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Abstract

We introduce notions of absolutely continuous functionals and representations on the non-
commutative disk algebraAn. Absolutely continuous functionals are used to help identify
the type L part of the free semigroup algebra associated to a∗-extendible representation�.
A ∗-extendible representation ofAn is regular if the absolutely continuous part coincides with
the type L part. All known examples are regular. Absolutely continuous functionals are intimately
related to maps which intertwine a given∗-extendible representation with the left regular
representation. A simple application of these ideas extends reflexivity and hyper-reflexivity
results. Moreover the use of absolute continuity is a crucial device for establishing a density
theorem which states that the unit ball of�(An) is weak-∗ dense in the unit ball of the associated
free semigroup algebra if and only if� is regular. We provide some explicit constructions
related to the density theorem for specific representations. A notion of singular functionals is
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also defined, and every functional decomposes in a canonical way into the sum of its absolutely
continuous and singular parts.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Free semigroup algebras were introduced in[16] as a method for analyzing the fine
structure ofn-tuples of isometries with orthogonal ranges. The C*-algebra generated
by such ann-tuple is either the Cuntz algebraOn or the Cuntz–Toeplitz algebraEn.
As such, the free semigroup algebras can be used to reveal the fine spatial structure of
representations of these algebras much in the same way as the von Neumann algebra
generated by a unitary operator encodes the measure class and multiplicity which cannot
be detected in the C*-algebra it generates.

This viewpoint yields critical information in the work of Bratteli and Jorgensen
[6,7,21,22] who use certain representations ofOn to construct and analyze wavelet
bases.

From another point of view, free semigroup algebras can be used to study arbitrary
(row contractive)n-tuples of operators. Frahzo[18,19], Bunce [8] and Popescu[24]
show that every (row) contractiven-tuple of operators has a unique minimal dilation to
ann-tuple of isometries which is a row contraction, meaning that the ranges are pairwise
orthogonal. Thus every row contraction determines a free semigroup algebra. Popescu
[27] establishes then-variable von Neumann inequality which follows immediately from
the dilation theorem. Popescu has pursued a program of establishing the analogues of the
Sz. Nagy–Foia¸s program in then-variable setting[25,26,28]; the latter two papers deal
with the free semigroup algebras from this point of view. Free semigroup algebras play
the same role for non-commuting operator theory as the weakly closed unital algebra
determined by the isometric dilation of a contraction plays for a single operator.

In [13], the first author, Kribs and Shpigel use dilation theory to classify the free
semigroup algebras which are obtained as the minimal isometric dilation of contractive
n-tuples of operators on finite-dimensional spaces. Such free semigroup algebras are
called finitely correlated, because from the wavelet perspective, these algebras corre-
spond to the finitely correlated representations ofEn or On introduced and studied
by Bratteli and Jorgensen. It is interesting that this class of representations ofOn

are understood in terms of ann-tuple of matrices, a reversal of the single variable
approach of analyzing arbitrary operators using the isometric dilation. Out of the anal-
ysis of finitely correlated free semigroup algebras emerged a structural result that ap-
peared to rely on the special nature of the representation. However in[12], two of
the current authors and Katsoulis were able to expose a rather precise and beauti-
ful structure for arbitrary free semigroup algebras. This structure plays a key role in
this paper.
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The prototype for free semigroup algebras is the algebraLn determined by the left
regular representation of the free semigroupF+n on Fock space. This representation
arises naturally in the formulation of quantum mechanics. We have named it thenon-
commutative analytic Toeplitz algebrabecause of the striking analytic properties that
it has [1,2,14–16,29]. In particular, the vacuum vector (and many other vectors in this
representation) has the property that its image under all words in then isometries
forms an orthonormal set. We call such vectorswandering vectors. Such vectors play
a crucial role in these representations, and a deeper understanding of when they occur
is one of the main open questions in this theory.

The norm-closed algebraAn generated byn isometries with orthogonal ranges is
even more rigid than the C*-algebra. Indeed, it sits inside the C*-algebraEn, but the
quotient ontoOn is completely isometric on this subalgebra. AsOn is simple, it is
evidently the C*-envelope ofAn. This algebra has been dubbed thenon-commutative
disk algebraby Popescu. It plays the same role in this theory as the disk algebra plays
in the study of a single isometry.

In this paper, we explore in greater depth the existence of wandering vectors. The
major new device is the notion of anabsolutely continuouslinear functional onAn.
In the one variable case, a functional onA(D) is given by integration against a repre-
senting measure supported on the Shilov boundaryT. Absolute continuity is described
in terms of Lebesgue measure. In our setting, we do not have a boundary, and we
have instead defined absolute continuity in terms of its relationship to the left regular
representation.

A related notion that plays a key role are intertwining maps from the left regular
representation to an arbitrary free semigroup algebra. The key observation is that the
range of such maps span the vectors which determine absolutely continuous functionals,
and they serve to identify the type L part of the representation (see below). These
results will be used to clarify precisely when a free semigroup is reflexive. For type L
representations, we establish hyper-reflexivity whenever there are wandering vectors—
the reflexive case. Basically the only obstruction to hyper-reflexivity is the possibility
that there may be a free semigroup algebra which is type L (isomorphic toLn) but
has no wandering vectors, and hence will be reductive (all invariant subspaces have
invariant ortho-complements).

The ultimate goal of this paper is to obtain an analogue of the Kaplansky density
theorem. This basic and well-known result states that given any C*-algebra and any
∗-representation, the image of the unit ball isWOT-dense in the unit ball of theWOT-
closure. In the non-selfadjoint setting, such a result is not generally true. However, in the
context of completely isometric representations ofAn, we have a rather rigid structure,
and we shall show that in fact such a Kaplansky-type theorem does hold. Let� be
a ∗-extendible representation ofAn, that is, � is the restriction of a∗-representation
of On or En to A. We call it regular if the type L part coincides with the absolutely
continuous part. It is precisely this case in which a density theorem holds, and the
unit ball of �(An) is weak-∗ dense in the unit ball of the free semigroup algebra.
In particular, we shall see that this holds in the presence of a wandering vector. In
fact, the only possible obstruction to a Kaplansky density result for all representations
of An is the existence of a representation where the free semigroup algebra is a von
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Neumann algebra and is also absolutely continuous. No such representation is known
to exist.

1. Preliminaries

In this section, we will remind the reader of some of the more technical aspects
which we need, and will establish some notation for what follows.

A typical n-tuple of isometries acting on a Hilbert spaceH and having pairwise
orthogonal ranges will be denoted byS1, . . . , Sn. This may be recognized algebraically
by the relationsS∗j Sj = I � ∑n

i=1 SiS
∗
i , 1�j�n. The C*-algebra that they generate

is the Cuntz algebraOn when
∑n

i=1 SiS
∗
i = I and the Cuntz–Toeplitz algebraEn when∑n

i=1 SiS
∗
i < I . The norm-closed unital subalgebra generated byS1, . . . , Sn (but not

their adjoints) is completely isometrically isomorphic to Popescu’s non-commutative
disk algebraAn. The ideal ofEn generated byI − ∑n

i=1 SiS
∗
i is isomorphic to the

compact operatorsK, and the quotient by this ideal isOn. Let the canonical generators
of En be denoted bys1, . . . , sn. Then every suchn-tuple of isometries arises from a
∗-representation� of En (write � ∈ Rep(En)) as Si = �(si ).

We shall call a representation� of An ∗-extendibleif � is the restriction toAn of
a ∗-representation ofEn or On to the canonical copy ofAn. It is easy to see that� is
∗-extendible if and only if�(Si ) are isometries with orthogonal ranges; or equivalently,
� is contractive and�(si ) are isometries.

Let F+n denote the unital free semigroup onn letters (Probably we should use the
algebraist’s term ‘monoid’ here, but our habit of using the term semigroup is well
entrenched.) This semigroup consists of all wordsw in 1,2, . . . , n including the empty
word �. The Fock space�2(F+n ) has an orthonormal basis{�w : w ∈ F+n }, and is
the natural Hilbert space for the left regular representation�. This representation has
generators, denoted byLi := �(si ), which act byLi�w = �iw. The WOT-closed algebra
that they generate is denoted byLn.

In general, eachn-tuple S1, . . . , Sn will generate a unital algebra, and theWOT-
closure will be denoted byS. When a representation� of En is given andSi = �(si ),
we may writeS� for clarity. For each wordw = i1 . . . ik in F+n , we will use the
notationSw to denote the corresponding operatorSi1 · · · Sik . In particular,Lw�v = �wv

for w, v ∈ F+n .
It is a basic fact of C*-algebra theory that every representation ofEn splits as a

direct sum of the representation induced from its restriction toK and a represen-
tation that factors through the quotient byK. However,K has a unique irreducible
representation, and it induces the left regular representation� of F+n , described above.
So � 
 �(�) ⊕ � where � is some cardinal and� is a representation ofOn. This is
equivalent to the spatial result known as the Wold decomposition. The Wold decom-
position is the observation that the rangeM of the projectionI − ∑n

i=1 SiS
∗
i is a

wandering subspace, meaning that the subspaces{SwM : w ∈ F+n } are pairwise or-
thogonal, and together span the subspaceS[M]. Any orthonormal basis forM will
consist of wandering vectors which generate orthogonal copies of the left regular rep-
resentation; moreover, the restriction of theSi to S[M]⊥ will be a representation
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which factors throughOn. We call the representation� the Cuntz partof �, and when
� = 0, i.e., when

∑n
i=1 �(sis∗i ) = I , we say simply that the representation� is of

Cuntz type.
Recall [16] that everyA ∈ Ln has a Fourier seriesA ∼ ∑

w∈F+n awLw determined
by A�� =

∑
w∈F+n aw�w. The representation� is a canonical completely isometric map

from An into Ln which sendssi to Li . Hence elements ofAn inherit corresponding
Fourier series, and we will writeA ∼ ∑

w∈F+n awsw. The functional�0 reads off
the coefficienta�. The kernel of�0 in An and Ln are denoted byAn,0 and Ln,0,
respectively. These are the norm andWOT-closed ideals, respectively, generated by the
generatorss1, . . . , sn andL1, . . . , Ln. Even when�0 is not defined on a free semigroup
algebraS, we still denote byS0 the WOT-closed ideal generated byS1, . . . , Sn. This
will either be codimension one or equal to the entire algebra.

