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Abstract

In this paper, we consider a complete continuous-time financial market with discontinuous
prices and different types of side-information (initial or progressive strong information, weak
information). The agents strive to maximize the expectation of the logarithm of their terminal
wealth. Our purpose is to explicit and to simulate the optimal strategy of the insiders in some
examples of side-information. We compare those optimal strategies, depending on the type of
side-information.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper deals with the simulation of the optimal strategy of agents who have
some side-information about the market structure, and to compare it to non-
insider’s optimal strategy. Thus, we fix a finite horizon time 7>0 and a filtered
probability space (Q, Fr,P), with a multidimensional Brownian motion W and a
multidimensional Poisson process N. A market model is built, with one bond and d
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discontinuous risky assets. The agents strive to maximize their expected discounted
utility of terminal wealth on [0, 4], A<T.

Previous works about optimal strategies, such as Karatzas et al. [21], are written in
the classical setting of financial markets where the agents share the same information
flow, which is conveyed by the prices. But it seems clear that financial markets
inherently have asymmetry of information. In this article, we consider three types of
extra information of an insider.

The first type is called “initial strong” information: from the beginning the insider
has an extra information available about the outcome of some variable L of the
prices. The cornerstone of this modelization is the theory of initial enlargement of
filtration by a random variable, which was developed by Jeulin [19], in the series of
papers in the “Séminaire de Calcul Stochastique (1982/83)” of the University Paris
VI, by Jacod [17], Jeulin and Yor [20], Féllmer and Imkeller [10] and further by
Amendinger et al. [3] and Amendinger [1]. Karatzas and Pikovsky [22] studied
optimization strategies with some examples of real or vectorial random variables:
L=WT),L=GWi(T)+ (1 —2)e) 4 with a family of independent Gaussian
variables ¢. Amendinger et al. [2] quantified the value of this noisy signal about the
terminal value of the Brownian motion driving the asset prices. In several papers,
including Grorud and Pontier [12] or Grorud [11], the expression of the
compensator, or information drift, is given in examples where the insider knows,
respectively, the ratio at time 7 of two assets prices or knows that one asset price at
time 7" will be greater (or smaller) than a given constant. All these examples were
given in a purely diffusive market model. In a mixed diffusive-jump market model,
Elliott and Jeanblanc [9] and Grorud [11] studied the case where L is the number of
jumps over the interval [0, T7.

The second type is called ‘‘progressive strong” information: the insider’s
information is perturbed by an independent noise changing throughout time. This
case deals with the theory of a progressive enlargement of filtration. In the
pioneering papers on the enlargement of filtrations (see [20]), the progressive
enlarged filtration is by definition the smallest one that makes a given random time a
stopping time. Imkeller studied this theory in the context of insider models in [15].
The progressive enlargement of filtration I consider in this paper is in the sense of
Corcuera et al. [8]. Using Malliavin’s calculus, they obtained in [8] the formula of the
compensator in some examples of information, such as a function of the terminal
value of the Brownian motion, disturbed by an independent noise.

The third type is called “weak” information or anticipation: the insider anticipates
the law of a random variable L that will be realized at a future date. The main
difference with a strong information is that there is no change of filtration but only a
change of a probability measure. This notion of weak information is defined by
Baudoin [5,6].

In this paper, we consider the agent’s problem of maximizing the expectation of
the logarithm of his terminal wealth. In some examples of side-information, we
compute the explicit formula of the insiders’ strategy (optimal wealth and portfolio)
in our mixed diffusive-jump market model. We simulate them and compare them
between each other and to the non-insider’s optimal strategy.
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This article is organized as follows.

In Section 2, we define the market and introduce the general framework and
notations that are valid throughout the paper. In Section 3, we recall some technical
results about these three types of side-information: we recall briefly the construction
of a risk neutral probability measure for a strong-informed agent, and a “minimal
probability measure” associated with L for a weak-informed agent. These
probability measures summarize the side-information of each insider. Then we give
the solution of their optimization problem. In Section 4, we explicit the insiders’
strategies in some examples of side-information. First, we explain how to compute
the density process of an initial strong insider’s risk neutral probability measure with
respect to the effective probability measure P. Then, we compute the strategy
(optimal wealth and portfolio) for two examples of initial strong information that
can occur in a case of a merger between two companies: the insider knows that an
asset price will be or not at time 7 in a given margin, or he knows the ratio at time 7’
of two assets prices. We explicit the difference of strategy between a non-insider and
an insider in both cases: a purely diffusive market model or a mixed diffusive-jump
market model. In Section 5, we simulate the above strategies in a diffusive-jump
market model with four risky assets and we explicit qualitatively the optimal
investments. Finally, we compare the optimal wealth in the three types of side-
information, each information being a variant of the value at time T of the first
component of the Brownian motion. We show that for the same noise dynamics, the
wealths are plausibly ordered in the sense of increasing relevance of side-
information. Figures are given in Appendix A.

