role in
this paper.
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The prototype for free semigroup algebras is the algehraletermined by the left
regular representation of the free semigrakjp on Fock space. This representation
arises naturally in the formulation of quantum mechanics. We have named fiothe
commutative analytic Toeplitz algebtzecause of the striking analytic properties that
it has[1,2,14-16,29] In particular, the vacuum vector (and many other vectors in this
representation) has the property that its image under all words im tlsmetries
forms an orthonormal set. We call such vectarandering vectorsSuch vectors play
a crucial role in these representations, and a deeper understanding of when they occur
is one of the main open questions in this theory.

The norm-closed algebral,, generated byn isometries with orthogonal ranges is
even more rigid than the C*-algebra. Indeed, it sits inside the C*-alg€prdut the
quotient ontoO, is completely isometric on this subalgebra. &5 is simple, it is
evidently the C*-envelope o®l,,. This algebra has been dubbed then-commutative
disk algebraby Popescu. It plays the same role in this theory as the disk algebra plays
in the study of a single isometry.

In this paper, we explore in greater depth the existence of wandering vectors. The
major new device is the notion of ambsolutely continuoudinear functional on2l,,.

In the one variable case, a functional diD) is given by integration against a repre-
senting measure supported on the Shilov boundanAbsolute continuity is described

in terms of Lebesgue measure. In our setting, we do not have a boundary, and we
have instead defined absolute continuity in terms of its relationship to the left regular
representation.

A related notion that plays a key role are intertwining maps from the left regular
representation to an arbitrary free semigroup algebra. The key observation is that the
range of such maps span the vectors which determine absolutely continuous functionals,
and they serve to identify the type L part of the representation (see below). These
results will be used to clarify precisely when a free semigroup is reflexive. For type L
representations, we establish hyper-reflexivity whenever there are wandering vectors—
the reflexive case. Basically the only obstruction to hyper-reflexivity is the possibility
that there may be a free semigroup algebra which is type L (isomorphig, Ydout
has no wandering vectors, and hence will be reductive (all invariant subspaces have
invariant ortho-complements).

The ultimate goal of this paper is to obtain an analogue of the Kaplansky density
theorem. This basic and well-known result states that given any C*-algebra and any
x-representation, the image of the unit ballvi®T-dense in the unit ball of thevoT-
closure. In the non-selfadjoint setting, such a result is not generally true. However, in the
context of completely isometric representations26f, we have a rather rigid structure,
and we shall show that in fact such a Kaplansky-type theorem does holdr bet
a x-extendible representation @, that is, ¢ is the restriction of ax-representation
of O, or &, to A. We call it regular if the type L part coincides with the absolutely
continuous part. It is precisely this case in which a density theorem holds, and the
unit ball of a(2,) is weakx dense in the unit ball of the free semigroup algebra.

In particular, we shall see that this holds in the presence of a wandering vector. In
fact, the only possible obstruction to a Kaplansky density result for all representations
of 2, is the existence of a representation where the free semigroup algebra is a von
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Neumann algebra and is also absolutely continuous. No such representation is known
to exist.

1. Preliminaries

In this section, we will remind the reader of some of the more technical aspects
which we need, and will establish some notation for what follows.

A typical n-tuple of isometries acting on a Hilbert spagé and having pairwise
orthogonal ranges will be denoted By, ..., S,. This may be recognized algebraically
by the reIationsijSj =1>3%7_, 55 1<;j<n. The C*-algebra that they generate
is the Cuntz algebr®, when) " _; ; S} = I and the Cuntz-Toeplitz algeb&g when
Y i1 8iS* < I. The norm-closed unital subalgebra generatedShy.. ., S, (but not
their adjoints) is completely isometrically isomorphic to Popescu’s non-commutative
disk algebral,. The ideal of&, generated byl — Y 7 ; ;S is isomorphic to the
compact operator8, and the quotient by this ideal §,,. Let the canonical generators
of &, be denoted by, ..., s,. Then every suchn-tuple of isometries arises from a
x-representatior of &, (write ¢ € Rep(&,)) as S; = a(s;).

We shall call a representatian of 2, x-extendibleif ¢ is the restriction to?l, of
a x-representation of,, or O, to the canonical copy ofl,. It is easy to see that is
x-extendible if and only ife(S;) are isometries with orthogonal ranges; or equivalently,
o is contractive andr(s;) are isometries.

Let [ denote the unital free semigroup onletters (Probably we should use the
algebraist’s term ‘monoid’ here, but our habit of using the term semigroup is well
entrenched.) This semigroup consists of all wordm 1, 2, ..., n including the empty
word . The Fock spacg?(F;") has an orthonormal basi, : w € F}, and is
the natural Hilbert space for the left regular representafioifhis representation has
generators, denoted hy; := A(s;), which act byL;¢&,, = ¢;,,- ThewoT-closed algebra
that they generate is denoted k.

In general, eacn-tuple S1,..., S, will generate a unital algebra, and thveoT-
closure will be denoted bys. When a representation of &, is given andS; = a(s;),
we may write S, for clarity. For each wordw = iy...i; in F, we will use the
notation S,, to denote the corresponding operar--- S;,. In particular,L,, ¢, = &,
for w,v € [F,T.

It is a basic fact of C*-algebra theory that every representatiort,0bplits as a
direct sum of the representation induced from its restrictiontand a represen-
tation that factors through the quotient By, However, & has a unique irreducible
representation, and it induces the left regular representatiohF;, described above.

So ¢ ~ A% @t where « is some cardinal and is a representation of,. This is
equivalent to the spatial result known as the Wold decomposition. The Wold decom-
position is the observation that the rangd of the projection/ — > 7 ; S;SF is a
wandering subspace, meaning that the subspaged! : w € F} are pairwise or-
thogonal, and together span the subsp&té&1]. Any orthonormal basis forM will
consist of wandering vectors which generate orthogonal copies of the left regular rep-
resentation; moreover, the restriction of te to S[M]+- will be a representation
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which factors throught©,,. We call the representationthe Cuntz partof ¢, and when
a =0, ie, whend ! , o(s;s7) = I, we say simply that the representationis of
Cuntz type

Recall [16] that everyA € &, has a Fourier seried ~ Zwew ayL,, determined
by Aé, = Zweﬂ ay&,. The representation is a canonical completely isometric map
from 2, into £, which sendss; to L;. Hence elements ofl, inherit corresponding
Fourier series, and we will writeA ~ Zwe[F,T ay$y. The functional ¢y reads off
the coefficientagy. The kernel ofgpg in A, and &, are denoted byl, o and &, o,
respectively. These are the norm anwdT-closed ideals, respectively, generated by the
generators, ..., s, andLq, ..., L,. Even whengp is not defined on a free semigroup
algebra&, we still denote byS, the woT-closed ideal generated kg, ..., S,. This
will either be codimension one or equal to the entire algebra.

The ideaIs‘)I’,j,0 and 2’,‘,,0 consist of those elements with zero Fourier coefficients for
all wordsw with |w| < k; and are generated as a right ideal{By : |w| = k}. Moreover
[14], each element irﬁﬁ’o may be uniquely represented as= Z\w|:k L,A, and
[|A]l is equal to the norm of the column operator with entriggs.

One can recover an element 8, or £, from its Fourier series in the classical
way using a summability kernel. Far € T, let o, be the gauge automorphism of
O, determined by the mapping +— ts;. Let V,(r) = Z,f’;tlz,,_l cet* be the de la
Vallée Poussin summability kernel ofi from harmonic analysis. Recall thaf, is
a trigonometric polynomial of degreen2- 1 with Fourier transformv, (k) = 1 for
lk|<n + 1. Let m be normalized Lebesgue measure BnDefine linear map<; on
O, by

zk(X)zﬁvk(t)a;l(X)dm(t).

Then 2, is a unital completely positive map o, which leaves?l, invariant
and moreover, for everyX e O,, Xy (X) converges in norm toX. It has
the additional property that the Fourier coefficients Xf(X) agree with those of
X up to the kth level. Indeed, ifA ~ Zweﬂ ayLy lies in A, then X (A) =
2w <2+1 Clwj@wsw. Notice that forA e £,, Zx(A) converges toA in the strong
operator topology.

Let ¢ be ax-extendible representation and Iét= S,. We now recall some facts
from [12] regarding the idealé'{). The intersectiory of these ideals is a left ideal of
the von Neumann algebf3 generated by the;; therefore,§ has the form2B P, for
some projectionP, € S (When the context is clear, we will writ€ instead of P;.)
The structure theorem for free semigroup algelt2$ shows thatP is characterized as
the largest projection if® such thatPSP is self-adjoint. MoreoverP-# is invariant
for © and whenP # I, the restriction of S to the range ofPL is canonically
isomorphic to £,. Indeed, the map taking;|p14 to L; extends to a completely
isometric isomorphism which is also a weakhomeomorphism. Algebras which are
isomorphic to&, are calledtype L When P # I, the restriction ofs to the range of
P+ again determines a-extendible representation @,, and we call this restriction
the type L partof o.