The idealsAk
n,0 andLk

n,0 consist of those elements with zero Fourier coefficients for
all wordsw with |w| < k; and are generated as a right ideal by{sw : |w| = k}. Moreover
[14], each element inLk

n,0 may be uniquely represented asA = ∑
|w|=k LwAw and

‖A‖ is equal to the norm of the column operator with entriesAw.
One can recover an element ofAn or Ln from its Fourier series in the classical

way using a summability kernel. Fort ∈ T, let �t be the gauge automorphism of
On determined by the mappingsi �→ tsi . Let Vn(t) = ∑2n+1

k=−2n−1 ckt
k be the de la

Vallée Poussin summability kernel onT from harmonic analysis. Recall thatVn is
a trigonometric polynomial of degree 2n + 1 with Fourier transformV̂n(k) = 1 for
|k|�n + 1. Let m be normalized Lebesgue measure onT. Define linear maps�k on
On by

�k(X) =
∫

T
Vk(t)�−1

t (X) dm(t).

Then �k is a unital completely positive map onOn which leavesAn invariant
and moreover, for everyX ∈ On, �k(X) converges in norm toX. It has
the additional property that the Fourier coefficients of�k(X) agree with those of
X up to the kth level. Indeed, ifA ∼ ∑

w∈F+n awLw lies in An, then �k(A) =∑
|w|�2k+1 c|w|awsw. Notice that forA ∈ Ln, �k(A) converges toA in the strong

operator topology.
Let � be a∗-extendible representation and letS = S�. We now recall some facts

from [12] regarding the idealsSk
0. The intersectionJ of these ideals is a left ideal of

the von Neumann algebraW generated by theSi ; therefore,J has the formWP� for
some projectionP� ∈ S (When the context is clear, we will writeP instead ofP�.)
The structure theorem for free semigroup algebras[12] shows thatP is characterized as
the largest projection inS such thatPSP is self-adjoint. MoreoverP⊥H is invariant
for S and whenP �= I , the restriction ofS to the range ofP⊥ is canonically
isomorphic toLn. Indeed, the map takingSi |P⊥H to Li extends to a completely
isometric isomorphism which is also a weak-∗ homeomorphism. Algebras which are
isomorphic toLn are calledtype L. WhenP �= I , the restriction of� to the range of
P⊥ again determines a∗-extendible representation ofAn, and we call this restriction
the type L part of �.
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2. Absolute continuity

In the study of the disk algebra, those functionals which are absolutely continuous
to Lebesgue measure play a special role. Of course, the Shilov boundary of the disk
algebra is the unit circle, and the Lebesgue probability measurem is Haar measure on
it. Moreover, every representing measure for evaluation at points interior to the disk is
absolutely continuous. We have been seeking an appropriate analogue of this for free
semigroup algebras for some time. That is, which functionals on the non-commutative
disk algebraAn should be deemed to be absolutely continuous? Unfortunately, there
is no clear notion of boundary or representing measure. However there is a natural
analogy, and we propose it here.

Our starting point is the left regular representation of the semigroup(N,+). Un-
der this representation, the generator of(N,+) is mapped to the unilateral shiftS
and elements ofA(D) are analytic functionsh(S) of the shift, which may be re-
garded as multipliers ofH 2(T). With this perspective, every vector functionalh �→
〈h(S)f1, f2〉 =

∫
T hf1f2 dm corresponds to a measure which is absolutely continuous

with respect to Lebesgue measure.
On the other hand, suppose� is a functional onA(D) given by integration overT

by an absolutely continuous measure, so that�(h) = ∫
T hf dm for somef ∈ L1(T). It

is not difficult to show that such functionals onA(D) can be approximated by vector
functionals from the Hilbert space of the left regular representation. Moreover, if one
allows infinite multiplicity, one can represent� as a vector state, that is, there are
vectorsx1 and x2 in H 2 (∞) such that

�(h) = 〈h(S(∞))x1, x2〉 and ‖�‖ = ‖x1‖ ‖x2‖.

Another view is that the absolutely continuous functionals onA(D) are the func-
tionals in the predual ofH∞(T). Our analogue of this algebra isLn.

So we are motivated to make the following definition:

Definition 2.1. For n�2, a functional on the non-commutative disk algebraAn is
absolutely continuousif it is given by a vector state onLn; i.e. if there are vectors
�, 	 ∈ �2(F+n ) so that �(A) = 〈�(A)�, 	〉. Let Aa

n denote the set of all absolutely
continuous functionals onAn.

For n�2, Ln has enough “infinite multiplicity” that it is unnecessary to take the
closure of vector functionals; in fact we shall see shortly thatAa

n is already norm
closed.

The following result shows that the notion of being representable as a vector state
and being in the predual ofLn are equivalent to each other and to a natural norm
condition on the functional.

Proposition 2.2. For � ∈ A∗
n, the following are equivalent:

(1) � is absolutely continuous.
(2) � ◦ �−1 extends to a weak-∗ continuous functional onLn.
(3) lim

k→∞ ‖�|
Ak

n,0
‖ = 0.
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Moreover, given ε > 0, the vectors� and 	 may be chosen so that‖�‖ ‖	‖ < ‖�‖+ ε.

Proof. (1) implies (2) by definition. The converse follows from[16] where it is shown
that every weak-∗ continuous functional onLn is given by a vector state. The norm
condition on the vectors� and 	 is also obtained there.

Next, suppose (1) holds. The map� carriesAk
n,0 into Lk

n,0. Let Qk denote the pro-

jection of �2(F+n ) onto span{�w : w ∈ F+n , |w|�k}. Elements ofLk
n,0 are characterized

by A = QkA. Thus forA ∈ Ak
n,0,

|�(A)| = |〈�(A)�, 	〉| = |〈�(A)�,Qk	〉|�‖A‖ ‖�‖ ‖Qk	‖.

Hence it follows that

lim
k→∞ ‖�|

Ak
n,0
‖� lim

k→∞ ‖�‖ ‖Qk	‖ = 0.

Conversely suppose that (3) holds. Then givenA ∈ An, we use the fact that�k(A)

converges toA in norm. Note that whenm�k, �k(X)− �m(X) belongs toAk
n,0 and

has norm at most 2‖A‖. It follows therefore that the adjoint maps satisfy,

‖�∗k(�)− �∗m(�)‖�2‖�|
Ak

n,0
‖.

So �∗k(�) is a Cauchy sequence inA∗.
We claim that�∗k(�) is absolutely continuous. Indeed, consider the Fourier series

A ∼ ∑
w∈F+n awsw. Then

�∗k(�)(A) =
∑

|w|�2k+1

c|w|aw�(sw)

=
∑

|w|�2k+1

c|w|�(sw)〈�(A)��, �w〉

= 〈�(A)��,
∑

|w|�2k+1

c|w|�(sw)�w〉.

From (1) implies (2), we found that the set of absolutely continuous functionals is
norm closed. Hence the limit� is also absolutely continuous.�

The following is immediate.

Corollary 2.3. The setAa
n is the closed subspace of the dual ofAn which forms the

predual ofLn.
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Definition 2.4. Let � be a∗-extendible representation ofAn on the Hilbert spaceH�.
A vector x ∈ H� is called anabsolutely continuousvector if the corresponding vector
state takingA ∈ An to 〈�(A)x, x〉 is absolutely continuous.

Another straightforward but useful consequence is:

Corollary 2.5. If � is a ∗-extendible representation ofAn and x, y are vectors ly-

ing in the type L part ofS = �(An)
WOT

(or even in the type L part ofT =
(�⊕ �)(An)

WOT
), then �(A) = 〈�(A)x, y〉 is absolutely continuous. In particular,

every vector lying in the type L part ofH� is absolutely continuous.

Proof. Relative to H ⊕ �2(F+n ), the structure projectionP�⊕� for T decomposes as
P1 ⊕ 0, with P1�P�. By considering vectors of the formx ⊕ 0, wherex is in the
range ofP�, we may regard the type L part ofS as contained in the type L part of
T. Thus, we may assume to be working with the representation�⊕ � from the start.
By [12, Theorem 1.6], the type L part of�⊕ � is spanned by wandering vectors. For
any wandering vectorw, the functional�w(A) = 〈(� ⊕ �)(A)w, y ⊕ 0〉 is absolutely
continuous because the cyclic subspace(�⊕�)(An)[w] is unitarily equivalent to�2(F+n )
and y ⊕ 0 may be replaced with its projection into this subspace. By the previous
corollary, the set of absolutely continuous functionals is a closed subspace. Taking
linear combinations and limits shows that� is in this closure, and hence also absolutely
continuous. �

Now we wish to develop a connection between absolute continuity and certain in-
tertwining operators.

Definition 2.6. Let � be a ∗-extendible representation ofAn on a Hilbert spaceH
with generatorsSi = �(si ). Say that an operatorX ∈ B(�2(F+n ),H) intertwines Sand
L if SiX = XLi for 1� i�n. Let X (�) denote the set of all such intertwiners. We
denote the range of the subspaceX (�) by Vac(�), that is,Vac(�) = X (�)�2(F+n ).

Notice that Vac(�) is an invariant linear manifold for�(An). The next result
shows thatVac(�) is also closed and equals the set of absolutely continuous vectors
for �.

Theorem 2.7. For a representation� of En on H, let Q be the structure projection of

T = (�⊕ �)(An)
WOT

. The following statements hold.
(i) For x, y ∈ Vac(�), the functional
(A) = 〈�(A)x, y〉 is absolutely continuous on
An.