2. The market

Let W be a real m-dimensional Brownian motion on its canonical probability
space (Q", F;V::(,?IW),G[O,T], P"). Let N be a n-dimensional Poisson process on its
canonical probability space (QV ,FI}’ =(ZF ﬁv )eefo, 17> PY), with a positive, Fé\f-predict-
able intensity x satisfying Epy[ fOT k(t)dtf]< 4+ co. The process M defined by
M(t)=N(t) — fot (s)ds is a (FY, PV)-martingale, called the compensated martingale
of the Poisson process N. Let (Q,Fr, P)=(Q" x QN,F;V Q FY,P" @ PV) be the
product space. W and N are independent. Let .o/ be a g-algebra of Q. Let d = m + n.

The agents on the financial market are able to invest in d + 1 assets, the prices of
which are driven by the following stochastic differential equations:

Py(t) = exp </0tr(s) ds), 2.1

d
dP(1) = Pir) [bi(nyde + Y oy d(W* N (1) |, i=1,....d. 2.2)
J=1

X* denotes the transposed process of process X. ¢ is a given strongly non-degenerate
deterministic d x d-matrix-valued process. The processes r and b are assumed
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deterministic and bounded on [0, T]. We assume that g;> — 1 for all m+ 1<j<d
and 1<i<d. Thus F7 and the filtration generated by the prices are identical.

If the agent has a strong information (initial or progressive), he receives an
individual flow of side-information, represented by the filtration Hzy:=(A#")c( 17-
Thus, we introduce the individual agent’s filtration G7:=(%,),o ) of available
information, with

g[:=eg7[\/%t, 0<1<T

In other words, this agent possesses all information about the market up to the
present time ¢, plus his own side-information that he does not reveal to the other
agents (except indirectly, by his market strategies). Besides, if the agent has a weak
information, he only has the filtration G7:=F7 of the market available.

Definition 2.1. A Gr-admissible strategy is a portfolio n such that for all i=1,...,d,
% is Gp-predictable and satisfies the integrability requirement fo ||a*(t)n(l)|| dt
<oo P almost surely and so that the corresponding wealth process X is bounded
from below and satisfies X(7)>0 P almost surely.

n;(t) represents the amount invested by the agent at time ¢ in the ith stock
(i=1,...,d). The agent has an initial wealth X(0) € L'(%;). As usually, we assume
that the strategy is self-financing, so the agent’s discounted wealth is given by

pOX(1) = X(0) + /0 B(s)n*(s)(b — rla)(s)ds + /0 Bls)m*(s™)a(s) d(W™, N*)*(s).
(2.3)

B(t)=(Po(1))"" is the deflator process and I; = (1,...,1)* € R’. But on an enlarged
filtration (G7, P), the process (W*, N*) could no more be a semi-martingale. We will
add in Sections 3.1 and 3.2 sufficient conditions to obtain a meaningful wealth
equation for a strong insider. The agent chooses his strategy so as to optimize his
terminal wealth.

Let us introduce some notations

o/, =(,...,1) e R".

e If v, et v, are two vectors of same dimension d, we note v;.v; the vector with
components (v;.02); = 01,024, i =1,...,d.

e & denote the Doléans exponential.

We define O(f):=m first lines of (a(¢))~'(b(r) — r(t)I ;) and the n-dimensional process
g such that ¢(¢).x(r):=n last lines of —(a(r))”'(b(¢) — r(£)I4). We assume that

Assumption 2.2. ¢ is a process with positive components

Otherwise arbitrage opportunities can occur (see [18]).

W(t):: W) + /Ot O(s)ds, ]l7[(l):=N(t) — /th(s)rc(s) ds, te€]0,T]. (2.4)
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We denote §:=(W*,]\71*)*. Eq. (2.3) implies

ﬂ(t)X(t)=X(0)+/0 Bls)m*(s7)o(s) dS(s). (2.5)

Po=YoP where Yo =& (/()'(—@*(s) dW(s) + (q(s) — I,)* dM(s))) (2.6)

is the “risk neutral probability measure” for a non-insider.