K.R. Davidson et al./Journal of Functional Analysis 224 (2005) 160-191 165

2. Absolute continuity

In the study of the disk algebra, those functionals which are absolutely continuous
to Lebesgue measure play a special role. Of course, the Shilov boundary of the disk
algebra is the unit circle, and the Lebesgue probability measuite Haar measure on
it. Moreover, every representing measure for evaluation at points interior to the disk is
absolutely continuous. We have been seeking an appropriate analogue of this for free
semigroup algebras for some time. That is, which functionals on the non-commutative
disk algebra2l,, should be deemed to be absolutely continuous? Unfortunately, there
is no clear notion of boundary or representing measure. However there is a natural
analogy, and we propose it here.

Our starting point is the left regular representation of the semigrdup+). Un-
der this representation, the generator (&f, +) is mapped to the unilateral shif
and elements ofA (D) are analytic functions:(S) of the shift, which may be re-
garded as multipliers of#2(T). With this perspective, every vector functional—

(h(S) f1, f2) = [ hfif>dm corresponds to a measure which is absolutely continuous
with respect to Lebesgue measure.

On the other hand, suppogeis a functional onA (D) given by integration oveil
by an absolutely continuous measure, so thét) = [ if dm for some f € LY. It
is not difficult to show that such functionals oh(D) can be approximated by vector
functionals from the Hilbert space of the left regular representation. Moreover, if one
allows infinite multiplicity, one can represent as a vector state, that is, there are
vectorsx; andxy in H2() such that

@(h) = (h(S®)x1,x2) and ol =[xl [|lx2|.

Another view is that the absolutely continuous functionals A¢)) are the func-
tionals in the predual of7°°(T). Our analogue of this algebra 13,.
So we are motivated to make the following definition:

Definition 2.1. For n>2, a functional on the non-commutative disk alge®g is
absolutely continuoud it is given by a vector state ol,; i.e. if there are vectors
{,n e €3(F) so thatp(A) = (A(A)¢,n). Let A2 denote the set of all absolutely
continuous functionals ofil,,.

For n>2, £, has enough “infinite multiplicity” that it is unnecessary to take the
closure of vector functionals; in fact we shall see shortly &t is already norm
closed.

The following result shows that the notion of being representable as a vector state
and being in the predual of, are equivalent to each other and to a natural norm
condition on the functional.

Proposition 2.2. For ¢ € 2, the following are equivalent
(1) ¢ is absolutely continuous
2) o 21 extends to a weak continuous functional org,.

) kll)rgo ||(P|Q[£,O|| =0.



166 K.R. Davidson et al./Journal of Functional Analysis 224 (2005) 160-191

Moreover givene > 0, the vectors, and n may be chosen so thdt|| |1 < |lell +¢.

Proof. (1) implies (2) by definition. The converse follows frofb6] where it is shown
that every weak- continuous functional or, is given by a vector state. The norm
condition on the vector§ andy is also obtained there.

Next, suppose (1) holds. The maipcarries%[fl,o into Q’,‘,,O. Let O, denote the pro-

jection of EZ(E{) ontospafé, : w € [F,T, lw| >k}. Elements ofﬁﬁ’o are characterized
by A= QyA. Thus forA e QI’,‘l’O,

lp(A)| = {A(A, m)| = KAAL, Qem | <A Qrnll-
Hence it follows that
Nim lglgge 1< lim I Qenll = 0.

Conversely suppose that (3) holds. Then giver 2, we use the fact thak (A)
converges taA in norm. Note that whem: >k, 23 (X) — 2,,(X) belongs tlefj,o and
has norm at most|4|. It follows therefore that the adjoint maps satisfy,

1259 = Z5 (@I <2plgp I

So 2} (¢p) is a Cauchy sequence B
We claim thatX}(¢) is absolutely continuous. Indeed, consider the Fourier series
A~ et AwSw. Then

SHEA) = D cuawe(sw)

lw|] <2k+1

= Y cu@Gw) (A &)
lw|] <2k+1

= (A Y cueEw)éy).

|w| < 2k+1

From (1) implies (2), we found that the set of absolutely continuous functionals is
norm closed. Hence the limip is also absolutely continuous[]
The following is immediate.

Corollary 2.3. The set? is the closed subspace of the dual®f which forms the
predual of &,,.
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Definition 2.4. Let ¢ be ax-extendible representation &@f, on the Hilbert spacé,.
A vector x € H, is called anabsolutely continuousector if the corresponding vector
state takingA € A, to (d(A)x, x) is absolutely continuous.

Another straightforward but useful consequence is:

Corollary 2.5. If ¢ is a x-extendible representation off, and x,y are vectors ly-
L ——WO .
ing in the type L part of & = o(%[n)w T (or even in the type L part off =

(a@i)(?l,,)WOT ), then p(A) = (6(A)x, y) is absolutely continuous. In particular
every vector lying in the type L part 61, is absolutely continuous

Proof. Relative toH & ZZ(H), the structure projectiorP,q,; for T decomposes as

Py & 0, with P;1< P,;. By considering vectors of the form & 0, wherex is in the
range of P;, we may regard the type L part & as contained in the type L part of

T. Thus, we may assume to be working with the representatieni from the start.

By [12, Theorem 1.6]the type L part ofc & A is spanned by wandering vectors. For
any wandering vectow, the functionale,(A) = ((c¢ & H)(A)w, y & 0) is absolutely
continuous because the cyclic subspée® 1) (21,,)[w] is unitarily equivalent tcﬁz([Fj)

and y & 0 may be replaced with its projection into this subspace. By the previous
corollary, the set of absolutely continuous functionals is a closed subspace. Taking
linear combinations and limits shows thatis in this closure, and hence also absolutely
continuous. [

Now we wish to develop a connection between absolute continuity and certain in-
tertwining operators.

Definition 2.6. Let ¢ be ax-extendible representation &, on a Hilbert spaceH
with generatorsS; = a(s;). Say that an operataX € B(ZZ([F;Z*),H) intertwines Sand
Lif $;X = XL; for 1<i<n. Let X(0) denote the set of all such intertwiners. We
denote the range of the subspatés) by Vac(o), that is, Vac(o) = X(a)ﬁz([F;“).

Notice that Vac(o) is an invariant linear manifold foro(2l,,). The next result
shows thatV,c(¢) is also closed and equals the set of absolutely continuous vectors
for o.

Theorem 2.7. For a representations of £, on H, let Q be the structure projection of

T=(0d i)(QIn)WOT. The following statements hold
(i) For x,y € Vac(0), the functionalyy(A) = (a(A)x, y) is absolutely continuous on
A,
(i) If x e H and Y (A) = (o(A)x, x) is absolutely continuous, thene Va(0).
(i) The subspac®,(o) is closed and i (2,,)-invariant. Moreovey it is the subspace
of H corresponding to the projection ontH of the type L part oflc ® 1)(21,),
that is, Vac(6) = Ran(Py Q™1).
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Proof. Let x,y € Vac(0), and choose vector§, # in ¢2(F,) and X, ¥ € X (o) with
X{=xandYn=y. Then

@(A) = (a(A)x, y) = (6(A) XL, Yn) = (XAA)L, Yn) = (AL, X*Yn),

SO ¢ is absolutely continuous.

Suppose thaty/(A) = (o(A)x, x) is absolutely continuous, say(A) = (A(A){, ).
Theorem 1.6 of12] shows thaty @ { is a cyclic vector for an invariant subspade
of (¢ ® 4)(2,,) on which the restriction is unitarily equivalent o Indeed, while the
hypothesis of that theorem requires thatbe type L, this condition is used only to
establish that) is absolutely continuous (in our new terminology). It is evident that
a subspace of this type is the range of an intertwining isom&try X' (o @ 1). Let
X = Py V. ThenX intertwinesS and L. Moreover, sincex & ( is in the range oW, it
follows thatx is in the range ofX, so (ii) holds.

We now push this argument a little further. Observe that as in the pro¢izf
Theorem 1.6] givent > 0, { may be replaced by({. Therefore, ifx € Vac(0), the
argument of the previous paragraph also shows xHalongs to the closed span of the
wandering vectors fofg @& 4)(21,). Thusx belongs to the type L part afe ® 1)(21,,),
whence Vae(6) € Ran(Py Q1). Conversely, sincePy; and Q commute, any vector
x € Ran(Py Q1) lies in the type L part off, and thusy/(A) = (Ax, x) is absolutely
continuous by Corollarg.5. But thenx € Vac(o) by part (ii). So RanPy Q1) = Vac(0).
That Vac(o) is closed is now obvious.

We now give a condition sufficient for the existence of wandering vectors.

Theorem 2.8. Let X belong toX (¢). Then the following statements are equivalent
(i) The representations|gzz;% and 4 are unitarily equivalent

(i) RanX = S[w] for some wandering vector;w

(i) X*X = R*R for some non-zerek € R, = €.

In particular, this holds if X is bounded below

Proof. The equivalence of (i) and (ii) is clear from the definitions.

To obtain (iii) = (i), suppose thatX*X = R*R. By restricting ¢ to the invariant
subspaceRan X, we may suppose that has dense range, and tht, is a cyclic
vector. We now show that is equivalent to/.

SinceR € R, [16, Corollary 2.2] shows thaR factors as the product of an isometry
and an outer operator itR,. The equalityX*X = R*R is unchanged if the isometry
is removed, so we may assume tlRahas dense range. Sindeand R have the same
positive part, there is an isometky such thatX = VR and RanV = Ran X; whence
V is unitary. Then

(S;V—VL)R = S;(VR) —(VR)L; = 0.