(ii) If x ∈ H and 
(A) = 〈�(A)x, x〉 is absolutely continuous, thenx ∈ Vac(�).
(iii) The subspaceVac(�) is closed and is�(An)-invariant. Moreover, it is the subspace

of H corresponding to the projection ontoH of the type L part of(�⊕ �)(An),
that is, Vac(�) = Ran(PHQ⊥).
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Proof. Let x, y ∈ Vac(�), and choose vectors�, 	 in �2(Fn) and X, Y ∈ X (�) with
X� = x and Y	 = y. Then

�(A) = 〈�(A)x, y〉 = 〈�(A)X�, Y	〉 = 〈X�(A)�, Y	〉 = 〈�(A)�, X∗Y	〉,

so � is absolutely continuous.
Suppose that
(A) = 〈�(A)x, x〉 is absolutely continuous, say
(A) = 〈�(A)�, 	〉.

Theorem 1.6 of[12] shows thatx ⊕ � is a cyclic vector for an invariant subspaceM
of (�⊕ �)(An) on which the restriction is unitarily equivalent to�. Indeed, while the
hypothesis of that theorem requires that� be type L, this condition is used only to
establish that
 is absolutely continuous (in our new terminology). It is evident that
a subspace of this type is the range of an intertwining isometryV ∈ X (� ⊕ �). Let
X = PHV . ThenX intertwinesS andL. Moreover, sincex ⊕ � is in the range ofV, it
follows that x is in the range ofX, so (ii) holds.

We now push this argument a little further. Observe that as in the proof of[12,
Theorem 1.6], given t > 0, � may be replaced byt�. Therefore, ifx ∈ Vac(�), the
argument of the previous paragraph also shows thatx belongs to the closed span of the
wandering vectors for(�⊕ �)(An). Thusx belongs to the type L part of(�⊕ �)(An),
whence Vac(�) ⊆ Ran(PHQ⊥). Conversely, sincePH and Q commute, any vector
x ∈ Ran(PHQ⊥) lies in the type L part ofT, and thus
(A) = 〈Ax, x〉 is absolutely
continuous by Corollary2.5. But thenx ∈ Vac(�) by part (ii). So Ran(PHQ⊥) = Vac(�).
That Vac(�) is closed is now obvious.�

We now give a condition sufficient for the existence of wandering vectors.

Theorem 2.8. Let X belong toX (�). Then the following statements are equivalent.
(i) The representations�|RanX and � are unitarily equivalent;

(ii) RanX = S[w] for some wandering vector w;
(iii) X∗X = R∗R for some non-zeroR ∈ Rn = L′n.
In particular, this holds if X is bounded below.

Proof. The equivalence of (i) and (ii) is clear from the definitions.
To obtain (iii) ⇒ (i), suppose thatX∗X = R∗R. By restricting � to the invariant

subspaceRanX, we may suppose thatX has dense range, and thatX�� is a cyclic
vector. We now show that� is equivalent to�.

SinceR ∈ Rn, [16, Corollary 2.2], shows thatR factors as the product of an isometry
and an outer operator inRn. The equalityX∗X = R∗R is unchanged if the isometry
is removed, so we may assume thatR has dense range. SinceX andR have the same
positive part, there is an isometryV such thatX = VR and RanV = RanX; whence
V is unitary. Then

(SiV − VLi)R = Si(V R)− (V R)Li = 0.

ThereforeV intertwinesS and L and so�|RanV is equivalent to�.
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Finally, we show (ii)⇒ (iii). If there is an isometryV ∈ X (�) with RanV = RanX,
then by again restricting to this range, we may assume thatV is unitary, so that� is
equivalent to�. So V ∗Si = LiV

∗. Hence

(V ∗X)Li = V ∗SiX = Li(V
∗X);

whenceR := V ∗X belongs toL′n = Rn. ThereforeX = VR and soX∗X = R∗R.
Now suppose thatX is bounded below. Again we may suppose thatX has dense

range, henceX is invertible.
Consider the Wold decomposition ofS. The Cuntz part is supported on

N :=
⋂
k�1

∑
|w|=k

RanSw =
⋂
k�1

∑
|w|=k

SwX�2(F+n )

=
⋂
k�1

∑
|w|=k

XLw�
2(F+n ) = X

⋂
k�1

∑
|w|=k

Lw�
2(F+n ) = {0} (1)

Hence� is a multiple of�. Since RanX has a cyclic vectorX��, � has multiplicity
one, and thus is equivalent to�. �

As an immediate corollary, we note the existence of wandering vectors is character-
ized by a structural property ofX (�).

Corollary 2.9. Let � be a representation ofEn on H with generatorsSi = �(si ). Then
S has a wandering vector if and only if there existsX ∈ X (�) such that X is bounded
below.

Proof. If 	 ∈ H is wandering forS, then the isometric map determined byX�w =
w(S)	 belongs toX (�). The converse follows from the theorem.�

Remark 2.10. If one only hasX∗X�R∗R for a non-zeroR ∈ Rn, one may still
deduce that RanX has wandering vectors. To do this, use Douglas’ lemma[17] to
factor R = YX. Then argue as in Theorem2.8 that YSi = LiY . Then with N as
in (1), one can show thatYN = {0}. SinceY has dense range,� has a summand
equivalent to�. Moreover, since the range of an intertwiner consists of absolutely
continuous vectors, the existence of this summand and Lemma3.2 below show that
the range ofX is spanned by wandering vectors.

Example 2.11.There are intertwining maps whose range is not equivalent to�. For
example, consider the atomic representation of type�z∞2 [16, Example 3.2]. Then the

restriction ofS2 to the spine�2(Z× {0}) is the bilateral shift.
Observe that there is a summable sequence(ak)k∈Z such that

∑
k∈Z ak�k,0 is cyclic

for the bilateral shift. Indeed, Beurling’s theorem states that the (cyclic) invariant sub-
spaces of the bilateral shift, considered asMz on L2(T), have the formL2(E) for a
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measurable subsetE of T or the form wH 2 where |w| = 1 a.e. Thus if a function
g vanishes on a set of positive measure, it generatesL2(supp(g)). On the other hand,
if there is an outer functionf in H 2 with |f | = |g| a.e., then the cyclic subspace is
wH 2 wherew = g/f . This occurs if and only if log|g| belongs toL1(T). So choose
a C2 function g on T which vanishes at a single point in such a way that log|g| is
not integrable. For example, makeg(�) = e−1/|�| near� = 0 and smooth. Lying inC2

guarantees that the Fourier coefficients are summable.
For eachk ∈ Z, there is an intertwining isometryVk with Vk�� = �k,0. ThenV =∑
k∈Z akVk is an intertwiner. Moreover,V �� is cyclic for this Cuntz representation.

So V has dense range; but the representation�z∞2 is not equivalent to�.

Remark 2.12. Consider the completely positive map onB(H) given by 
(A) =∑
i SiAS

∗
i . Suppose thatX intertwinesS and L. Then


k(XX∗) =
∑
|w|=k

SwXX∗S∗w = X
∑
|w|=k

LwL
∗
wX

∗ = XQkX
∗�XX∗.

Moreover, SOT– limk 
k(X∗X) = 0. This latter condition is calledpurity by Popescu
[30]. Under these two hypotheses, namely
(D)�D andSOT– limk 
k(D) = 0, Popescu
proves the converse, thatD = X∗X for an intertwinerSX = XL(∞) using his Poisson
transform.

3. Wandering vectors and absolute continuity

In [12], we showed that in the presence of summands which contain wandering
vectors, the entire type L part is spanned by wandering vectors. In this section, we use
the ideas of the previous section to strengthen this significantly by showing that the
presence of one wandering vector implies that the type L part is spanned by wandering
vectors. We then consider the various ways in which a representation can appear to be
type L.

Definition 3.1. Let � be a∗-extendible representation ofAn. We say that� is type L
if the free semigroup algebra generated by�(s1), . . . ,�(sn) is type L.

A representation� is weak type Lif �⊕ � is type L.
A representation� is weak-∗ type L if �(∞) is type L.
The representation� of An is absolutely continuousif every vector state
(A) =

〈�(A)x, x〉 is absolutely continuous.

Notice that the restriction of a∗-extendible representation� of An to the invari-
ant subspaceVac(�) produces an absolutely continuous representation. We call this
restriction theabsolutely continuous partof �.

Lemma 3.2. If � is absolutely continuous and has a wandering vector, then H is
spanned by its wandering vectors. In particular, � is type L.
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Proof. Let 	 be a wandering vector inH, and setH0 = S[	]. Let V be the isometry
in X (�) mapping�2(F+n ) onto H0.

By Theorem 2.7, every vectorx ∈ H is in the range of some intertwining map
X ∈ X (�). We may assume that‖X‖ = 1

2. Then V ± X are intertwiners which are
bounded below. By Theorem2.8, the ranges of these two intertwiners are the ranges
of isometric intertwiners, and thus are spanned by wandering vectors. But the range of
X is contained in the sum of the ranges ofV ± X; and hencex is contained in the
span of all wandering vectors.�

Corollary 3.3. If � is any representation ofEn such that�(An) has a wandering
vector, then the span of the wandering vectors for�(An) is Vac(�).

Proof. Any wandering vector is an absolutely continuous vector, so simply restrict�
to the �(An)-invariant subspace consisting of absolutely continuous vectors and apply
the lemma. �

We now delineate the various type L forms, and their relationships as we know
today. There are no known examples of absolutely continuous representations without
wandering vectors.

Theorem 3.4. Consider the following conditions for a∗-extendible representation�
of An:
(1a) � is absolutely continuous
(1b) �⊕ � is type L (i.e. � is weak type L)
(1c) �⊕ � is type L for any(all) type L representation�.
(2a) �(∞) is type L (i.e. � is weak-∗ type L)
(2b) � is absolutely continuous and�(∞) has a wandering vector
(2c) �(∞) is spanned by wandering vectors
(3a) � is type L
(3b) � is absolutely continuous and�(k) has a wandering vector for some finite k
(3c) �(k) is spanned by wandering vectors for some finite k
(4a) � is absolutely continuous and has a wandering vector
(4b) � is spanned by wandering vectors
Then properties with the same numeral are equivalent, and larger numbers imply
smaller.