3. Modelization of three types of side-information

We consider the agent’s problem of maximizing his terminal wealth, in each of the
three settings of side-information. For sake of completeness, we recall here some
technical results of Hillairet [14].

3.1. Initial strong information

We suppose in this subsection that the agent knows a functional L w-wise from the
beginning. Let us make more precise the nature of this initial strong information:

Assumption 3.1. Vi €[0,T], #, =o(L) where L is an .7-measurable random
variable with values in a Polish space (E, &) (meaning that the agent receives his
additional information immediately and only at time ¢ = 0) and moreover, L satisfies
the assumption: P(L € -|Z)(w)~P(L € -) for all ¢ € [0, T[ for P almost all v € Q.

Remark. Assumption 3.1 is equivalent to: there exists a probability measure
equivalent to P and under which V¢ € [0, T[, &, and o(L) are independent. We
consider the only one that is identical to P on .# r and we denote it QF. We introduce
the density process

dpP
Z(Z)IZE@L {W

gt:| ) (3.1)

which satisfies dZ(¢) = Z(17)[p3(1) AW (1) + (p,(1) — I,)" dM(?)], where p, and p, are
GT-prSdictable processes. W(-)=W() — Jop1(ndzt is a (Gr,P)-Brownian motion
and M(-)=N(-) — [, k.po(t)dr is the compensated process of a (Gr,P)-Poisson
process with intensity (x.p,). Therefore the wealth (2.3) is meaningful under
Assumption 3.1.

Definition 3.2.

—of [(_ . 4T N g
Y._é”‘( /0 ( (O + p, ()" dW(s) + (pz(s) 1n> dM(s))).
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Y is a positive (Gr, P)-local martingale. A straightforward calculus yields:
d(Y ")) = Y '¢)F()dS@t)  with = <(@ +p)", (% — 1,7> )

Theorem 3.3. We assume 3.1 and that Y defined in (3.2) is a (Gr, P)-martingale. Then
P:=YP is a “risk neutral probability measure” for the insider-. W and M (definition
(2.4)) are, respectively, a (Gr, IP) Brownian motion and the compensated process of a
(Gr, P) Poisson process with intensity (q.x). Furthermore, the market is complete for
the insider: if Aisa (%, [P’) -local martingale, there exists Yy € LIOC(S Gr, IP) such that
Y(1,w) € [0, T] x Q, A() = A(0) + fo W (s) dS(s).

3.2. Progressive strong information

In this subsection, we consider an agent whose additional information changes
through time. His knowledge is perturbed by an independent noise, and is getting to
him clearer as time evolves.

Assumption 3.4. V¢t € [0, T], #; = a(L(s),s<t) where L(s) = L(J, %(s)) with

e ¥ :R?*— Ris a given measurable function.

o # ={#h(1),0<t< T} is independent of Z 7.

® 7 is a # p-measurable random variable such that: P( ¢ € -|7,)(w) <P( ¢ € ) for
all £ € [0, TT for P almost all v € Q.

Gr denote the usual enlarged filtration (4, = Ny=(Fu V 0(L(5), S< U)o, 17+
contains the additional information available to the insider, and % represents an
additional noise that perturbs this side-information. Therefore, one expects in
general that #(T) = 0 and that the variance of the noise decreases to zero as revelation
time 7" approaches. We denote by P,(w, dx) a regular version of the conditional law of
S given #, and by P, the law of #. According to Jacod [17] and Proposition 12 of
Grorud [11], there exists a measurable version of the conditional density p(¢, x)(w) =
dP t (co x) which is a (Fr, P)-martingale and can be written, Vx € R, as

p(t,x) = p(0,x) + /0 als, x) dW(s) + /0 Ps, x) dM(s),

where for all x, s — a(s, x) and s — f(s, x) are Fp-predictable processes. Moreover,
for all s<T, p(s, #)>0 P almost surely.

Theorem 3.5. We assume that vt € [0, T, E[p( ;;; I+ 11, +bl(?§tf ||) < + 0o and

that (In + i;ﬂ{%) has positive components. Setting p,(t) = Ep (;g% | g,) and

pz(t)zEp<(I,,+p/(f§ff)> |g) we assume that [ (lpy(D)]l + I1Ge.p) (D)) dr < +
oo P almost surely. Then W(-).: W()— [,p1()ds is a (Gr,P)-Brownian motion

and A~4(~):=N(~)—f6(lc.p2)(s) ds is the compensated process of a (Gr,P)-Poisson
process with intensity (k.p,).
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Therefore the wealth equation (2.3) is meaningful and we are now able to construct a
risk neutral probability measure for this progressive strong informed agent.