ThereforeV intertwinesS and L and soo|ranv IS equivalent to/.
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Finally, we show (ii)= (iii). If there is an isometry/ € X' (¢) with RanV = Ran X,
then by again restricting to this range, we may assume \thigt unitary, so thatr is
equivalent toi. So V*S; = L;V*. Hence

(V¥*X)L; = V*S; X = L;(V*X);
whenceR := V*X belongs tosl,’1 = R,. ThereforeX = VR and soX*X = R*R.
Now suppose thaX is bounded below. Again we may suppose tiahas dense

range, henceX is invertible.
Consider the Wold decomposition & The Cuntz part is supported on

N:=(] Y. RanS, =[] D SuX€*FH

k=1 |w|=k k=1 |lw|=k
=) X XL PEH =X () Y Lut?(F) ={0) (€
k>1 |w|=k k>1 |w|=k

Henceo is a multiple of 2. Since RanX has a cyclic vectotX ¢, ¢ has multiplicity
one, and thus is equivalent to [

As an immediate corollary, we note the existence of wandering vectors is character-
ized by a structural property ot (o).

Corollary 2.9. Let g be a representation aof,, on H# with generatorsS; = a(s;). Then
S has a wandering vector if and only if there exi&ts X (¢) such that X is bounded
below

Proof. If n € H is wandering forS, then the isometric map determined B¢, =
w(S)n belongs toX (¢). The converse follows from the theoreni]

Remark 2.10. If one only hasX*X > R*R for a non-zeroR € ‘R,, one may still
deduce that RaiX has wandering vectors. To do this, use Douglas’ lenjtig to
factor R = YX. Then argue as in Theore8 that YS; = L;Y. Then with N/ as

in (1), one can show tha¥ N' = {0}. SinceY has dense range; has a summand
equivalent toA. Moreover, since the range of an intertwiner consists of absolutely
continuous vectors, the existence of this summand and Le@ddelow show that
the range ofX is spanned by wandering vectors.

Example 2.11. There are intertwining maps whose range is not equivalen. t6or
example, consider the atomic representation of type [16, Example 3.2] Then the

restriction of S, to the spine¢2(Z x {0}) is the bilateral shift.

Observe that there is a summable sequeagi.cz such that) ", ., ar&; o is cyclic
for the bilateral shift. Indeed, Beurling’s theorem states that the (cyclic) invariant sub-
spaces of the bilateral shift, considered #s on L%(T), have the formL2(E) for a
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measurable subsd of T or the formwH?2 where |w| = 1 a.e. Thus if a function
g vanishes on a set of positive measure, it generafésuppg)). On the other hand,
if there is an outer functiori in H? with | f| = |g| a.e., then the cyclic subspace is
wH? wherew = g/f. This occurs if and only if logg| belongs toL1(T). So choose
a C? function g on T which vanishes at a single point in such a way that|dgs
not integrable. For example, make0) = ¢~/ neard = 0 and smooth. Lying inC2
guarantees that the Fourier coefficients are summable.

For eachk € Z, there is an intertwining isometry; with Vi &, = & 0. ThenV =
Y rez akVk is an intertwiner. Moreovery ¢ is cyclic for this Cuntz representation.
SoV has dense range; but the representaﬁgm is not equivalent tol.

Remark 2.12. Consider the completely positive map di(#H) given by &(A) =
Y. SiAS?. Suppose thaX intertwinesS and L. Then

XX = > SyXX*Sh=X Y LyLjX*=XO(X*<XX*
|wl=k lwi=k

Moreover, SoT-lim; @¥(X*X) = 0. This latter condition is callegurity by Popescu
[30]. Under these two hypotheses, namélyD) < D andsotlim; (D) = 0, Popescu
proves the converse, th@t = X*X for an intertwinerSX = XL using his Poisson
transform.

3. Wandering vectors and absolute continuity

In [12], we showed that in the presence of summands which contain wandering
vectors, the entire type L part is spanned by wandering vectors. In this section, we use
the ideas of the previous section to strengthen this significantly by showing that the
presence of one wandering vector implies that the type L part is spanned by wandering
vectors. We then consider the various ways in which a representation can appear to be
type L.

Definition 3.1. Let ¢ be ax-extendible representation &f,. We say thats is type L
if the free semigroup algebra generated diy1), ..., o(s,) is type L.

A representatiory is weak type Lif ¢ @ 1 is type L.

A representatiors is weakx type Lif ¢* is type L.

The representatiom of 2, is absolutely continuousf every vector statey(A) =
(6(A)x, x) is absolutely continuous.

Notice that the restriction of a-extendible representatiom of 2, to the invari-
ant subspacé/ac(g) produces an absolutely continuous representation. We call this
restriction theabsolutely continuous parf o.

Lemma 3.2. If ¢ is absolutely continuous and has a wandering vectben # is
spanned by its wandering vectors. In particylaris type L
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Proof. Let n be a wandering vector iff{, and setHo = S[n]. Let V be the isometry
in X(c) mapping¢?(F,") onto Ho.

By Theorem?2.7, every vectorx € H is in the range of some intertwining map
X € X(0). We may assume thatX| = % ThenV 4+ X are intertwiners which are
bounded below. By Theorer.8, the ranges of these two intertwiners are the ranges
of isometric intertwiners, and thus are spanned by wandering vectors. But the range of
X is contained in the sum of the ranges ¥f+ X; and hencex is contained in the
span of all wandering vectors.[]

Corollary 3.3. If ¢ is any representation of, such thato(2l,) has a wandering
vector, then the span of the wandering vectors &Rl,,) is Vac(o).

Proof. Any wandering vector is an absolutely continuous vector, so simply restrict
to the a(2,)-invariant subspace consisting of absolutely continuous vectors and apply
the lemma. [

We now delineate the various type L forms, and their relationships as we know
today. There are no known examples of absolutely continuous representations without
wandering vectors.

Theorem 3.4. Consider the following conditions for a-extendible representation
of 2A,:

(1a) o is absolutely continuous

(1b) o @ 4 is type L(i.e. o is weak type L

(1c) o @ 7 is type L for any(all) type L representation.

(2a) 6™ is type L(i.e. ¢ is weaks type L)

(2b) ¢ is absolutely continuous and® has a wandering vector

(2¢) ¢ is spanned by wandering vectors

(3a) g is type L

(3b) ¢ is absolutely continuous and® has a wandering vector for some finite k
(3c) ¢® is spanned by wandering vectors for some finite k

(4a) o is absolutely continuous and has a wandering vector

(4b) ¢ is spanned by wandering vectors

Then properties with the same numeral are equivalamd larger numbers imply
smaller.

Proof. (1a) = (1b): If ¢ is absolutely continuous, thene® / is absolutely continuous
and has a wandering vector. Thus by Lem&3 ¢ & /. is spanned by its wandering
vectors, and so is type L.

(1b) = (1a): Sinceg @ A is type L and has a wandering vector, Lem@& shows
that o @ 1 is spanned by its wandering vectors. Thug / is absolutely continuous,
and hence so ig.

(1a)= (1c): If 7 is any type L representation, there is an integeo thatt(”) has a
wandering vector. Thugs @ 1)?) is absolutely continuous and has a wandering vector,
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and so is also type L. However being type L is not affected by finite ampliations, as
this has no effect on the/oT-closure. Sos @ 7 is type L.

(1c) = (1a): If c ® 7 is type L for some type L representatian thens & 7 is
absolutely continuous. By considering vectors of the forr 0, we find thato is
absolutely continuous. So (1a)—(1c) are all equivalent.

If ¢ is weak« type L, thens®™ has a finite ampliation which is spanned by
wandering vectors. But of course this ampliation is equivalent®’, so (2a) im-
plies (2c). Clearly, if (2c) holds, then every vector #(° is absolutely continuous,
so in particular,c is an absolutely continuous representation; thus (2b) holds: If
is absolutely continuous and® has a wandering vector, the®(® is spanned
by wandering vectors and thus™ is type L. So (2a)—(2c) are all equivalent and
imply (2).

The equivalence of (3a)—(3c) follows frorfil2, Corollary 1.9] and evidently
implies (2).

By Lemma3.2, (4a) and (4b) are equivalent and clearly imply (3]

It is worthwhile examining the various weaker notions of type L in light of the
Structure Theorem for Free Semigroup Algebfag]. Let ¢ be a representation of
&, and letS and 23 denote the corresponding free semigroup algebra and von Neu-
mann algebra, respectively. Then there is a projeckoin & characterized as the
largest projection inS for which PSP is self-adjoint. Then& = WP + SPL,
PLH is invariant for & and SPL is type L. We wish to break this down a bit
more.

Definition 3.5. A representations of &, or O, is of von Neumann typé the corre-

sponding free semigroup algeb& is a von Neumann algebra. & has no summand
of either type L or von Neumann type, say that it isdifation type We also will say

that ¢ is weak= of some type ife> is of that type.

A very recent result of Charles Red81] shows that there can indeed be represen-
tations of von Neumann type.

The reason for the nomenclatuddlation typeis that after all summands of von
Neumann type and type L are removed, the remainder must have a non-zero projection
P prescribed by the structure theorem such that is cyclic andPL# is cyclic for G*.