Proof. (1a)⇒ (1b): If � is absolutely continuous, then�⊕ � is absolutely continuous
and has a wandering vector. Thus by Lemma3.2, �⊕ � is spanned by its wandering
vectors, and so is type L.

(1b) ⇒ (1a): Since�⊕ � is type L and has a wandering vector, Lemma3.2 shows
that � ⊕ � is spanned by its wandering vectors. Thus� ⊕ � is absolutely continuous,
and hence so is�.

(1a)⇒ (1c): If � is any type L representation, there is an integerp so that�(p) has a
wandering vector. Thus(�⊕�)(p) is absolutely continuous and has a wandering vector,
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and so is also type L. However being type L is not affected by finite ampliations, as
this has no effect on theWOT-closure. So�⊕ � is type L.

(1c) ⇒ (1a): If � ⊕ � is type L for some type L representation�, then � ⊕ � is
absolutely continuous. By considering vectors of the formx ⊕ 0, we find that� is
absolutely continuous. So (1a)–(1c) are all equivalent.

If � is weak-∗ type L, then �(∞) has a finite ampliation which is spanned by
wandering vectors. But of course this ampliation is equivalent to�(∞), so (2a) im-
plies (2c). Clearly, if (2c) holds, then every vector inH(∞) is absolutely continuous,
so in particular,� is an absolutely continuous representation; thus (2b) holds. If�
is absolutely continuous and�(∞) has a wandering vector, thenH(∞) is spanned
by wandering vectors and thus�(∞) is type L. So (2a)–(2c) are all equivalent and
imply (1).

The equivalence of (3a)–(3c) follows from[12, Corollary 1.9], and evidently
implies (2).

By Lemma 3.2, (4a) and (4b) are equivalent and clearly imply (3).�
It is worthwhile examining the various weaker notions of type L in light of the

Structure Theorem for Free Semigroup Algebras[12]. Let � be a representation of
En and letS andW denote the corresponding free semigroup algebra and von Neu-
mann algebra, respectively. Then there is a projectionP in S characterized as the
largest projection inS for which PSP is self-adjoint. ThenS = WP + SP⊥,
P⊥H is invariant for S and SP⊥ is type L. We wish to break this down a bit
more.

Definition 3.5. A representation� of En or On is of von Neumann typeif the corre-
sponding free semigroup algebraS is a von Neumann algebra. If� has no summand
of either type L or von Neumann type, say that it is ofdilation type. We also will say
that � is weak-∗ of some type if�(∞) is of that type.

A very recent result of Charles Read[31] shows that there can indeed be represen-
tations of von Neumann type.

The reason for the nomenclaturedilation type is that after all summands of von
Neumann type and type L are removed, the remainder must have a non-zero projection
P prescribed by the structure theorem such thatPH is cyclic andP⊥H is cyclic forS∗.
For these algebras, the type L corner must be a multiple of�. To see this, consider the
subspaceW = ( ∑

i SiPH)
�PH. This is a wandering subspace for the type L part. It

is necessarily non-zero, for otherwiseS would be a von Neumann algebra. Moreover,
W is cyclic for the type L corner because of the cyclicity ofPH. Hence the type L
part is equivalent to�(dim W). This is an observation that was, unfortunately, overlooked
in [12]. Hence one sees that the compressionsAi = PSi |PH form a row contraction
with Si as their minimal isometric dilation (in the sense of Frahzo–Bunce–Popescu).
We record the most useful part of this for future reference.

Proposition 3.6. If � is dilation type, then it has wandering vectors. In particular,
dilation type and weak-∗ dilation type coincide.



K.R. Davidson et al. / Journal of Functional Analysis 224 (2005) 160–191 173

Proof. The first statement was proven in the preamble. Once one has a wandering
vector, the span of the wandering vectors includes all of the absolutely continuous
vectors, which includes the weak-∗ type L part. �

We can now clarify the exceptional case in which there may be pathology.

Proposition 3.7. Let � be a ∗-extendible representation ofAn. If the type L and
absolutely continuous parts do not coincide, then � is of von Neumann type, and
decomposes as� 
 �a⊕�s where�a is absolutely continuous and�s has no absolutely
continuous part.

Proof. Decompose� 
 �v ⊕ �d ⊕ �l into its von Neumann, dilation and type L parts.
By Proposition3.6, if there is a dilation part, then there are wandering vectors. So by
Corollary 3.3, the type L and absolutely continuous parts coincide. Likewise if there
is a type L part, the equivalence of (1a) and (1b) in Theorem3.4 shows that the type
L and absolutely continuous parts will coincide. So� is necessarily of von Neumann
type.

Since Vac(�) is invariant for S�, and S� is a von Neumann algebra,
Vac(�) is a reducing subspace forS�. This gives the desired decomposition
� 
 �a ⊕ �s . �

Definition 3.8. Call a ∗-extendible representation� of An regular if the absolutely
continuous and type L parts of� coincide.

Remark 3.9. Proposition 3.7 shows that the only pathology that can occur in the
various weak type L possibilities is due to a lack of wandering vectors.

It is conceivable that a representation is type L but has no wandering vectors. Such an
algebra is reductive and nonselfadjoint. There is no operator algebra known to have this
property. So the (unlikely) existence of such an algebra would yield a counterexample
to a well-known variant of the invariant subspace problem.

A ∗-extendible representation� which is weak-∗ type L but not type L must be von

Neumann type by the preceding proposition. But then�(An)
w-∗

would be a weak-∗
closed subalgebra isomorphic toLn which is WOT-dense in a von Neumann algebra.
We have no free semigroup algebra example of this type of behavior. However, Loebl
and Muhly [23] have constructed an operator algebra which is weak-∗ closed and
nonselfadjoint, but with theWOT-closure equal to a von Neumann algebra. Therefore,
it is conceivable that such a free semigroup algebra could exist.

Finally, one could imagine that� is of weak-∗ von Neumann type but absolutely
continuous.

Clearing up the question of whether any of these possibilities can actually occur
remains one of the central questions in the area. We conjecture that every representation
is regular. Indeed, we would go further and speculate that type L representations always
have wandering vectors.
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4. Reflexivity and hyper-reflexivity

In this section, we establish two reflexivity results that extend previous work in light
of the previous section.

Theorem 4.1. If S is a free semigroup algebra which has a wandering vector, then it
is reflexive.

Proof. By [12, Proposition 5.3], S is reflexive if and only if the restriction to its type
L part is reflexive. Thus, without loss of generality, we may assume thatS is type L.
SinceS is type L and has a wandering vector, Lemma3.2 shows thatH is spanned
by wandering vectors. LetW ⊆ H be the set of all unit wandering vectors. For each
� ∈ W , let H� = S[�] and letV� : �2(F+n )→ HL be the intertwining isometry which
sends�w to Sw�. Then the invariant subspacesH� spanH and each restrictionS|H�

is unitarily equivalent toLn via V�.
If T ∈ Alg Lat S, then H� is invariant for T. SinceLn is reflexive, there is an

elementB� ∈ Ln so thatT |H� = V�B�V
∗
� . For each� ∈ W , there is an elementA� ∈

S so thatA�|H� = V�B�V
∗
� . Fix an element�0 ∈ W , let V0 = V�0 andA0 = A�0. We

shall show thatT = A0. By replacingT with T −A0, we may assume thatT |H0 = 0,
so that our task is to showT = 0.

Given � ∈ W , the operatorX = V0 + .5V� is an intertwining map betweenS and L
which is bounded below. Moreover,M := RanX is closed and invariant forS; hence
M is also invariant forT. But

TX�� = T V0�� + .5T V��� = .5A�V��� =: y

belongs toH� ∩M. This implies that there is a vector� ∈ �2(F+n ) so thaty = X� =
V0�+ .5V�� belongs toH�, and thusV0� lies in H0∩H�. If � = 0 theny = 0, so that
A� has the non-zero vectorV��� in its kernel. Otherwise,V0� is a non-zero vector
in H0 ∩H� and A�V0� = T V0� = 0. Therefore,A�|H� has non-trivial kernel. Hence
B� is an element ofLn with non-trivial kernel. Since non-zero elements ofLn are
injective [16, Theorem 1.7], we deduce thatB� = 0. Hence 0= A�|H� = T |H� . Since∨

�∈W H� = H, we conclude thatT = 0 as desired. �
Recall that an operator algebraA is hyper-reflexive if there is a constantC so that

dist(T ,A)�C�A(T ) := C sup
P∈Lat A

‖P⊥T P ‖.

The known families of hyper-reflexive algebras are fairly small. It includes nest algebras
[3] with constant 1, the analytic Toeplitz algebra[10] and the free semigroup algebras
Ln [16]. Bercovici [4] obtained distance constant 3 for all algebras having propertyX0,1
and also showed that an operator algebraA has propertyX0,1 whenever its commutant
contains two isometries with orthogonal ranges. In particular,Ln has propertyX0,1
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whenn�2. Bercovici’s results significantly increased the known class of hyper-reflexive
algebras.

There is a long-standing open question about whether all von Neumann algebras
are hyper-reflexive, which is equivalent to whether every derivation is inner[9]. The
missing cases are von Neumann algebras whose commutant are certain intractable type
II1 algebras. This could include certain typeII∞ representations ofOn, and hence
would apply in our context. So for the next result, we restrict ourselves to the type L
case.

Theorem 4.2. If S is a type L free semigroup algebra which has a wandering vector,
thenS is hyper-reflexive.

Before giving the proof, we pause for the following remark.

Remark 4.3. If S is type L and has a wandering vector, then by[16] it has property
A1 and by [15] it even has propertyAℵ0. In particular, Theorem4.2 together with a
result from[20] implies that every weak-∗ closed subspace of a type L free semigroup
algebra with a wandering vector is also hyper-reflexive. Even thoughX0,1 is only a
bit stronger thanAℵ0, we were unable to show thatS has it. So we are unable to
apply Bercovici’s argument. Thus, the proof which follows uses methods reminiscent
of those used in[16].