Definition 3.6.

IF= ((@ + pl)*, (ﬁ - In) *>:
q

) ' _ * 1/ LI(S) _ t s
Y=6 ( /0 ( (© + p,) () AW (s) + <p2 o In) dM(s))>.

Y is a (Gr, P)-local martingale and d(Y~")(¢) = Y~ 1(t7)*(t) dS(0).

Theorem 3.7. We assume 3.4 and the assumptions of Theorem 3.5. We assume
that 'Y defined in (3.6) is a (Gr,P)-martingale. Then P=Y(T)P is a risk neutral
probability measure for the agent. W is a (G, P)-Brownian motion and M is the
compensated process of a (G, P)-Poisson process with intensity (¢.x).

3.3. Weak information

Here we consider that the true model of the stock prices is partially observed. More
precisely, the effective probability measure P of the market is unknown, but the
agents know the risk neutral probability measure Py of a non-insider (cf. Eq. (2.6)).
The discounted prices are (F7, Py)-local martingales. The insider knows there will
be a release of information about the outcome of some variables L of the prices,
but in contrary to a strong information, he does not observe it, therefore he
anticipates its law. This agent is weakly informed on this % r-measurable random
variable L, meaning that he only has the filtration F7 available (thus his strategy is
Fr-admissible), but he anticipates the law of L under P. Let L : Q— R be a Z -
measurable random variable. As for a initial strong information, we assume that

Assumption 3.8. [IE’B(L € -|97,)(a))~[|55(L € -) for all ¢t € [0, T[ for P almost all w € Q.

For example, L = VT/I(T), L = ligp(P«(T)) or L =In(P;(T)) — In(P;,(T)) satisty
Assumption 3.8. With L we associate a probability measure v on R which admits an
almost surely positive bounded density & with respect to the law of L under Py. The
insider knows that the law of L under the effective probability measure P is v. v is
called a weak information on the functional L.

Proposition 3.9 (Baudoin [6, Proposition 3]). On Fr, there exists a unique
probability measure PV such that

(1) For any & r-measurable bounded random variable X, Epv(X|L) = Eu§ (X|L).
(i1) The law of L under P" is v. 0
P is called the minimal probability associated with the conditioning (T, L, v).

We define { the density process of P¥ with respect to I]E’E
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Definition 3.10.

dp’

Y=

| —

Since { = iY is a positive (Fr,ﬁ))-local martingale, there exists a Fp-predictable

process / such that d-(¢) = 3(:7)I*(¢) ds().
3.4. The optimization problem
Let A<T. A progressive or initial strong insider wants to maximize the mapping
(m, X) = V(n, X)=Ep[In(X(4)) | %]
over all Gp-admissible strategies, whereas a weak insider wants to maximize
(m, X) = V(n, X)=Ep[In(X(A))]

over all Fr-admissible strategies.
We assume that the initial wealth is positive: X(0)>0 P almost surely. Then, for
those three types of insiders, the optimal wealth and portfolio are given by

BOT(0) = XO) )
vt € [0, 4], N (3.2)
() = @0 5 X0

with the corresponding processes iY and /. We remark here that the optimal wealth is
proportional to the process iy Moreover, this process ‘“‘summarizes” the information
available for the agent. Therefore, the key of the following computations will be the
computation of the process Y.

Remark. If the insider maximizes the expectation of the logarithm of both his
consumption and his terminal wealth, the optimal strategy is given by a very similar
formula

B = 5 .
N 0 1-9n1
vielo.4, { BoRo="E=0 g,
() = @0y 5 XOH0
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4. Comparison insider/non-insider’s optimal strategies in some examples
of side-information

First we give some technical results to compute the process iy of an initial strong
insider. Then, for two examples of initial strong side-information that can occur in a
case of a merger between two companies, we compute the optimal strategy (wealth
and part of the wealth invested in each asset) and we compare it to the optimal
strategy of a non-insider.

4.1. Technical results for an initial strong insider
We recall here a result of Jeulin [19] (cf. [12, Lemma 3.1]).

Lemma 4.1. We assume there exists A €10, T[ and a F 4 ® &-measurable function
p(A, ) such that, for all bounded &-measurable function f,

Eslf (D)7 4] = /E FCIP(A, 0, )P L(dx) @.1)

with p(4,w,x)>0 P @ Py a.s., where Py is the law of L. Then the probability measure

Q:.DL:zp(A1 ya) P is equivalent to P, Q=P on 4 and F 4 and a(L) are independent

under QF.