For these algebras, the type L corner must be a multiplé. @b see this, consider the
subspaceV = (), S;iPH)©PH. This is a wandering subspace for the type L part. It
is necessarily non-zero, for otherwi§e would be a von Neumann algebra. Moreover,
W is cyclic for the type L corner because of the cyclicity Bf{. Hence the type L
part is equivalent ta. @MW) This is an observation that was, unfortunately, overlooked
in [12]. Hence one sees that the compressidns= PS;|py form a row contraction
with S; as their minimal isometric dilation (in the sense of Frahzo—Bunce—Popescu).
We record the most useful part of this for future reference.

Proposition 3.6. If ¢ is dilation type then it has wandering vectors. In particular
dilation type and weak dilation type coincide
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Proof. The first statement was proven in the preamble. Once one has a wandering
vector, the span of the wandering vectors includes all of the absolutely continuous
vectors, which includes the weaktype L part. [J

We can now clarify the exceptional case in which there may be pathology.

Proposition 3.7. Let ¢ be a x-extendible representation ofl,,. If the type L and
absolutely continuous parts do not coincidden ¢ is of von Neumann typeand

decomposes as >~ g, ®a, Whereog, is absolutely continuous angl has no absolutely
continuous part

Proof. Decomposer >~ g, @ a4 @ g; into its von Neumann, dilation and type L parts.
By Proposition3.6, if there is a dilation part, then there are wandering vectors. So by
Corollary 3.3 the type L and absolutely continuous parts coincide. Likewise if there
is a type L part, the equivalence of (1a) and (1b) in TheoBmshows that the type
L and absolutely continuous parts will coincide. 8ds necessarily of von Neumann
type.

Since V(o) is invariant for S;, and S, is a von Neumann algebra,
Vac(o) is a reducing subspace fo,. This gives the desired decomposition
c~o,do,. U

Definition 3.8. Call a x-extendible representation of 2, regular if the absolutely
continuous and type L parts ef coincide.

Remark 3.9. Proposition 3.7 shows that the only pathology that can occur in the
various weak type L possibilities is due to a lack of wandering vectors.

It is conceivable that a representation is type L but has no wandering vectors. Such an
algebra is reductive and nonselfadjoint. There is no operator algebra known to have this
property. So the (unlikely) existence of such an algebra would yield a counterexample
to a well-known variant of the invariant subspace problem.

A x-extendible representation which is weakx type L but not type L must be von

Neumann type by the preceding proposition. But th&ﬂ[n)w * would be a weake
closed subalgebra isomorphic #), which is woT-dense in a von Neumann algebra.
We have no free semigroup algebra example of this type of behavior. However, Loebl
and Muhly [23] have constructed an operator algebra which is wealtesed and
nonselfadjoint, but with thevoTt-closure equal to a von Neumann algebra. Therefore,
it is conceivable that such a free semigroup algebra could exist.

Finally, one could imagine that is of weak« von Neumann type but absolutely
continuous.

Clearing up the question of whether any of these possibilities can actually occur
remains one of the central questions in the area. We conjecture that every representation
is regular. Indeed, we would go further and speculate that type L representations always
have wandering vectors.
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4. Reflexivity and hyper-reflexivity

In this section, we establish two reflexivity results that extend previous work in light
of the previous section.

Theorem 4.1.If S is a free semigroup algebra which has a wandering vedtoen it
is reflexive

Proof. By [12, Proposition 5.3]& is reflexive if and only if the restriction to its type
L part is reflexive. Thus, without loss of generality, we may assume & type L.
Since € is type L and has a wandering vector, Lem@2 shows thatX is spanned
by wandering vectors. LeW C H be the set of all unit wandering vectors. For each
xae W, let Hy = S[a] and letV, : ZZ([F,J{) — Hp be the intertwining isometry which
sends¢,, to Sy,a. Then the invariant subspacés, spar{ and each restrictior®|y,
is unitarily equivalent to%,, via V.

If T € Alg Lat S, then #H, is invariant forT. Since &, is reflexive, there is an
elementB, € &, so thatT|y, = V,B,V;. For eachu € W, there is an elemend,
& so thatA,|y, = VuB,V, . Fix an elementg € W, let Vo = V,, and Ag = A,,. We
shall show thatl" = Aq. By replacingT with 7' — Ap, we may assume thdt|y, =0,
so that our task is to show = 0.

Given o € W, the operatorX = Vp + .5V, is an intertwining map betwee8 and L
which is bounded below. MoreoveM := Ran X is closed and invariant fo&; hence
M is also invariant forT. But

TXEy=TVoly+ 5T Vyly = 5A,Vuly =y

belongs toH, N M. This implies that there is a vectdre 62([ij) so thaty = X{ =
Vol + .5V, { belongs toH,, and thusVy( lies in HoNH,. If { =0 theny =0, so that
A, has the non-zero vectov, &, in its kernel. OtherwiseVp{ is a non-zero vector
in Ho NH, and A, Vol = TVo({ = 0. Therefore,A,|y, has non-trivial kernel. Hence
B, is an element of®, with non-trivial kernel. Since non-zero elements @8f are
injective [16, Theorem 1.7]we deduce thaB, = 0. Hence 0= A,|y;, = Tly,. Since
\yew Hz = H, we conclude that” = 0 as desired. []

Recall that an operator algeb®h is hyper-reflexive if there is a consta@tso that

dist(T, W < CPo(T) :=C sup |PTP].
PelLat A

The known families of hyper-reflexive algebras are fairly small. It includes nest algebras
[3] with constant 1, the analytic Toeplitz algeljf] and the free semigroup algebras
£, [16]. Bercovici[4] obtained distance constant 3 for all algebras having propeyty

and also showed that an operator algetirdas propertytp 1 whenever its commutant
contains two isometries with orthogonal ranges. In particular,has propertyp 1
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whenn > 2. Bercovici’s results significantly increased the known class of hyper-reflexive
algebras.

There is a long-standing open question about whether all von Neumann algebras
are hyper-reflexive, which is equivalent to whether every derivation is if@lerThe
missing cases are von Neumann algebras whose commutant are certain intractable type
I 11 algebras. This could include certain tygé,, representations o®,, and hence
would apply in our context. So for the next result, we restrict ourselves to the type L
case.

Theorem 4.2.1f S is a type L free semigroup algebra which has a wandering vector
then & is hyper-reflexive

Before giving the proof, we pause for the following remark.

Remark 4.3. If S is type L and has a wandering vector, then[tg] it has property
A1 and by[15] it even has propertyy,. In particular, Theorend.2 together with a
result from[20] implies that every weak-closed subspace of a type L free semigroup
algebra with a wandering vector is also hyper-reflexive. Even thotigh is only a
bit stronger thanAy,, we were unable to show tha® has it. So we are unable to
apply Bercovici’'s argument. Thus, the proof which follows uses methods reminiscent
of those used irj16].

If S is type L and has no wandering vector, then as noted in Re®8rkhe algebra
will be non-self-adjoint and reductive. In particular, it is not reflexive.

Proof. Let T € B(H), and setf(T) = SUppc o ¢ IIPLTP|. Let xo be a wandering
vector of S. Then S|g(,,) >~ £,. Since &, is hyper-reflexive with constant 3, there
exists anA € € with (T — A)|gy|| <3P(T). By replacingT with T — A, we can
assume thal|T'| gy, | <3B(T).

Let x be a wandering vector with # xo and letV be the isometric intertwiner from
Ez([F,;L) onto S[x] satisfyingV ¢, = S,x. We shall show that

|7 el <26B(T). 2)

Let x; = S;xg, for i = 1,2. Fori = 0, 1, 2, define isometric intertwiner¥; from
() to H by Vié, = Syx; for w e F.

Fori =1,2, setT; = V; +rV where O< r < 1/+/2, and define\; = RanT;. We
claim thatA7 and N> are at a positive angle to each other; so thath A2 = {0} and
N1+ N> is closed. Indeed, using:=1—r+/2 > 0,

172 — Tonll = 1Vi€ — Vanl = r[IV(E =)l
Z IE@nll —rdich + lnlh) =0l @ nll.

So the natural map a1 @ N> onto N7 + N> is an isomorphism.
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Observe next that for any € [, we have

D Sy + N2 = > Sy Tal?(F) + Sy Tot?(FH)

|wl=k wl=k
=T Z L,3(FD) + T2 Z L, C3(F).
[w|=k |lw|=k

Therefore,

Jlim > SuN1+N2) =0.

00
|lw|=k

As Z’}Zl S;N; has co-dimension one iV;, we find that.

dim (/\/1 + N — Z Sj(/\/l +N2)) =2.

j=1

By the Wold decomposition, we deduce th&ip; .y, =~ 2P. This algebra is hyper-
reflexive with distance constant 3. So there is an eleménte & such that
(T — A A+ap Il < 3BT).

Note thatM := S[x1—x2] = RanTy—T») C N1+N2; also, M is a cyclic subspace
of Slxol. Since | Tl <3B(T), AImI <BB(T). As € is type L, [|A] = [ Alm]l, SO
1T Aq+05 I <OB(T). We now improve this to an estimate 6|y ll.