If S is type L and has no wandering vector, then as noted in Remark3.9, the algebra
will be non-self-adjoint and reductive. In particular, it is not reflexive.

Proof. Let T ∈ B(H), and set�(T ) = supP∈Lat S ‖P⊥T P ‖. Let x0 be a wandering
vector ofS. ThenS|S[x0] 
 Ln. SinceLn is hyper-reflexive with constant 3, there
exists anA ∈ S with ‖(T − A)|S[x0]||�3�(T ). By replacingT with T − A, we can
assume that‖T |S[x0]‖�3�(T ).

Let x be a wandering vector withx �= x0 and letV be the isometric intertwiner from
�2(F+n ) ontoS[x] satisfyingV �w = Swx. We shall show that

∥∥T |S[x]∥∥ �26�(T ). (2)

Let xi = Six0, for i = 1,2. For i = 0,1,2, define isometric intertwinersVi from
�2(F+n ) to H by Vi�w = Swxi for w ∈ F+n .

For i = 1,2, setTi = Vi + rV where 0< r < 1/
√

2, and defineNi = RanTi . We
claim thatN1 andN2 are at a positive angle to each other; so thatN1∩N2 = {0} and
N1 +N2 is closed. Indeed, using� := 1− r

√
2 > 0,

‖T1�− T2	‖ � ‖V1�− V2	‖ − r‖V (�− 	)‖
� ‖�⊕ 	‖ − r(‖�‖ + ‖	‖) ��‖�⊕ 	‖.

So the natural map ofN1 ⊕N2 onto N1 +N2 is an isomorphism.
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Observe next that for anyw ∈ F+n , we have

∑
|w|=k

Sw(N1 +N2)=
∑
|w|=k

SwT1�
2(F+n )+ SwT2�

2(F+n )

= T1

∑
|w|=k

Lw�
2(F+n )+ T2

∑
|w|=k

Lw�
2(F+n ).

Therefore,

lim
k→∞

∑
|w|=k

Sw(N1 +N2) = 0.

As
∑n

j=1 SjNi has co-dimension one inNi , we find that.

dim


N1 +N2 −

n∑
j=1

Sj (N1 +N2)


 = 2.

By the Wold decomposition, we deduce thatS|N1+N2 
 L(2)
n . This algebra is hyper-

reflexive with distance constant 3. So there is an elementA ∈ S such that
‖(T − A)|N1+N2‖�3�(T ).

Note thatM := S[x1−x2] = Ran(T1−T2) ⊂ N1+N2; also,M is a cyclic subspace
of S[x0]. Since‖T |M‖�3�(T ), ‖A|M‖�6�(T ). As S is type L, ‖A‖ = ‖A|M‖, so
‖T |N1+N2‖�9�(T ). We now improve this to an estimate of‖T |S[x]‖.

Suppose thaty is a unit vector inS[x]. Observe that

T1(V
∗y) = V1V

∗y + ry

lies in N1 ⊂ N1+N2. So‖T (V1V
∗y+ry)||�9(1+r)�(T ). As V1V

∗y is a unit vector
in S[x0], ‖T V1V

∗y‖�3�(T ). Hence

‖Ty‖�r−1(12+ 9r)�(T ).

Choosingr sufficiently close to 1/
√

2 yields that‖T |S[x]‖�26�(T ), so (2) holds.
We now can estimate‖T ‖. Fix any unit vectory ∈ H, and let T be the free

semigroup algebra generated bySi ⊕ Li . SinceS is type L, by [12, Theorem 1.6]
there is a vector� ∈ �2(F+n ) with ‖�‖ < ε such thatT[y ⊕ �] is a subspace of
H ⊕ �2(F+n ) which is generated by a wandering vector. HenceT[y ⊕ �] is the range
of an isometryW ′ from �2(F+n ) to H ⊕ �2(F+n ) intertwining Li with Si ⊕ Li . Then
W ′′ := PHW ′ is a contraction inB(�2(F+n ),H) satisfying SiW

′′ = W ′′Li . Moreover,
there is a vector� ∈ �2(F+n ) of norm (1+ ε2)1/2 such thatW ′′� = y. Identify S[x0]



K.R. Davidson et al. / Journal of Functional Analysis 224 (2005) 160–191 177

with �2(F+n ) via the isometryV0 ∈ B(�2(F+n ),H), and setW := W ′′V ∗
0 ∈ B(S[x0],H)

andw := V0�.
Let J be the inclusion map ofS[x0] into H. For |t | < 1, considerVt = J + tW .

This is an intertwining map which is bounded below, and thus by Theorem2.8, there
is a wandering vectorxt of S so that Ran(Vt ) = S[xt ]. So

‖T (w + ty)‖�26�(T )‖w + ty‖.

Since ‖Tw‖�3�(T )‖w‖, if we let t increase to 1 andε decrease to 0, we obtain
‖Ty‖�55�(T ). So ‖T ‖ �55�(T ). Thus,S is hyper-reflexive with constant at most
55. �

The following proposition is complementary to[12, Proposition 2.10]showing that
if S is of Cuntz type, thenS′′ =W is a von Neumann algebra.

Proposition 4.4. Let S be a free semigroup algebra acting on a Hilbert spaceH
which is not of Cuntz type. ThenS′′ = S.

Proof. SinceS is not Cuntz type, by the Wold decomposition, it has a direct summand
equivalent toLn. That is, we may decompose the generatorsS1, . . . , Sn asSi = Ti⊕Li

on H = H1 ⊕ �2(F+n ).
Let W be the von Neumann algebra generated byS. By the Structure Theorem[12,

Theorem 2.6], there is a largest projectionP in S such thatPSP is self-adjoint and
S = WP + P⊥SP⊥. Now S′′ ⊂ W′′ = W, soSP ⊂ S′′P ⊂ WP = SP ; whence
S′′P = SP .

By Theorem3.2, P⊥H is spanned by wandering vectors. For any wandering vector
x�, let V� be the canonical intertwining isometry from�2(F+n ) into H defined by
V��w = Swx� for w ∈ F+n . If we selectx0 = 0 ⊕ ��, then V0 maps onto the free
summand. It is easy to check thatV�V

∗
0 commutes withS.

Let A ∈ S′′. Then since 0⊕I commutes withS, A must have the formA = A1⊕A2.
Moreover,A2 ∈ L′′n = Ln by [16]. There is an elementB ∈ S such thatB = B1⊕A2.
Subtracting this fromA, we may suppose thatA = A1 ⊕ 0. Then

Ax� = A(V�V
∗

0 )x0 = (V�V
∗

0 )Ax0 = 0.

ThusAP⊥ = 0. As above,AP lies in S, whenceA belongs toS. �

5. A Kaplansky density theorem

Kaplansky’s famous density theorem states that if� is a ∗-representation of a C*-
algebraA, then the unit ball of�(A) is WOT-dense in the ball of the von Neumann

algebraW = �(A)
w-∗ = �(A)

WOT
. In general, there is no analogue of this for operator

algebras which are not self-adjoint. Indeed, it is possible to construct many examples
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of pathology[33]. On the other hand, the density theorem is such a useful fact that it
is worth seeking such a result whenever possible. In this section, we establish a density
theorem for regular representations ofAn.

Consider the following proof of the Kaplansky density theorem. LetA be a C*-
algebra. The double dualA∗∗ may identified with the universal enveloping von Neu-
mann algebraWu of A. Any representation� of A extends uniquely to a normal rep-
resentation� of Wu onto W = �(A)′′. Because this is a surjective∗-homomorphism
of C*-algebras, it is a complete quotient map. In particular, any element of the open
ball of W is the image of an element in the ball ofWu. Now by Goldstine’s Theorem,
every element of the ball ofA∗∗ is the weak-∗ limit of a net in the ball ofA. Mapping
this down intoW by � yields the Kaplansky density theorem.

The usual argument thatWu is isometrically isomorphic toA∗∗ requires the Ka-
plansky density theorem. Indeed, each state onA extends to vector state onWu. But
the fact that all functionals onA have the same norm onWu follows from knowing
that the unit ball is weak-∗ dense in the ball ofWu. However, the use of Kaplansky’s
density theorem can be avoided as David Blecher pointed out to us. Such a proof
can be found now in[5, Paragraph A.5.10], making this argument a legitimate way to
obtain the Kaplansky theorem.

We shall use these ideas to decide when such a result holds in our context. Moreover,
in the C*-algebra context, Kaplansky’s theorem extends easily to matrices over the alge-
bra because they are also C*-algebras. In our case, it follows from the
proof.

The double dual ofAn may be regarded as a free semigroup algebra, in the following
way. We shall use it as a tool in the proof of the Kaplansky density theorem, and we
pause to highlight some of its features.

Definition 5.1. RegardAn as a subalgebra ofEn. Then the second dualA∗∗
n is naturally

identified with a weak-∗ closed subalgebra ofE∗∗n . This will be called theuniversal
free semigroup algebra. That this is a free semigroup algebra will follow from the
discussion below. We shall denote its structure projection byPu.

Denote byj the natural inclusion of a Banach space into its double dual. Thenj (An)

generatesE∗∗n as a von Neumann algebra.
If � is a ∗-representation ofEn on a Hilbert spaceH, then� has a unique extension

to a normal∗-representation� of E∗∗n on the same Hilbert spaceH. Moreover,�(E∗∗n )

is the von Neumann algebra�(En)′′ generated by�(En).
Fix once and for all a universal representation�u of En acting on the Hilbert space

Hu with the property that�u has infinite multiplicity, i.e.,�u 
 �(∞)
u . This is done

to ensure that theWOT and weak-∗ topologies coincide on the universal von Neumann
algebraWu = �u(En)′′. Then �u is a ∗-isomorphism ofE∗∗n onto Wu. This carries
A∗∗

n onto the weak-∗ closed subalgebra closureSu of �u(An). This coincides with the
WOT-closure, and thus this is a free semigroup algebra. HenceA∗∗

n is a free semigroup
algebra.