Remark 4.2. If the assumptions of Lemma 4.1 are satisfied for a function p(4, ),
then Vi<A, p(t,-) defined by p(t,-)=Eq.[p(4,-)|¥9,] satisfies, for all bounded
&-measurable function f,

Eslf (D7) = /E FCIP(t, 0, )P () 4.2)

meaning that, Vi< A4, the measure p(z, x)P[L € dx] on (E,&) is a version of the
conditional distributions P[L € dx|Z].

Proof. First, we prove that if Y € L™®(Q, 7 4, @L), then for all 1< A4, EqL[Y|9,] =
Ep[Y|%]. Indeed, let Be %, and g € L'(E,P;). Because of the independence of
o(L) and Z 4 under QF and the fact that @ = P on Z 4, we have
Eqi[Yg(D)lg] = Eqr[Yg]Eqelg(L)]

= Eqi[Ep[ Y| 7 J|EqLlg(L)]

= Eqi[Ep[Y|7 ]lpg(L)].
Then we obtain (4.2) by taking E.[-|%,] of the two members of relation (4.1) and
by using this result with Y = Ep[f(L)|Z 4]. O

Therefore, the process Z introduced in (3.1), satisfies V¢ € [0, A] Z(¢) = p(¢t, L). We
recall that Y, (cf. (2.6)) denotes the process Y of a non-insider (for who p{ = O
and pS = I,,).
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Lemma 4.3. The link between Y, Yy and Z is given by Y = %

Proof. We recall that Z(¢) = E@L[% %,] and that
dZ(1) = Z(O)pi () dW (@) + (po(1) — 1,)" dM(1)].

Therefore

2:5(/0 (—pl(s)dW(s)—i- (pz(S) I,,) dM(s))).

Furthermore

Yo = @@(/0.(—@*(S)dW(S) + (q(s) = 1) dM(S)))

Since £(X)E(Y) = &(X + Y — [X, Y]) and with the Definition 3.2 of Y, we obtain

e £</0‘<—<@+p1)*<s)dﬁ<s)+ <p"2 <s)—1n) dﬂ(@)) _y. O

The two following Examples 4.2 and 4.3 are initial strong side-information. We
imagine a case of a merger between two companies. The acquirer can buy the target
in cash or in shares at the time 7. If he does it in cash, the acquirer bids for a given
price Ppig for each share of the target, at the maturity 7. Therefore an insider will
know that the spot of the target at time 7 will be in a range around Pyyq4: this
situation corresponds to the information 4.2. If the acquisition is done with shares,
the acquirer will exchange N, shares of the target for N, shares of the acquirer.
Therefore an insider will know that at the acquisition time 7, the ratio of the assets
prices of the target and the acquirer will be equal to %—(’l: this time the situation
corresponds to the information 4.3.

We denote a;p (respectively, o;y) the m first (respectively, the n last) components
of a; the ith line of ¢ : 0; = (o;w, ;). For sake of simplicity, we assume x constant.

4.2. There exists i, 1<i<d, such that L = lj,,(P(T)), 0<a<b

The insider knows whether the terminal price of the ith asset will be or not
between a and b. We introduce X,:= fIT o (s)]|* ds,

r I
k=t x = nP0) = [ (819 = 1o o)1 ) ds

t
— (/ oiw(s)dW(s) + In(1 + o;n(s)) dN(s)), 4.3)
0
(FI,TJ(J.)”:{(tjgj)11<1;<z e ROTHVIS i<, 1<ty < - <ty <T} (4.4)
EUA
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and for (1) 1<j<n € (Frr;)",

1<lj<k;

n s 2
— (% = S L In + 03(2,)
22,

f(,ﬂf)(x):z exp 4.5)
Let us introduce the scalar a(¢) for ¢ € [0, 4]

—l\/(T 1) k

kv
H;:lej>0 m & v <f(’/'l,')(k“(t)) _f(t”/_)(kb(t))> H/jjzl dlf,']j,ﬂ(L:l)
tT,kj ; :

T X
e T35, k;

ki
—k; 0 k; dx| |’ dy.
NEZ Fors)' ka4 3y 31y In(103(7,) < k() H/j:1 &

a(ty=

fR H;’=lzk,>0

e " (T 1) A
H ZAjzo «/— e <f(z]/ y(kn(8)) — f(z,)(k (T))>H, ldtjl (L=0)
+ S 1TA
. >
AR