Suppose thay is a unit vector in&S[x]. Observe that

Ti(V*y) =ViViy +ry

lies in N1 C N1+No. So||T(ViV*y+ry)||<9(A+7r)B(T). As V1V*y is a unit vector
in Slxol, ITV1V*y| <3p(T). Hence

1Tyl <r 112+ 9r)(T).

Choosingr sufficiently close to 1./2 yields that|| 7| | <26f(T), so @) holds.

We now can estimatg|T||. Fix any unit vectory € H, and letT be the free
semigroup algebra generated By@® L;. Since S is type L, by[12, Theorem 1.6]
there is a vector{ e 62([F,j) with ||{|| < e such thatT[y & {] is a subspace of
H D 62([Fj{) which is generated by a wandering vector. Hefie & (] is the range
of an isometryW’ from Ez([F,J{) to He Ez([F,J{) intertwining L; with S; & L;. Then
W’ .= Py W' is a contraction inB(¢%(F;"), H) satisfying S; W” = W”L;. Moreover,
there is a vecto€ e ¢2(F") of norm (1 + ¢2)1/2 such thatw”¢ = y. Identify S[xo]
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with €2(F;") via the isometryVo € B(¢3(F;), H), and setW := W"V§ € B(S[xol, H)
andw := Vpé.

Let J be the inclusion map ofS[xg] into H. For |¢| < 1, considerV; = J +tW.
This is an intertwining map which is bounded below, and thus by The®@&nthere
is a wandering vectok; of & so that RanV;) = S[x,]. So

1T (w + 1) <26B(T) [w + 1yl

Since ||[Tw| <3B(T)||w], if we let t increase to 1 and decrease to 0, we obtain
ITy|| <558(T). So || T| <558(T). Thus, € is hyper-reflexive with constant at most
55. O

The following proposition is complementary {&2, Proposition 2.10khowing that
if S is of Cuntz type, thers” = I is a von Neumann algebra.

Proposition 4.4. Let © be a free semigroup algebra acting on a Hilbert spake
which is not of Cuntz type. Theg” = S.

Proof. Since@ is not Cuntz type, by the Wold decomposition, it has a direct summand
equivalent to,. That is, we may decompose the generafyrs .., S, asS; =T, ®L;
onH = Hy @ ¢3(F)).

Let 23 be the von Neumann algebra generated3hyBy the Structure Theorerfi2,
Theorem 2.6]there is a largest projectioB in & such thatPSP is self-adjoint and
S =WP + PLSPL. Now & c W' =W, so SP c &"P c WP = SP; whence
S"pP=GP.

By Theorem3.2, P is spanned by wandering vectors. For any wandering vector
xy, let V, be the canonical intertwining isometry froW?—([F;f) into ‘H defined by
Vyéw = Suxy for w e FF. If we selectxg = 0@ &, then Vo maps onto the free
summand. It is easy to check thejVy commutes withS.

Let A € €. Then since @& commutes withS, A must have the formt = A1® A».
Moreover, Az € € = £, by [16]. There is an elemen € S such thatB = B, & A».
Subtracting this fromA, we may suppose that = A1 & 0. Then

Axy = A(Vy Vg)xo = (V4 Vg)Axo = 0.

Thus AP+ = 0. As above AP lies in S, whenceA belongs toS. [

5. A Kaplansky density theorem

Kaplansky’s famous density theorem states that i a x-representation of a C*-
algebra?l, then the unit ball ofe(2l) is woT-dense in the ball of the von Neumann

———W-x  ———WOT . .
algebralld = ¢(A) t = a(A) . In general, there is no analogue of this for operator
algebras which are not self-adjoint. Indeed, it is possible to construct many examples
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of pathology[33]. On the other hand, the density theorem is such a useful fact that it
is worth seeking such a result whenever possible. In this section, we establish a density
theorem for regular representations Uf,.

Consider the following proof of the Kaplansky density theorem. Mete a C*-
algebra. The double duad** may identified with the universal enveloping von Neu-
mann algebraV, of A. Any representatiow of A extends uniquely to a normal rep-
resentatione of W, onto W = a(A)”. Because this is a surjectivehomomorphism
of C*-algebras, it is a complete quotient map. In particular, any element of the open
ball of W is the image of an element in the ball ¥¥,. Now by Goldstine’s Theorem,
every element of the ball oft** is the weakx limit of a net in the ball ofA. Mapping
this down intoW by @ yields the Kaplansky density theorem.

The usual argument thaty, is isometrically isomorphic te4** requires the Ka-
plansky density theorem. Indeed, each statedoextends to vector state on,. But
the fact that all functionals otd have the same norm oW, follows from knowing
that the unit ball is weak-dense in the ball o#V,. However, the use of Kaplansky's
density theorem can be avoided as David Blecher pointed out to us. Such a proof
can be found now if5, Paragraph A.5.10]Jmaking this argument a legitimate way to
obtain the Kaplansky theorem.

We shall use these ideas to decide when such a result holds in our context. Moreover,
in the C*-algebra context, Kaplansky’s theorem extends easily to matrices over the alge-
bra because they are also C*algebras. In our case, it follows from the
proof.

The double dual ofl,, may be regarded as a free semigroup algebra, in the following
way. We shall use it as a tool in the proof of the Kaplansky density theorem, and we
pause to highlight some of its features.

Definition 5.1. Regard?l, as a subalgebra @f,. Then the second du@l’* is naturally
identified with a weaks closed subalgebra of*. This will be called theuniversal
free semigroup algebraThat this is a free semigroup algebra will follow from the
discussion below. We shall denote its structure projectionPpy

Denote byj the natural inclusion of a Banach space into its double dual. T2k )
generates,”™ as a von Neumann algebra.

If o is ax-representation of, on a Hilbert spacé4, thens has a unique extension
to a normalx-representatio of £ on the same Hilbert spack. Moreover,a(&;*
is the von Neumann algebr&&,)” generated by (&,).

Fix once and for all a universal representatign of £, acting on the Hilbert space
H, with the property thatr, has infinite multiplicity, i.e.,m, ~ n°”. This is done
to ensure that th&vot and weak« topologies coincide on the universal von Neumann
algebral3, = n,(&,)”. ThenT, is a x-isomorphism of€** onto U3,. This carries
A onto the weake closed subalgebra closu@, of n,(2,). This coincides with the
worT-closure, and thus this is a free semigroup algebra. Hefjgeis a free semigroup
algebra.

Sincer, has infinite multiplicity and contains a copy éf its type L part is spanned
by wandering vectors. So by Theore3m, the range ofi, (P.l) is Vac(m,).
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Proposition 5.2. Let ¢ be a representation of, and let P, € A** be the universal
structure projection. TherE(PL}) is the projection ontdVac(a).

Proof. Consider the kernel ofr. There is a central projectio®, € &£ such that
kerg = Q& . Moreover, we may regar@ as a closed subspace #f, and¢ as
given by multiplication byQZ, namelya(X) = QX X|y for any X € £*.

Let M be the range of(P;) and letx € M. Thenx € Q%P H,, sox belongs to
Vac(m,). Thus for anyA € 2,

(0(A)x, x) = (1,(j(A) QL Plrx, OFPL).

As the range ofP;- consists of absolutely continuous vectors, we see that this is an
absolutely continuous functional, soe Vac(0).

Conversely, ifx € Vac(0), then there exists an intertwingf € X' (o) and({ € EZ([F,J{)
so thatx = X{. Observe thatQGlX belongs toX(n,), hencex € Vac(m,). Since the
absolutely continuous part of, coincides with the type L part of,, we conclude
thatx € P H, N Q+H, and therefor&s(Pl)x = x. O

Since the type L part of a representatiens contained in the absolutely continuous
part, it follows thatz(P;") > P;-. Notice that by the previous result, is regular if and
only if G(P;t) = P;-, where P, is the structure projection fo&,.

Proposition 5.3. Let g be a regular«-representation of,, . Thena(QIn)WOTzo(QIn)W-*
and 5 = o, .

Proof. Let T := a(QIn)W_*, S = a(QIn)WOT and let23 be the von Neumann algebra
generated by (2,). Let Py and Pg be the structure projections f@r(QI,,)W-* and
a(SlIn)W , respectively. ThenP%}Pé. Since the absolutely continuous part of
contains the range OP%, the regularity ofs yields that Py = Pz = a(P,). Hence
I =WP+IPt andS = WP+ SPL. Moreover bothiT P andS P are canonically
isomorphic to%, and the isomorphisms agree 1?l,). Hence they are equal. For
typographical ease, writ® = Py = Pg.

GivenX € G, find X’ € £ such thaG(X’) = X. We may suppose th&’ = QX'
This determinest’ uniquely, andz is injective onQL&;*. By Proposition5.2 and the
regularity of ¢, (P,) = P. SOG(P,X'P;") = PXP+ =0, whenceP,X'P;- = 0. To
see thatX’ belongs to2U**, it remains to show thaP;"X’'P} lies in 2* Pt which
is type L. But2:* P,- and @P+ are both canonically isometrically isomorphic &,
from which it is clear thaG|ep. is an isomorphism ont&P+. O

We can now prove our Kaplansky-type theorem.