Since�u has infinite multiplicity and contains a copy of�, its type L part is spanned
by wandering vectors. So by Theorem3.4, the range of�u(P

⊥
u ) is Vac(�u).
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Proposition 5.2. Let � be a representation ofEn and let Pu ∈ A∗∗
n be the universal

structure projection. Then�(P⊥
u ) is the projection ontoVac(�).

Proof. Consider the kernel of�. There is a central projectionQ� ∈ E∗∗n such that
ker � = Q�E∗∗n . Moreover, we may regardH as a closed subspace ofHu and � as
given by multiplication byQ⊥

� , namely�(X) = Q⊥
� X|H for any X ∈ E∗∗n .

Let M be the range of�(P⊥
u ) and letx ∈ M. Thenx ∈ Q⊥

� P
⊥
u Hu, so x belongs to

Vac(�u). Thus for anyA ∈ An,

〈�(A)x, x〉 = 〈�u(j (A))Q
⊥
� P

⊥
u x,Q⊥

� P
⊥
u 〉.

As the range ofP⊥
u consists of absolutely continuous vectors, we see that this is an

absolutely continuous functional, sox ∈ Vac(�).
Conversely, ifx ∈ Vac(�), then there exists an intertwinerX ∈ X (�) and � ∈ �2(F+n )

so thatx = X�. Observe thatQ⊥
� X belongs toX (�u), hencex ∈ Vac(�u). Since the

absolutely continuous part of�u coincides with the type L part of�u, we conclude
that x ∈ P⊥

u Hu ∩Q⊥
� Hu and therefore�(P⊥

u )x = x. �
Since the type L part of a representation� is contained in the absolutely continuous

part, it follows that�(P⊥
u )�P⊥

� . Notice that by the previous result,� is regular if and
only if �(P⊥

u ) = P⊥
� , whereP� is the structure projection forS�.

Proposition 5.3. Let� be a regular∗-representation ofEn. Then�(An)
WOT=�(An)

w-∗

and �(A∗∗
n ) = �(An)

w-∗
.

Proof. Let T := �(An)
w-∗

, S := �(An)
WOT

and letW be the von Neumann algebra

generated by�(An). Let PT and PS be the structure projections for�(An)
w-∗

and

�(An)
WOT

, respectively. ThenP⊥
T

�P⊥
S

. Since the absolutely continuous part of�
contains the range ofP⊥

T
, the regularity of� yields thatPT = PS = �(Pu). Hence

T =WP+TP⊥ andS =WP+SP⊥. Moreover bothTP⊥ andSP⊥ are canonically
isomorphic toLn and the isomorphisms agree on�(An). Hence they are equal. For
typographical ease, writeP = PT = PS.

GivenX ∈ S, find X′ ∈ E∗∗n such that�(X′) = X. We may suppose thatX′ = Q⊥
� X

′.
This determinesX′ uniquely, and� is injective onQ⊥

� E∗∗n . By Proposition5.2 and the
regularity of �, �(Pu) = P . So �(PuX

′P⊥
u ) = PXP⊥ = 0, whencePuX

′P⊥
u = 0. To

see thatX′ belongs toA∗∗
n , it remains to show thatP⊥

u X′P⊥
u lies in A∗∗

n P⊥
u , which

is type L. ButA∗∗
n P⊥

u andSP⊥ are both canonically isometrically isomorphic toLn,
from which it is clear that�|A∗∗

n P⊥u is an isomorphism ontoSP⊥. �
We can now prove our Kaplansky-type theorem.

Theorem 5.4. Let � be a regular∗-representation ofEn. Then the unit ball of�(An)

is weak-∗ dense in the unit ball of�(An)
w-∗

, and the same holds forMk(�(An)).
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Proof. Let S := �(An)
w-∗ = �(An)

WOT
. We first show that

ker �|A∗∗
n
= A∗∗

n Q�Pu. (3)

To see this, notice that�|A∗∗
n P⊥u is an isometric map of the type L part ofA∗∗

n onto

the type L part ofS, that is, � mapsAnP
⊥
u isometrically ontoSP⊥

� . Therefore, if
X ∈ A∗∗

n and �(X) = 0, then�(X)P⊥
� = 0, so thatXP⊥

u = 0. As X ∈ ker �, we find
X ∈ A∗∗

n Q�Pu. The reverse inequality is clear, so (3) holds.
Next, we show that�|A∗∗

n
is a complete quotient map ontoS. For X ∈ A∗∗

n , we
have

dist(X, ker �|A∗∗
n
) � ‖X −XQ�Pu‖

=
∥∥∥XQ⊥

� +XP⊥
u Q�

∥∥∥
= max

{∥∥∥XQ⊥
�

∥∥∥ ,
∥∥∥XP⊥

u Q�

∥∥∥}

� max
{∥∥∥XQ⊥

�

∥∥∥ ,
∥∥∥XP⊥

u

∥∥∥}

= max
{
‖�(X)‖ ,

∥∥∥�(X)P⊥
�

∥∥∥}

= ‖�(X)‖ .

The reverse inequality is clear, so that‖�(X)‖ = dist(X, ker �|A∗∗
n
). By tensoringQ�

andPu with the identity operator on ak-dimensional Hilbert space, the same argument
holds for X ∈ Mk(A

∗∗
n ) and the map�k := � ⊗ ICk . Thus �|A∗∗

n
is a complete

contraction.
Consider any elementT of the open unit ball ofS. Since the map ofA∗∗

n ontoS
is a complete quotient map, there is a contractionTu ∈ A∗∗

n which maps ontoT. By
Goldstine’s Theorem, the unit ball of a Banach space is weak-∗ dense in the ball of
its double dual. So select a netA� in the ball ofAn so thatj (A�) converges weak-∗
to Tu. Then evidently�(A�) converges weak-∗ (and thusWOT) to T. If one wants
‖A�‖�‖T ‖, a routine modification will achieve this.

Because�|A∗∗
n

is a complete contraction, the same argument persists for matrices
over the algebra as well.�

Lemma 5.5. If � is absolutely continuous andS satisfies Kaplansky’s Theorem with
a constant, then � is type L.

Proof. As � is absolutely continuous,� ⊕ � is type L. Let � denote the weak-∗
continuous homomorphism ofLn into S obtained from the isomorphism ofLn with
S�⊕� followed by the projection onto the first summand.
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Note that if L is an isometry inLn, then (� ⊕ �)(L) is an isometry[12, Theorem
4.1]. Hence�(L) is an isometry as well.

Consider ker�. This is a weak-∗ closed two-sided ideal inLn. If this ideal is non-
zero, then the range of the ideal is spanned by the ranges of isometries in the ideal
[14]. In particular, the kernel would contain these isometries, contrary to the previous
paragraph. Hence� is injective.

Let C be the constant in the density theorem forS. If T ∈ S and ‖T ‖�1/C, then
there is a netAi in the unit ball ofAn such that�(Ai) converges weak-∗ to T. Drop
to a subnet if necessary so that the net�(Ai) converges weak-∗ to an elementA ∈ Ln.
Then (�⊕ �)(Ai) converges weak-∗ to T ⊕A. Hence�(A) = T . That means that� is
surjective, and hence is an isomorphism.

Now if � is not type L, then it is von Neumann type by Proposition3.7; and hence
contains proper projections. ButLn contains no proper idempotents[16]; so this is
impossible. Therefore� must be type L. �

Theorem 5.6. For a representation� of En, the following statements are equivalent.

(1) The unit ball of�(An) is WOT-dense in the ball ofS = �(An)
WOT

. i.e. Kaplansky’s
density theorem holds.

(2) The WOT-closure of the unit ball of�(An) in S = �(An)
WOT

has interior. i.e.
Kaplansky’s density theorem holds with a constant.

(3) � is regular.

Proof. (3) implies (1) follows from Theorem5.4. That (1) implies (2) is obvious, so
suppose (2) holds. If� is not regular, then it is von Neumann type by Proposition3.7;
and� 
 �a⊕�s . Since Kaplansky holds with a constant, this persists for�a because the
WOT-closure does not change by dropping�s , it being the full von Neumann algebra
already. This contradicts Lemma5.5. �

Definition 5.7. A functional � on An is singular if it annihilates the type L part
of A∗∗

n .

Proposition 5.8. For a functional� on An of norm 1, the following are equivalent:
(1) � is singular.
(2) There is a regular representation� of En and vectorsx, y ∈ H� with x = P�x

such that�(A) = 〈�(A)x, y〉.
(3) lim

k→∞ ‖�|
Ak

n,0
‖ = 1.

If � extends to a state onEn (i.e., �(I ) = 1), then (3) is equivalent to
(3′) ‖�|An,0‖ = 1.

Proof. If � ∈ A∗, it is a weak-∗ continuous functional onA∗∗
n , so we may

represent it as a vector functional onHu, say�(A) = 〈�u(A)x, y〉. Since� annihilates
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the type L part, it does not change the functional to replacex by Pux. So (1)
implies (2).

If (2) holds, then for everyA ∈ An we have�(A) = 〈�(j (A)Pu)x, y〉, which clearly
annihilates the type L part ofA∗∗. Thus (2) implies (1).

If (1) holds, then�(j (A)P⊥
u ) = 0, so �(j (A)) = �(j (A)Pu). Now A∗∗

n Pu =⋂
k�1 (A

∗∗
n,0)

k, so that‖�|(A∗∗
n,0)

k‖ = 1 for all k�1. It is easy to see that(A∗∗
n,0)

k =
(Ak

n,0)
∗∗. By basic functional analysis, a functional on a Banach spaceX has the same

norm on the second dual. Therefore‖�|
Ak

n,0
‖ = 1 for all k�1.

If (3) holds, then there is a sequenceAk in the ball ofAk
n,0 so that lim

k→∞‖�(Ak)‖ = 1.