. n t Ko n kj kj
Jr H/:le,)() € R j(FLT_,(/)” "[k[,(,),/ch(z)](f(x + Z/:IZ[/:I In(1 + o'ij(tjlj))) dxH[jzl dtj/}

Proposition 4.4. If the insider knows L = 1, 5(P{(T)) for some i (0 <a<b and 1 <i<d),
then Z(t) = p(t, L) = p(t, Dlz=1) + p(z,0)l(1=0) with

p@, 1)
2
Kj(l - 22
. n [ kj
Je T k50 o —— k; dx[],_, dy,
. j 2m3; i I F k) <ka(t)$x+2;:lzl;:lln(1+0‘,'j(tj[/.))<kb(t)) 4 i
Xz ’
AN
0 /c/ 0 d kj
. x[[,_,d¢;.
ST 20 5= 75515 ey (ka(O)éx'*—Z;—lZf{qln(1+0‘z/‘(’f/j))<kb(0)> M=ty
=12 5= i
p(1,0)
Kj(T 1)— 22’ k . & "
c 7 e JT9 ;
JeIlm k20 BV " Dikatorkyor O+ D szzl In(1 + a;(27,))) d-‘szzld’ﬂf
= ,
T ZZQ n k]
Je T 1Zk,>0 o [k“(O)kh(0>]C(’C+Zj:| _y In(l + a5z, )))dxH] 4z,

p1() =aoiw(t) and p,(t) — 1, = a(t) In(1 + o:n(2)).
Proof. cf. Appendix A 4.

Remark. For a purely diffusive market model, the formulas are more simple:

F(k0) — Pt ka(0) L= F( k() + F(tk0)
PED = 50,00 = FO.k ) 70 = TZF©, ky(0)) + F(O, ko 0)”




1614 C. Hillairet | Stochastic Processes and their Applications 115 (2005) 1603-1627

Tk =S k) k) -5 k)
1 — F(t, kp(1)) + F(z ko) 0 TR (1) = F G ka0)

a(t) =

liz=1,

where F(t,-) is the cumulatlve distribution function of a Gaussian ./°(0,%,) with
mean 0 and variance X, = ft lloi(s))|> ds.

We will compare the insider’s strategy to the optimal strategy of a non-insider.

Proposition 4.5. If the insider knows L = l,5(Pi(T)) for some i (0<a<b and 1<i<d),
then if t is not a time of jump

20-2 0= 0 (e 2D

In a purely diffusive market model, the part of the wealth invested in the assets j (1 <j<d
and j#i) are the same for this insider and a non-insider.

Proof. Let ¢ be not a time of jump. Then yields %(l) = (¢*(¢))"I(r). Therefore the

difference between the part of the wealth invested in the four assets by an insider and
a non-insider is

(-2 (z) (@ O) (@) = (@) = (@ () ((p v <pzT_U2) ) "
q

B

= (a* (1) <O'iW(l)a a(1),

where a(?) is a scalar. In a purely diffusive market model,

component i
n * 1 _x > *
e (t)—— (0= (") o;(Da(t) =(0,...,0, a@® ,0,...,0)

because (a*(£)) "' a%(¢) is the ith row of (¢*(£))"'o*(t) = ((6(H)a(z))"")* which is the

identity d x d-matrix. Therefore, in a purely diffusive market model, the part of the

wealth invested in the assets j (1<j<d and j#i) are the same for an insider and a

non-insider. But this is not true in a mixed diffusive-jump market model (cf. Figs. 3

and 4, for a simulation in a diffusive-jump market model with four risky assets)
component i

~~
because (a*(l))_l(aiW(t),W)*;é(O, ...,0, 1 ,0,...,0)*. From a
mathematical point of view, this difference comes from the expression of the
logarithm of the prices, because the In function appears in the jump part. From an

heuristic point of view, it seems that the insider uses his side-information to learn
about the jump process and reflect it in all the assets. [
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43 L=In(P;(T)) — In(P;,(T))
The insider knows the ratio of assets i; and i, prices at time 7. We introduce

T
mz1=/0 ((bil —b;,) — %(Hffil wl? — ||Ui2W||2)> (s)ds

+ [ = oamnamo -+ [n( 0 ) ane.

Then we have

T T )
L=m,+ / (0i,w — oiw)(s)dW(s) + / In Gi%) (s)dN(s).