Theorem 5.4. Let ¢ be a regularx-representation of,. Then the unit ball ofz(21,,)
is weak* dense in the unit ball ofr(QIn)W_*, and the same holds fdbi; (c(2,,)).
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Proof. Let S := o(U,,) - a(Q,) . We first show that
ker E"JI:* = QI::* OsP,. (3)

To see this, notice thaf|qy+p. is an isometric map of the type L part af’* onto
the type L part ofS, that is,@ maps?l, P;- isometrically ontoSP;-. Therefore, if
X € AW* andG(X) = 0, thenG(X)P; =0, so thatX P,- = 0. As X ¢ ker G, we find
X € W*Q,P,. The reverse inequality is clear, s8) (holds.

Next, we show thaw|y:+ is a complete quotient map ontd. For X € 2", we
have

dist(X, ker glor=) < X — X Qg Pyl

|xot +xPl0s

= max||x 02| . | xPoo)
< max{[xot|. [ x|}
= max| 1501, [700 P |
= eI .

The reverse inequality is clear, so thHat(X)| = dist(X, ker G|qp=). By tensoringQ,
and P, with the identity operator on k-dimensional Hilbert spz’ice, the same argument
holds for X e M (") and the maps; := ¢ ® I. Thus Glop+ is @ complete
contraction.

Consider any elemert of the open unit ball ofS. Since the map of[}* onto S
is a complete quotient map, there is a contractigne 2;* which maps ontdl. By
Goldstine’s Theorem, the unit ball of a Banach space is wedknse in the ball of
its double dual. So select a nat, in the ball of 2, so thatj(A;) converges weak-
to 7,. Then evidentlyo(A;) converges weak- (and thuswoT) to T. If one wants
IA;I<IT], a routine modification will achieve this.

Becauseg|qp:- is a complete contraction, the same argument persists for matrices
over the algebra as well.(J

Lemma 5.5. If ¢ is absolutely continuous an@ satisfies Kaplanskg Theorem with
a constantthena is type L

Proof. As ¢ is absolutely continuousg & 4 is type L. Let t denote the weak-
continuous homomorphism o, into & obtained from the isomorphism dt, with
Ssq, followed by the projection onto the first summand.
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Note that ifL is an isometry ing,, then (¢ ® 4)(L) is an isometry[12, Theorem
4.1). Hencet(L) is an isometry as well.

Consider ker. This is a weaks closed two-sided ideal i?,. If this ideal is non-
zero, then the range of the ideal is spanned by the ranges of isometries in the ideal
[14]. In particular, the kernel would contain these isometries, contrary to the previous
paragraph. Hence is injective.

Let C be the constant in the density theorem fér If T € S and||T| <1/C, then
there is a netd; in the unit ball of, such thate(A;) converges weak-to T. Drop
to a subnet if necessary so that the Aéd;) converges weak-to an elementd € £,,.

Then (o ® 1)(A;) converges weak-to T @ A. Hencet(A) = T. That means that is
surjective, and hence is an isomorphism.

Now if ¢ is not type L, then it is von Neumann type by Propositiid;, and hence
contains proper projections. B, contains no proper idempotenf$6]; so this is
impossible. Therefore must be type L. [

Theorem 5.6. For a representations of &,, the following statements are equivalent

(1) The unit ball ofs(21,,) is woT-dense in the ball o8 = o(3,) . i.e. Kaplanskis
density theorem holds

(2) The wort-closure of the unit ball ofe(2[,) in S = J(QIH)WOT has interior. i.e.
Kaplanskys density theorem holds with a constant
(3) o is regular.

Proof. (3) implies (1) follows from Theoren®.4. That (1) implies (2) is obvious, so
suppose (2) holds. I& is not regular, then it is von Neumann type by Propositor
ando ~ g,®0;. Since Kaplansky holds with a constant, this persistssfobecause the
woT-closure does not change by dropping it being the full von Neumann algebra
already. This contradicts Lemn&a5 [

Definition 5.7. A functional ¢ on 2, is singular if it annihilates the type L part
of A,

Proposition 5.8. For a functional ¢ on 2, of norm 1, the following are equivalent

(1) ¢ is singular

(2) There is a regular representation of &£, and vectorsx, y € H, with x = Pyx
such thatp(A) = (a(A)x, y).

3 kIL”gO ||(P|Q[/;;0|| =1

If ¢ extends to a state o6, (i.e, (1) = 1), then (3) is equivalent to

@) llela, ol = 1.

Proof. If ¢ € A", it is a weakx continuous functional onl*, so we may

represent it as a vector functional @), say ¢(A) = (n,(A)x, y). Sincep annihilates
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the type L part, it does not change the functional to replacby P,x. So (1)
implies (2).

If (2) holds, then for everyA € 2, we havep(A) = (6(j(A) P,)x, y), which clearly
annihilates the type L part dil**. Thus (2) implies (1).

If (1) holds, thenp(j(A)P;t) = 0, so ¢(j(A) = ¢(j(A)P,). Now U*P,
Ni>1 Q0F, so that[|@| el = 1 for all k>1. It is easy to see that wok

n
(Qlfj’o)**. By basic functional analysis, a functional on a Banach spabas the same
norm on the second dual. Therefo|r¢|mko|| =1 for all k>1.

If (3) holds, then there is a sequendg in the ball onlﬁ’o SO thatk lim|le(Ap ] = 1.
— 00

Dropping to a weak- convergent subnet, we may assume that this subnet converges
to an elementd € (M), ~ (A7) = WP, Thus [[@lep=p, | = 1.

We claim thatg|e+p. = 0. If not, there is a norm one elemeBt = BP;- with
@(B)=¢>0.Then

|A+eBll = |AA" +e?BB*|V2< (1 +2)Y2

But p(A+&B) = 1+¢2, and thus||¢|| > 1. This contradiction shows that annihilates
the type L part, and thus is singular. So (3) implies (1).

Clearly (3) implies(3). Conversely, if¢p extends to a state ofi,, it may be re-
garded as a normal state @if* and hence represented asA) = (a(A)¢, &) where
o is obtained from the GNS construction. i € ", satisfies 1= ||A|| = ¢(A),
then o(A)¢é = ¢ is an eigenvalue. Therefor@(AF) = 1 for all k>1, showing that
||<p|(9[:f0)k|| =1 for all k>1. Arguing as above establishes (3]

Here is a version of the Jordan decomposition.

Proposition 5.9. Every functionalp on 21, splits uniquely as the sum of an absolutely
continuous functionalp, and a singular onep,. Moreover

el <leall + ol < V2ol
and these inequalities are sharp

Proof. Seto,(A) = ¢(m,(A)P;b) and o, = ¢(m,(A)P,). Clearly this is the desired de-
composition. For uniqueness, suppose thas both singular and absolutely continuous.
Then [y = lim [[Ylye || =0.

Regard?l,, as a subalgebra df, and extendp to a linear functional (again called
@) on &, with the same norm. Then (using the GNS construction and the polar de-
composition of functionals on a C*-algebra) there exists-r@presentatiorr of &, on
a Hilbert spaceH, and vectorsy, y € Hq with ||x]| ||ly]l = ||¢| so that for everyA e
&, ©(A) = (a(A)x,y). Therefore forA € 2, we haveo,(A) = (c(A)F(P; )x, y)



K.R. Davidson et al./Journal of Functional Analysis 224 (2005) 160-191 183

and ¢ (A) = (a(A)a(P,)x, y). Hence

lpall + sl < 1GPHxN NIyl + [F(P)x] 1]

_ _ 1/2
< V2 (IEPHxI2 + 17PxI2) vl = V2ol
The example following will show that the/2 is sharp. O

Example 5.10.Consider the atomic representation 1 on C&, @ ¢2(F,") given by
S1é. =&, and $2¢, = &; and S,'|(2([F)+l—) =1L;. Set

P(A) = (611(A) (&, + E5)/V2, &),

Then &, contains A = £, /2 + (I — £.65)/v/2 and p(A) = 1. So we see that

loll =1.
On the other hand,

0, (A) = (011(A)E/V2, &) and 9, (A) = (011(A)p/V2, &)

both have norm AV2. So o, + [l@,ll = /2.

Question 5.11.Let S be the unilateral shift and consider the representatioRlpfob-
tained from the minimal isometric dilation of; = S/+/2 andA> = (S+ Pp)*/+/2. The
weak= closed self-adjoint algebra generated by and A is all of B(#). Therefore
this representation is either dilation type withS P = B(H) or it is type L, depending
on whether the functionap = epeg is singular or absolutely continuous. To check. it
suffices to determine whether has norm 1 or less ofl, o. We would like to know
which it is.

Question 5.12.Charles Read has given an example of a representaticiofuch

—W- . . I
that B(H) = a(2y) *. Is Read’s example singular or absolutely continuous? Again it
suffices to take any convenient state B(#{) and estimate its norm o, o as equal

to 1 or strictly less.

We provide an example of how the density theorem can be used to establish an in-
terpolation result for finitely correlated presentations. Such representations are obtained
from a row contraction of matriced = [A1 An] € M1,(Mi(C)) by taking the
minimal isometric dilation18,8,24] These representations were classifiedlid]. The
structure projectiorP has range equal to the span of &i7} invariant subspaces on
which A is isometric. In particular, it is finite rank. Also, the type L part is a finite
multiple, say«, of the left regular representation. Thus elements of the free semi-
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group algebraS have the form[); Z(()“)} where X andY lie in PI3P and PLIBP,

respectively, andZ € ¥,,, where2 is the von Neumann algebra generated®y

Theorem 5.13.Let ¢ be a finitely correlated representation. #f € S; has ||A] < 1
and k € N, then there is an operatoB € 2, so thatag(B)P = AP and the Fourier
series of B up to level k agree with the coefficientsAgf.