Dropping to a weak-∗ convergent subnet, we may assume that this subnet converges
to an elementA ∈ ⋂

k�1 (A
∗∗
n,0)

k = A∗∗
n Pu. Thus‖�|A∗∗

n Pu
‖ = 1.

We claim that�|A∗∗
n P⊥u = 0. If not, there is a norm one elementB = BP⊥

u with
�(B) = ε > 0. Then

‖A+ εB‖ = ‖AA∗ + ε2BB∗‖1/2�(1+ ε2)1/2.

But �(A+εB) = 1+ε2, and thus‖�‖ > 1. This contradiction shows that� annihilates
the type L part, and thus is singular. So (3) implies (1).

Clearly (3) implies(3′). Conversely, if� extends to a state onEn, it may be re-
garded as a normal state onE∗∗n and hence represented as�(A) = 〈�(A)�, �〉 where
� is obtained from the GNS construction. IfA ∈ A∗∗

n,0 satisfies 1= ‖A‖ = �(A),
then �(A)� = � is an eigenvalue. Therefore�(Ak) = 1 for all k�1, showing that
‖�|(A∗∗

n,0)
k‖ = 1 for all k�1. Arguing as above establishes (3).�

Here is a version of the Jordan decomposition.

Proposition 5.9. Every functional� onAn splits uniquely as the sum of an absolutely
continuous functional�a and a singular one�s . Moreover

‖�‖�‖�a‖ + ‖�s‖�
√

2‖�‖

and these inequalities are sharp.

Proof. Set�a(A) = �(�u(A)P
⊥
u ) and�s = �(�u(A)Pu). Clearly this is the desired de-

composition. For uniqueness, suppose that
 is both singular and absolutely continuous.
Then ‖
‖ = lim

k→∞ ‖
|
Ak

n,0
‖ = 0.

RegardAn as a subalgebra ofEn and extend� to a linear functional (again called
�) on En with the same norm. Then (using the GNS construction and the polar de-
composition of functionals on a C*-algebra) there exists a∗-representation� of En on
a Hilbert spaceH� and vectorsx, y ∈ H� with ‖x‖ ‖y‖ = ‖�‖ so that for everyA ∈
En, �(A) = 〈�(A)x, y〉. Therefore forA ∈ An, we have�a(A) = 〈�(A)�(P⊥

u )x, y〉
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and �s(A) = 〈�(A)�(Pu)x, y〉. Hence

‖�a‖ + ‖�s‖ � ‖�(P⊥)x‖ ‖y‖ + ‖�(Pu)x‖ ‖y‖

�
√

2
(
‖�(P⊥)x‖2 + ‖�(P )x‖2

)1/2 ‖y‖ = √
2‖�‖.

The example following will show that the
√

2 is sharp. �

Example 5.10.Consider the atomic representation�1,1 on C�∗ ⊕ �2(F+n ) given by
S1�∗ = �∗ and S2�∗ = ��; and Si |�2(F+n ) = Li . Set

�(A) = 〈�1,1(A)(�∗ + ��)/
√

2, ��〉.

Then S� containsA = ���∗∗/
√

2 + (I − �∗�∗∗)/
√

2 and �(A) = 1. So we see that
‖�‖ = 1.

On the other hand,

�s(A) = 〈�1,1(A)�∗/
√

2, ��〉 and �a(A) = 〈�1,1(A)��/
√

2, ��〉

both have norm 1/
√

2. So‖�s‖ + ‖�a‖ =
√

2.

Question 5.11.Let S be the unilateral shift and consider the representation ofA2 ob-
tained from the minimal isometric dilation ofA1 = S/

√
2 andA2 = (S+P0)

∗/
√

2. The
weak-∗ closed self-adjoint algebra generated byA1 and A2 is all of B(H). Therefore
this representation is either dilation type withPSP = B(H) or it is type L, depending
on whether the functional� = e0e

∗
0 is singular or absolutely continuous. To check. it

suffices to determine whether� has norm 1 or less onAn,0. We would like to know
which it is.

Question 5.12.Charles Read has given an example of a representation ofA2 such

that B(H) = �(A2)
w-∗

. Is Read’s example singular or absolutely continuous? Again it
suffices to take any convenient state onB(H) and estimate its norm onA2,0 as equal
to 1 or strictly less.

We provide an example of how the density theorem can be used to establish an in-
terpolation result for finitely correlated presentations. Such representations are obtained
from a row contraction of matricesA = [

A1 . . . An

] ∈ M1,n(Mk(C)) by taking the
minimal isometric dilation[18,8,24]. These representations were classified in[13]. The
structure projectionP has range equal to the span of all{A∗i } invariant subspaces on
which A is isometric. In particular, it is finite rank. Also, the type L part is a finite
multiple, say �, of the left regular representation. Thus elements of the free semi-
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group algebraS have the form

[
X 0
Y Z(�)

]
whereX andY lie in PWP and P⊥WP ,

respectively, andZ ∈ Ln, whereW is the von Neumann algebra generated byS.

Theorem 5.13.Let � be a finitely correlated representation. IfA ∈ S� has ‖A‖ < 1
and k ∈ N, then there is an operatorB ∈ An so that�(B)P = AP and the Fourier
series of B up to level k agree with the coefficients ofAP⊥.

Proof. Fix ε < 1− ‖A‖. Let Qk ∈ B(�2(F+n )) denote the projection onto span{�w :
|w|�k}.

Identify SP⊥ with L(�)
n and findC ∈ Ln so thatAP⊥ = C(�).

Since the weak and strong operator topologies have the same closed convex sets, the
density theorem implies that there exists a sequence{Lk} in Ln so that‖Lk‖ < 1− ε

and A = SOT lim �(Lk). Recalling thatP and Qk are finite rank, we conclude that
there existsB1 ∈ An so that

‖(A− �(B1))P ‖ + ‖Qk(C − B1)‖ < ε/2.

By [15, Corollary 3.7], there is an elementC1 ∈ Ln so thatQkC1 = Qk(C − B1) and
‖C1‖ = ‖Qk(C − B1)‖. Hence the element ofS defined byA1 = (A − �(B1))P +
C
(�)
1 P⊥ satisfies‖A1‖ < ε/2.
Now chooseB2 ∈ An so that‖B2‖ < ε/2 and

‖(A1 − �(B2))P ‖ + ‖Qk(C1 − B2)‖ < ε/4.

Proceed as above to defineC2 ∈ Ln so that QkC2 = Qk(C1 − B2) and ‖C2‖ =
‖Qk(C1 − B2)‖; and then defineA2 = (A1 − �(B2))P + C

(�)
2 P⊥ satisfying

‖A2‖ < ε/4.
Proceeding recursively, we defineBj for j�1 so thatB = ∑

j �1 Bk is the desired
approximant. �

6. Constructive examples of Kaplansky

In this section, we give a couple of examples where we were able to construct the
approximating sequences more explicitly. We concentrate on exhibiting the structure
projectionP as a limit of contractions. It is then easy to see that the whole left ideal
WP has the same property by applying the C*-algebra Kaplansky theorem. We do not
have an easy argument to show that one can extend this to the type L part without
increasing the constant.

Proposition 6.1. LetS be the free semigroup algebra generated by isometriesS1, . . . ,

Sn; and let A be the norm closed algebra that they generate. LetP ∈ S be the
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projection given by the Structure theorem. IfP �= I is theWOT-limit of a sequence in
A of norm at most r, then theSOT-closure of the r-ball ofAk

0 containsSP for all
k�0.

Proof. SinceP �= I , S has a type L part. Let
 be the canonical surjection ofS onto
Ln with 
(Si) = Li [12, Theorem 1.1]. Recall that the kernel of
 is

⋂∞
k=1 S

k
0 =

WP . Since the weak and strong operator topologies have the same closed convex
sets, we may suppose that the sequence inA converges toP strongly. In particular,
the restriction of this sequence to the type L part converges strongly to 0. Hence the
Fourier coefficients each converge to 0. Thus, a minor modification yields a sequence
Ak ∈ Ak

0 of norm at mostr convergingSOT to P.
If T lies in the unit ball ofWP , then by the usual Kaplansky density theorem,

there is a sequenceBk in the unit ball of C∗(S) which convergesSOT to T. We may
assume thatBk are polynomials inSi, S∗i for 1� i�n of total degree at mostk. Then
observe thatBkA2k lies in Ak

n,0, and convergesSOT to T P = T . �
Our first example is a special class of finitely correlated representations which are

obtained from dilating multiples of unitary matrices.

Theorem 6.2. Suppose thatUi for 1� i�n are unitary matrices inB(V), where V
has finite dimension d, and that �i are non-zero scalars so that

∑n
i=1 |�i |2 = 1. Let

Si be the joint isometric dilation ofAi = �iUi to a Hilbert spaceH. Let S be the
free semigroup algebra that they generate; and letA denote the norm-closed algebra.
Then the projectionP = PV is the projection that occurs in the Structure Theorem,
and there is a sequence of contractions inA which convergesSOT to P.

Lemma 6.3. If U is a set of unitary matrices inMd , then the closure of the set of
all non-empty words in elements ofU is a subgroup of the unitary groupU and the
algebra generated byU is a C*-algebra.

Proof. The closureG of words in U is multiplicative and compact. Any unitary matrix
U is diagonalizable with finite spectrum. A routine pigeonhole argument shows that
there is a sequenceUni which converges toI, and thusUni−1 converges toU−1. It
follows that G is a group. It is immediate that the algebra generated byU containsU∗
and thus is self-adjoint. �

Proof of Theorem 6.2. From the Lemma, we see that the algebra generated by{A∗i }
is self-adjoint, and thus the spaceV is the span of its minimalA∗i invariant subspaces.
From the Structure Theorem for finitely correlated representations[13], we deduce that
P = PV is a projection inS and thatS =WP +SP⊥, whereW is the von Neumann
algebra generated byS, P⊥H is invariant, andSP⊥ is a (finite) ampliation ofLn.