IzN
(Ft,T’kj)n and f(tﬂ_) are defined in (4.4) and (4.5).
J
In this subsection, X;:= frT loiw — o,~2W||2(s) ds and
a(t)
n 1 % ' 1+ . J
Hj:le,gof’"f ./(F . f(z/, )L — m,)<L m; — Z, 12/ 1 ( o /> %))H::ld[ﬂj

H; 1ZA >0k f(Fr” )"f(r/, L — mt)H] 1dtﬂ

Using similar methods as for 4.2, we obtain

Proposition 4.6. If the insider knows L = In(P; (T)) — In(P;,(T)), then Z(t) = p(t, L)
with

I+o;; 2

o e S(EE)w)
2% T .
I1- IZ/(,>0 \/— F,Tk-)”e ! H/,-:ldl/’j
p(lax): : to 2 .

n J

T . ) (Y o= E, IZI =1 <1+<r, ,) j(;)) vk

j 22 j
€ 0 dij.
H lzk,zom Fore) szzl T

"

1 i
p1(t) = a(t)(oi,w — oiKw)(1) and  py(1) — 1, = a(?) In (IIZ%).

Remark. For a purely diffusive market model, the formulas are more simple
Z(t) = p(1, L)

2750 o (—( Ji @ = o) AW (fy (@ = an)(s)d W<s>)2>

)

= 22, 23, 2%

ft (01, — 0i,)(s) dW(s)
2

The following proposition compare this insider’s strategy to the optimal strategy
of a non-insider.

T
a(t) = where Z,::/ lloi, — oi2||2(s)ds. O
t
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Proposition 4.7. If the insider knows L = In(P; (T)) — In(P;,(T)), then if t is not a
time of jump

/TE 77'.6 * —1 1 1 + ale) )

=) —=(t) = (c*(¢ ww — onw)(t),—1n t 1.

X() Xo() (a"(2)) ((le ai,w (1) 7 <1+ G (1) ) a(?)
In a purely diffusive market model, the part of the wealth invested in the bond and the

assets j (1<j<d, j#1i, and j#1,) are the same for this insider and a non-insider.

Proof. Let 7 be not a time of jump. Then the difference between the part of the
wealth invested in the four assets by an insider and a non-insider is

ﬁ 7:5\0 * —1 1 1 IlN) )

=) —=0) = ¢ ww — 0w )(6),=1n 9 a(),

0= 20 =@ (= a0 (220 ) ao
where a(?) is a scalar. In a purely diffusive market model,

(0*(0) (o1, w — aiw)* (1)

component i component i,
—~~ =
=(0,...,0, 1 ,0,...,0, -1 ,0,...,0)"

Since the fraction of the wealth invested in the bond is equal to 1 — Zjl 1’1’, the part
of the wealth invested in the bond and the assets j (1<j<d, j#i dl’ld j#1@p) are

the same for an insider and a non-insider. But this is not true in a mixed diffusive-
jump market model (cf. Figs. 6 and 9 for a simulation in a diffusive-jump market
model with four risky assets). [

5. Simulations

We simulate the strategy of an insider optimizing his terminal wealth on [0, A]
(A< T). Here are the data we have used for our simulations. 4 = 0.95and 7 = 1 and
the initial wealth is equal to 1: X(0) = 1. Both Brownian motion and Poisson process
are 2-dimensional: m = n = 2. The intensity of the Poisson process is x = (3,2). We
choose constant market coefficients, but the simulations could be easily extended with
time-varying market coefficients. The annual interest rate is 0.02: r(¢) = 0.02 for all 7.

0.15
. 0.1

The drift b(¢) = 0.084 vt € [0, T].
0.1

-04 -0.1 -0.15 0.17
-0.09 —-04 —-0.03 0.035
0.048 —-0.12 0.1 —0.12
0.075 026 031 —0.28

The volatility o(f) = vt € [0, T].
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Therefore ¢ = (1.3496,1.9731) has positive components. The first two rows of ¢ are
the components of the volatility on the diffusion part (in the practice the standard
variation of a purely diffusive asset is in the range [0.1,0.4]). The last two rows of ¢
are the components of the volatility on the jump part. We choose o3 and oy,
(i=1,...,4) in the same range and of opposite sign so that the price of asset i does
not increase (or decrease) at each jump time. The prices of the assets at time ¢t = 0 are
1:P(0)=1,i=0,...,4.