Proof. Fix ¢ < 1— ||AJl. Let Oy € 6(62([&4[)) denote the projection onto spdm), :
lw| <k}

Identify SPL with 2 and findC € £, so thatAP+ = C®,

Since the weak and strong operator topologies have the same closed convex sets, the
density theorem implies that there exists a sequdige in &, so that||Ly|| <1—¢
and A = sotlim o(L;). Recalling thatP and Q, are finite rank, we conclude that
there existsB1 € U, so that

(A — a(BD)P|l + [|Qk(C — B1)|| < &/2.

By [15, Corollary 3.7] there is an elemenfy € ¥, so thatQ;C1 = Qx(C — B1) and
IC1]l = 1Qx(C — B1)||. Hence the element o defined byA; = (A — a(B1))P +
C\ p+ satisfies| A1 < &/2.

Now chooseB; € U, so that||Bz|| < ¢/2 and

(A1 —a(B2)) P| + | Qk(C1 — B2)|| < /4.

Proceed as above to defi® € L, so that 0;Co = Qx(C1 — B2) and ||Co| =
|0k(C1 — Bo)|l; and then defineds = (A1 — d(B2)P + Cé"‘)PL satisfying
Az]l < &/4.

Proceeding recursively, we defirg; for j>1 so thatB = Zj)l By is the desired
approximant. [J

6. Constructive examples of Kaplansky

In this section, we give a couple of examples where we were able to construct the
approximating sequences more explicitly. We concentrate on exhibiting the structure
projectionP as a limit of contractions. It is then easy to see that the whole left ideal
WP has the same property by applying the C*-algebra Kaplansky theorem. We do not
have an easy argument to show that one can extend this to the type L part without
increasing the constant.

Proposition 6.1. Let € be the free semigroup algebra generated by isomeffies. .,
Sy; and let 2 be the norm closed algebra that they generate. Pee & be the
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projection given by the Structure theorem.Af#£ [ is the woT-limit of a sequence in
A of norm at most fthen thesot-closure of the r-ball ofl§ contains &P for all
k>0.

Proof. SinceP # I, © has a type L part. Le® be the canonical surjection & onto
L, with &(S;) = L; [12, Theorem 1.1]Recall that the kernel of? is (2, ek =
MWP. Since the weak and strong operator topologies have the same closed convex
sets, we may suppose that the sequenc@liconverges toP strongly. In particular,
the restriction of this sequence to the type L part converges strongly to 0. Hence the
Fourier coefficients each converge to 0. Thus, a minor modification yields a sequence
Ay € 91’5 of norm at mostr convergingsort to P.

If T lies in the unit ball of 3P, then by the usual Kaplansky density theorem,
there is a sequencs; in the unit ball of C(S) which convergesot to T. We may
assume thaBy are polynomials inS;, S* for 1<i<n of total degree at most. Then

observe thatB; Ay lies in Qlﬁyo, and convergesoTto TP =T7T. [

Our first example is a special class of finitely correlated representations which are
obtained from dilating multiples of unitary matrices.

Theorem 6.2. Suppose that; for 1<i<n are unitary matrices in53(V), whereV
has finite dimension,dand thateo; are non-zero scalars so that';_; lo;|2 = 1. Let

S; be the joint isometric dilation ofA; = o;U; to a Hilbert space?. Let S be the
free semigroup algebra that they generasad let2l denote the norm-closed algebra.
Then the projectionP = Py, is the projection that occurs in the Structure Theorem
and there is a sequence of contractions2inwhich convergesorT to P.

Lemma 6.3. If U is a set of unitary matrices ii;, then the closure of the set of
all non-empty words in elements &f is a subgroup of the unitary groupl and the
algebra generated by is a C*-algebra

Proof. The closureG of words inl{ is multiplicative and compact. Any unitary matrix

U is diagonalizable with finite spectrum. A routine pigeonhole argument shows that
there is a sequenc&” which converges td, and thusU" 1 converges toU 1. It
follows thatG is a group. It is immediate that the algebra generated/lyontainsi{*

and thus is self-adjoint. ]

Proof of Theorem 6.2 From the Lemma, we see that the algebra generatefiAby
is self-adjoint, and thus the spateis the span of its minimaH* invariant subspaces.
From the Structure Theorem for finitely correlated representafitdjs we deduce that
P = Py, is a projection inS and thatS = WP +S P+, whered is the von Neumann
algebra generated bg, P17 is invariant, andSP' is a (finite) ampliation ofg,,.

Consider the spac& consisting of all infinite wordsc = i1iziz... where 1<i; <n
for j>1. This is a Cantor set in the product topology. Put the product measore
X obtained from the measure da, ..., n} which assigns masg;|? to i.
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Fix ¢ > 0. Since the closed semigrodp generated by{U;} is a compact group by
Lemma6.3, one may choose a finite s§tof non-empty words which form asnet (in
the operator norm). LelN denote the maximum length of these words. Then we have
the following consequence: given any woud= i1 ... i, there is a wordv = j1... j;
in § with /<N so thatUy,, = U;, ... U; Uj, ... Uj, satisfies| Uy, — I < e.

Recursively determine a s&V of words so thatS,, have pairwise orthogonal ranges
and |U,, — I|| < ¢ for w € W as follows: start at an arbitrary levéh and take all
wordsw with |w| = kg such that|U,, — I|| < ¢. If a set of words of length at most
has been selected, add 8 those words of lengtlh +1 which have ranges orthogonal
to those already selected and sati$ity,, — I|| < e.

We claim thatsoT) , .y SwS;, = I. The argument is probabilistic. Let =
min{|o;|2}. Associate tow the subsetX,, of all infinite words in X with w as an
initial segment. By construction, the sels, are pairwise disjoint clopen sets for
w € W with measure|a,|?, where we setr,, = ]_[f:l o;,. Verifying our claim is
equivalent to showing thdt), .,y X, has measure 1. Consider the complemgnof
Uwew. jwj<k Xw- This is the union of certain sets,, for wordsw of length k. For
each such word, there is a woide S so that|U,, — I| < ¢. Now S, has range
contained in the range df,,, which is orthogonal to the ranges of words)ivi up to
level k. It follows from the construction oV that there will be a wordw’ € W so
that w’ divideswv. As a consequencéy.y has measure smaller thaf by a factor
of at most 1— 6" because for each interval,, in Y, there is an intervak,, which
is in the complement, and its measure is at |€45t(X,,). Thereforek lim u(Y;) =0.

— 00

Choose a finite se¥Vy C W so that

ri=u U Xy | >1—c¢
weWp

Define T = ZweWo ow Sy in 2. Note that

ITI?= > fwl®=r<1

weWg

Observe thatP§,, = a,U,,. Define a state on B(#H) as the normalized trace of the
compression ta/. Since||U,, — I| < &, it follows that |t(U,) — 1| < ¢. Compute

Ret(T)= Y &y Ret(S,)= Y  |owl® Ret(Uy)
wEWO w€Wo

> ) - =rd-e>1-e>
weWp
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By taking ¢ = 1/k and ko = k in the construction above, we obtain a sequence
Ty of polynomials 7} € QI’{) which are contractions ang lim(T;) = 1. It follows
—00

that there is a subsequence which converges to a limit 7 € & which lies in
ﬂk>1 Sk = WP. Moreover||T||<1 andt(T) = 1. The only contraction iB(V) with
trace 1 is the identity, and therefore the compresgtidh= P. As T is contractive, we
deduce thatP1T = PLT P =0, whenceT = P. As the soT and woT-closures of the
balls are the same, there is a sequence in the convex hull dfithevhich converges
to P strongly. O

Our second constructive example is the set of atomic representations introduced
in [16]. To analyze these, we will need some of Voiculescu's theory of free
probability.

Theorem 6.4.If S is an atomic free semigroup algebra, then the structure projection
is a soT-limit of contractive polynomials in the generators

It is convenient for our calculation to deal with certain norm estimates in the free
group von Neumann algebra. We thank Andu Nica for showing us how to handle this
free probability machinery.

Lemma 6.5. Let p and g be free proper projections of tra@eg% in a finite von
Neumann algebrat, 7). Then| pgpll = 4a(1 — ).

Proof. Given a € I, form the power seriedv,(z) = > 1(a™)z". In particular,
n>1
My(z) = My(z) = oz(l — )71 Voiculescu's S-transform is given by

S. (O = @A+ C)C‘lM;*b(C) where M;*b denotes the inverse oM, under
composition. So

1+0 ¢ 1+4(
{ a4+l a+l

Sp(O) =840 =

By [32, Theorem 2.G]the S-transform is multiplicative on free pairs. Hence

A+0% 1+C 4
M= T 02 My ().

Observe that((pgp)") = t((pg)") and sSOM,,; = M,,,. Thus

1+ 0

<—1>
M ©= (a4 )2

pqp
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We obtain the quadratic equation

1= 2)M2,,(2) + (1 — 200) M pgp(2) — o’z = 0.