Consider the spaceX consisting of all infinite wordsx = i1i2i3 . . . where 1� ij �n

for j�1. This is a Cantor set in the product topology. Put the product measure� on
X obtained from the measure on{1, . . . , n} which assigns mass|�i |2 to i.
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Fix ε > 0. Since the closed semigroupG generated by{Ui} is a compact group by
Lemma6.3, one may choose a finite setS of non-empty words which form anε-net (in
the operator norm). LetN denote the maximum length of these words. Then we have
the following consequence: given any wordw = i1 . . . ik, there is a wordv = j1 . . . jl
in S with l�N so thatUwv = Ui1 . . . UikUj1 . . . Ujl satisfies‖Uwv − I‖ < ε.

Recursively determine a setW of words so thatSw have pairwise orthogonal ranges
and ‖Uw − I‖ < ε for w ∈ W as follows: start at an arbitrary levelk0 and take all
wordsw with |w| = k0 such that‖Uw − I‖ < ε. If a set of words of length at mostk
has been selected, add toW those words of lengthk+1 which have ranges orthogonal
to those already selected and satisfy‖Uw − I‖ < ε.

We claim that SOT
∑

w∈W SwS
∗
w = I . The argument is probabilistic. Let� =

min{|�i |2}. Associate tow the subsetXw of all infinite words in X with w as an
initial segment. By construction, the setsXw are pairwise disjoint clopen sets for
w ∈ W with measure|�w|2, where we set�w = ∏k

t=1 �it . Verifying our claim is
equivalent to showing that

⋃
w∈W Xw has measure 1. Consider the complementYk of⋃

w∈W, |w|�k Xw. This is the union of certain setsXw for wordsw of length k. For
each such word, there is a wordv ∈ S so that‖Uwv − I‖ < ε. Now Swv has range
contained in the range ofSw, which is orthogonal to the ranges of words inW up to
level k. It follows from the construction ofW that there will be a wordw′ ∈ W so
that w′ divideswv. As a consequence,Yk+N has measure smaller thanYk by a factor
of at most 1− �N because for each intervalXw in Yk, there is an intervalXwv which
is in the complement, and its measure is at least�N�(Xw). Therefore lim

k→∞ �(Yk) = 0.

Choose a finite setW0 ⊂ W so that

r := �


 ⋃

w∈W0

Xw


 > 1− ε.

Define T = ∑
w∈W0

�wSw in A. Note that

‖T ‖2 =
∑

w∈W0

|�w|2 = r < 1.

Observe thatPSw = �wUw. Define a state� on B(H) as the normalized trace of the
compression toV. Since‖Uw − I‖ < ε, it follows that |�(Uw)− 1| < ε. Compute

Re �(T ) =
∑

w∈W0

�w Re �(Sw) =
∑

w∈W0

|�w|2 Re �(Uw)

�
∑

w∈W0

|�w|2(1− ε) = r(1− ε) > (1− ε)2.
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By taking ε = 1/k and k0 = k in the construction above, we obtain a sequence
Tk of polynomials Tk ∈ Ak

0 which are contractions and lim
k→∞ �(Tk) = 1. It follows

that there is a subsequence which convergesWOT to a limit T ∈ S which lies in⋂
k�1S

k
0 =WP . Moreover‖T ‖�1 and�(T ) = 1. The only contraction inB(V) with

trace 1 is the identity, and therefore the compressionPT = P . As T is contractive, we
deduce thatP⊥T = P⊥T P = 0, whenceT = P . As the SOT and WOT-closures of the
balls are the same, there is a sequence in the convex hull of theTk ’s which converges
to P strongly. �

Our second constructive example is the set of atomic representations introduced
in [16]. To analyze these, we will need some of Voiculescu’s theory of free
probability.

Theorem 6.4. If S is an atomic free semigroup algebra, then the structure projection
is a SOT-limit of contractive polynomials in the generators.

It is convenient for our calculation to deal with certain norm estimates in the free
group von Neumann algebra. We thank Andu Nica for showing us how to handle this
free probability machinery.

Lemma 6.5. Let p and q be free proper projections of trace�� 1
2 in a finite von

Neumann algebra(M, �). Then‖pqp‖ = 4�(1− �).

Proof. Given a ∈ M, form the power seriesMa(z) = ∑
n�1

�(an)zn. In particular,

Mp(z) = Mq(z) = �z(1 − z)−1. Voiculescu’s S-transform is given by
Sa(�) = (1 + �)�−1M<−1>

a (�) where M<−1>
a denotes the inverse ofMa under

composition. So

Sp(�) = Sq(�) = 1+ �
�

�
�+ �

= 1+ �
�+ �

.

By [32, Theorem 2.6], the S-transform is multiplicative on free pairs. Hence

Spq = (1+ �)2

(�+ �)2
= 1+ �

�
M<−1>

pq (�).

Observe that�((pqp)n) = �((pq)n) and soMpq = Mpqp. Thus

M<−1>
pqp (�) = �(1+ �)

(�+ �)2
.
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We obtain the quadratic equation

(1− z)M2
pqp(z)+ (1− 2�z)Mpqp(z)− �2z = 0.

Solving, we obtain

Mpqp(z) = 2�z− 1+√
1− 4�(1− �)z

2(1− z)

Since Mpqp(0) = 0, we must choose an appropriate branch of the function
(1− 4�(1− �)z)1/2. This may be defined on the complement of the line segment

{z : Re z = 1/4�(1− �) and Im z�0}

and takes positive real values on real numbersx < 1
4�(1 − �). An easy calculation

shows that the singularity atz = 1 is removable.
The power series forMpqp converges on the largest disk on which it is analytic. The

branch point occurring atz = 1
4�(1− �) is the only obstruction, and thus the radius of

convergence is14�(1− �). On the other hand, from Hadamard’s formula, the reciprocal
of the radius of convergence is

4�(1− �) = lim sup
k→∞

�((pqp)k)1/k = ‖pqp‖. �

Corollary 6.6. Let Ui for 1� i�n denote the generators of the free group von Neu-
mann algebra, and let Pi be spectral projections forUi for sets of measure at most
�� 1

2. Then‖∑n
i=1 Pi‖�1+ 2n2√�.

Proof. By Lemma6.5, we have‖PiPj‖ = ‖PiPjPi‖1/2�2
√

� for i �= j . If ‖∑n
i=1 Pi‖

= 1+ x, then

(1+ x)2 = ‖
n∑

i=1

Pi +
∑
i �=j

PiPj‖�1+ x + n(n− 1)2
√

�.

Hencex�2n2√� as claimed. �
Recall from[16] the atomic representation�u,� determined by a primitive wordu =

i1 . . . id in F+n and a scalar� in T. Define a Hilbert spaceHu 
 Cd⊕�2(F+n )d(n−1) with
orthonormal basis�1, . . . , �d for Cd and index the copies of�2(F+n ) by (s, j), where
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1�s�d, 1�j�n and j �= is , with basis{�s,j,w : w ∈ F+n }. Define a representation
�u,� of F+n and isometriesSi = �u,�(i) by

Si�s = �s−1 if i = is , s > 1,
Si�1 = ��d if i = i1,

Si�s = �s,i,� if i �= is ,

Si�s,j,w = �s,j,iw for all i, s, j, w.

For our purposes, we need to observe that the vectors�1, . . . , �d form a ring which
is cyclically permuted by the appropriate generatorsSis ; and all other basis vec-
tors are wandering. The projectionP in the structure theorem is the projection
onto Cd .

Lemma 6.7. Let u be a primitive word and let� ∈ T. Let S be the atomic free
semigroup algebra corresponding to the representation�u,�. Then the projection P
from the Structure Theorem is the limit of contractive polynomials in the
generators.

Proof. Let us denote the cyclic permutations ofu for 1�s�d satisfyingSus �s = ��s .
As in the proof[16, Lemma 3.7]of the classification of atomic representations, there
is a sequence of the formAk,s = pk(Sus ) which convergeSOT to the projections�s�

∗
s

wherepk(x) = xkqk(x) are polynomials with‖pk‖∞ = 1= pk(�).
It is routine to choose such polynomialspk with the added stipulation that there is

an open setVk of measure 1/k containing the point� so that‖pk�T\Vk
‖ < 1/k. We

now consider the elementsAk = ∑d
s=1 Ak,s . Clearly the sequenceAk convergesSOT

to the projectionP. So it suffices to establish that lim
k→∞ ‖Ak‖ = 1.

AsA has a unique operator algebra structure independent of the representation ofOn,
polynomials in the isometriesSus may be replaced by the corresponding polynomials
in the generatorsLs of the left regular representation for the free semigroupF+d . The
isometriesLs have pairwise orthogonal ranges for distincts, and consequently the
operatorsAk,s have orthogonal ranges. Hence, the norm ofAk equals the norm of the
column operator with entriesAk,s . Now it is evident that the left regular representation
of F+d may be obtained as the restriction of the left regular representation of the free
group Fd to an invariant subspace. So the norm is increased ifLs are replaced by
the generatorsUs of the free group von Neumann algebra. Thus the norm ofAk is
dominated by the column vector with entriespk(Us).

Let Qs denote the spectral projection ofUs for the open setVk. Then



pk(U1)

...

pk(Ud)


 = diag{pk(U1), . . . , pk(Ud)}



Q1
...

Qd


+



pk(U1)Q

⊥
1

...

pk(Ud)Q
⊥
d


 .
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Since‖pk(Us)‖ = 1, the norm of the first term is at most

‖Q1 + · · · +Qd‖1/2 < 1+ 2d2/
√
k

by Corollary 6.6. The second term is dominated by

√
d ‖pk�T\Vk

‖∞ <
√
d/k.

Hence the norms converge to 1 as claimed.�
It is now only a technical exercise to show how one may use similar arguments to

combine sequences corresponding to finitely many points on the circle for a given word
u, and to deal with finitely many such words at once. The inclusion of summands of
type L such as the atomic representations of inductive type does not affect things since
these sequences are already converging strongly to 0 on the wandering subspaces of
these atomic representations. Details are omitted.
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