Solving, we obtain

207 — 14+ /1 —4o(l— o)z
21—-2)

Mpgp(z) =

Since M,,,(0) = 0, we must choose an appropriate branch of the function
(1 — 4a(1 — )z)Y2. This may be defined on the complement of the line segment

{z:Rez=1/40(1— o) and Imz<0}

and takes positive real values on real numhers leoc(l — o). An easy calculation
shows that the singularity at= 1 is removable.

The power series foM,,, converges on the largest disk on which it is analytic. The
branch point occurring at = %a(l— o) is the only obstruction, and thus the radius of
convergence iéa(l—a). On the other hand, from Hadamard’s formula, the reciprocal
of the radius of convergence is

do(l — o) = Ii]r(n supt((pgp)H)Y* = llpgpll. O

— 00

Corollary 6.6. Let U; for 1<i <n denote the generators of the free group von Neu-
mann algebraand let P; be spectral projections fot/; for sets of measure at most
a< 3. Then|| 37, PlI<1+ 202 /o

Proof. By Lemma6.5, we have||P; Pj|| = || P; P; P;||Y2<2/afori # j. If | Y0 Pl
=1+ x, then

n
A+x2=> P+ PPI<1l+x+nn—12/0
i=1 i)

Hencex <212/« as claimed. [J

Recall from[16] the atomic representatias), ; determined by a primitive word =
i1...ig in F and a scalad in T. Define a Hilbert space(, ~ C¢ @ ¢2(F;)4*=D with
orthonormal basigy, ..., {; for C? and index the copies of(F)) by (s, j), where
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1<s<d, 1< j<n and j # i5, with basis{¢ j, 1w € F}. Define a representation
o, of FI and isometriesS; = o, (i) by

SiCS = Cs—l if = lls, s > 1,

Sl =Al, i Q=i

Siz;x = 53‘,1’.@ if i # Iy,
Siéx,j,w = és,j,iw for all i,s, j, w.

For our purposes, we need to observe that the vedigrs ., {; form a ring which
is cyclically permuted by the appropriate generatsfs and all other basis vec-
tors are wandering. The projectioR in the structure theorem is the projection
onto C4.

Lemma 6.7. Let u be a primitive word and lefl € T. Let © be the atomic free
semigroup algebra corresponding to the representatign,. Then the projection P
from the Structure Theorem is the Ilimit of contractive polynomials in the
generators

Proof. Let u; denote the cyclic permutations affor 1<s<d satisfying S, (; = A.

As in the proof[16, Lemma 3.7]of the classification of atomic representations, there
is a sequence of the formy ; = px(S,,) which convergesoT to the projectionsl,(}
where py (x) = x¥gi(x) are polynomials with|| pillec = 1 = pr ().

It is routine to choose such polynomigig with the added stipulation that there is
an open set, of measure 1k containing the pointl so that| pixm\y, |l < 1/k. We
now consider the element$; = Zle Ay.s. Clearly the sequencd; convergessoT
to the projectionP. So it suffices to establish th%\t liM Al = 1.

— 00

As 2 has a unique operator algebra structure independent of the representafipn of
polynomials in the isometries,, may be replaced by the corresponding polynomials
in the generatord; of the left regular representation for the free semigrdigp The
isometriesL; have pairwise orthogonal ranges for distirg;tand consequently the
operatorsA s have orthogonal ranges. Hence, the normAgfequals the norm of the
column operator with entried, ;. Now it is evident that the left regular representation
of [Fj may be obtained as the restriction of the left regular representation of the free
group [F; to an invariant subspace. So the norm is increasefl;ifare replaced by
the generatord/; of the free group von Neumann algebra. Thus the normi pfis
dominated by the column vector with entrigg(Us).

Let Q, denote the spectral projection of for the open sel,. Then

pr(Ur) 01 pr(U1) QF
: =diagpx (U1, ....prUa)} | @ |+ :
piUaq) Qu pr(Uq) O
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Since || px (Uy)|| = 1, the norm of the first term is at most
101+ -+ + QallY? < 14 2d%/Vk
by Corollary 6.6. The second term is dominated by
Vd || petrlls < Vd/k.

Hence the norms converge to 1 as claimed!

It is now only a technical exercise to show how one may use similar arguments to
combine sequences corresponding to finitely many points on the circle for a given word
u, and to deal with finitely many such words at once. The inclusion of summands of
type L such as the atomic representations of inductive type does not affect things since
these sequences are already converging strongly to 0 on the wandering subspaces of
these atomic representations. Details are omitted.

References

[1] A. Arias, G. Popescu, Factorization and reflexivity on Fock spaces, Integral Equations Operator
Theory 23 (1995) 268-286.

[2] A. Arias, G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J. Math. 115
(2000) 205-234.

[3] W.B. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975) 208-233.

[4] H. Bercovici, Hyper-reflexivity and the factorization of linear functionals, J. Funct. Anal. 158 (1998)
242-252.

[5] D. Blecher, C. Le Merdy, Operator Algebras and their Modules, in: London Mathematical Society
Monographs, Clarendon Press, Oxford, 2004.

[6] O. Bratteli, P. Jorgensen, Iterated function systems and permutation representations of the Cuntz
algebra, Mem. Amer. Math. Soc. 139 (1999) 663.

[7] O. Bratteli, P. Jorgensen, Wavelet Filters and Infinite Dimensional Unitary Groups, Wavelet Analysis
and Applications (Guangzhou, 1999), AMS/IP Studies in Advanced Mathematics, vol. 25, American
Mathematical Society, Providence, RI, 2002, pp. 35-65.

[8] J. Bunce, Models fom-tuples of non-commuting operators, J. Funct. Anal. 57 (1984) 21-30.

[9] E. Christensen, Extensions of derivations Il, Math. Scand. 50 (1982) 111-112.

[10] K.R. Davidson, The distance to the analytic Toeplitz operators, lllinois J. Math. 31 (1987)
265-273.

[11] K.R. Davidson, Free Semigroup Algebras, a Survey, Systems, Approximation, Singular Integral
Operators, and Related Topics (Bordeaux, 2000), Operator Theory Advances and Applications, vol.
129, Birkhauser, Basel, 2001, pp. 209-240.

[12] K.R. Davidson, E. Katsoulis, D.R. Pitts, The structure of free semigroup algebras, J. Reine Angew.
Math. (Crelle) 533 (2001) 99-125.

[13] K.R. Davidson, D.W. Kribs, M.E. Shpigel, Isometric dilations of non-commuting finite nakples,
Canad. J. Math. 53 (2001) 506-545.

[14] K.R. Davidson, D.R. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras,
Math. Ann. 311 (1998) 275-303.

[15] K.R. Davidson, D.R. Pitts, Nevanlinna—Pick Interpolation for non-commutative analytic Toeplitz
algebras, Integral Equations Operator Theory 31 (1998) 321-337.



(16]
(17]

(18]
(19]

(20]
[21]
(22]
(23]
(24]
(25]
(26]

[27]
(28]

(29]
(30]

(31]
(32]

(33]

K.R. Davidson et al./Journal of Functional Analysis 224 (2005) 160-191 191

K.R. Davidson, D.R. Pitts, Invariant subspaces and hyper-reflexivity for free semi-group algebras,
Proc. London Math. Soc. 78 (1999) 401-430.

R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space,
Proc. Amer. Math. Soc. 17 (1966) 413-416.

A. Frahzo, Models for non-commuting operators, J. Funct. Anal. 48 (1982) 1-11.

A. Frahzo, Complements to models for non-commuting operators, J. Funct. Anal. 59 (1984)
445-461.

D. Hadwin, E. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982) 3-23.

P. Jorgensen, Minimality of the data in wavelet filters, Adv. Math. 159 (2001) 143-228.

P. Jorgensen, D. Kribs, Wavelet representations and Fock space on positive matrices, J. Funct. Anal.
197 (2003) 526-559.

R.l. Loebl, P.S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978)
214-252.

G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer.
Math. Soc. 316 (1989) 523-536.

G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Operator
Theory 22 (1989) 51-71.

G. Popescu, Multi-analytic operators and some factorization theorems, Indiana Univ. Math. J. 38
(1989) 693-710.

G. Popescu, Von Neumann Inequality fa#(#"))1, Math. Scand. 68 (1991) 292-304.

G. Popescu, Functional calculus for noncommuting operators, Michigan J. Math. 42 (1995)
345-356.

G. Popescu, Multi-analytic operators on Fock spaces, Math. Ann. 303 (1995) 31-46.

G. Popescu, Poisson transforms on some C*-algebras generated by isometries, J. Funct. Anal. 161
(1999) 27-61.

C.J. Read, A large weak operator closure for the algebra generated by two isometries, preprint,
December 2003.

D.V. Voiculescu, Multiplication of certain nhoncommuting random variables, J. Operator Theory 18
(1987) 223-235.

W.R. Wogen, Some counterexamples in nonselfadjoint algebras, Ann. Math. 124 (1987) 415-427.



	Absolutely continuous representations and a Kaplansky density theorem for free semigroup algebras62626262
	Introduction
	Preliminaries
	Absolute continuity
	Wandering vectors and absolute continuity
	Reflexivity and hyper-reflexivity
	A Kaplansky density theorem
	Constructive examples of Kaplansky
	References