We simulate the optimal strategy (wealth and part of the wealth invested in each
asset) of a non-insider and an insider. In 5.1 (respectively, in 5.2), the insider has the
side-information of Example 4.2 (respectively, of Example 4.3). Our aim is to
determine qualitatively the optimal strategy and to show that the simulated optimal
investments are in agreement with what we could have expected. Finally, we
compare in 5.3 the processes lY for one example of each type of side-information.
Here, we want to show that for the same noise dynamics, the wealths are plausibly
ordered in the sense of increasing relevance of side-information.

5.1 L= ﬂ[a’b](Pl(T)), O<a<b

cf. Appendix A.1, p. 18 for the figures. In our simulation,
Ep(P(T)) = P1(0)exp(T(b1 — Ylo1w )1 + 613)17 (1 + 014)2" = 0.8971.

We notice on Fig. 1 that lY is bigger than YL, therefore the wealth of the insider is
larger than those of a non-insider. If P;(T) is in [a, b], the more [a, b] is away from its
expectation Ep(P(7T)), the better the gain is. We can explain this by the fact that in
this case, the insider knows an event that occurs with a low probability, therefore his
side-information is important. Thus, the more relevant a side-information is, the
bigger the process iy (and therefore the optimal wealth) is. We notice also that the
bigger P(T) is, the bigger + and Yio are.

Furthermore, as noticed in Proposition 4.5, the parts of the wealth invested in each

asset by an insider and a non-insider are different (cf. Figs. 2—4). If ¢ is not a time of
jump, the fact that the market coefficients r, b and ¢ are constant implies that 2% of a

non-insider is constant, and that the parts of wealth invested by the insiderXigl the
bond and each of the four risky assets are proportional to each other.

We notice that the insider’s strategy in our simulations is very rational and is as we
can expect: the strategy depends on the value of L and if Ep(P;(T)) is in [a, b] or not.

® Case 1: P\(T)¢[a,b] and Ep(P(T))¢[a,b]: The side-information is not very
relevant. The insider’s strategy is the following.
Ifd<b<Eﬂ3>(P1(T)), then P[Pl(T) >EU:D(P1(T))] > P[Pl(T)<E[p(P1(T))] Thus the
insider (compared to a non-insider) invests more in the first asset and less in the
bond, regardless of the first asset price. Conversely if Ep(P(T))<a<b, the insider
invests less in the first asset and more in the bond.

® Case 2: P\(T)¢[a,b] and Ep(P(T)) € [a,b]: The insider follows the first asset
price. At time ¢, if P1(f)<Ep(P;(T)) the insider thinks that P;(T)<a and invests
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less in the first asset and more in the bond. Conversely if Pi(¢)> Ep(P(T)), the
insider invests more in the first asset and less in the bond.

® Case 3: P\(T) € [a,b] and Ep(P1(T))¢][a, b]: The side-information is very relevant,
the insider knows exactly if P;(T) is bigger or not than its expectation. His gain is
important. If P{(T)> Ep(P1(T)), he invests more in the first asset. Conversely if
P(T)<Ep(P(T)), he invests less in the first asset.

® Case 4: P|(T) € [a,b] and Ep(Pi(T)) € [a,b]: The insider follows the first asset
price. At time ¢, he invests more in the first asset if P;(z) is near the bottom range a
(because he knows that P(7T)>a and thus P; will increase) and if P;(¢) is near the
top range b he invests less in the first asset.

5.2. L =1In(P(T)) — In(P(T))
cf. Appendix A.2, p. 21 for the figures. In our simulation,

Ein(Pi(D) = n(Po(T) = (7061 = b2) = 5 (o) = (5 o) )

1403 14014
T1 T1
+ n<1+023) T n<1+024>
= —0.1019.

We notice on Fig. 5 that 1 v is bigger than Y The insider strategy on assets 1 and 2

depends on the position of ln(f,‘ig) (the ratio of assets 1 and 2 at time #) compared to

the value of L (which is the same ratio at time 7). If In(3L Pl)(t)>L (cf. Fig. 7 for the
graph of In(3t P;)) the fraction of the wealth at time 7 invested in asset 1 (respectively,
in asset 2) is smaller (respectively, bigger) than those of a non-insider. Indeed the
insider knows that at maturity time 7, the ratio ln( ) will be smaller than it is
now, meaning that the price of asset 1 will decrease compared to the price of
asset 2. Inversely if In(3 Pl)(t)<L the insider invests more in asset 1 and less in asset 2
(cf. Fig. 8).

Furthermore, as noticed in Proposition 4.7, the parts of the wealth invested in each
asset by an insider and a non-insider are different (cf. Figs. 6-9).

5.3. Comparison between the three types of side-information

According to Eq. (3.2), the process Y is sufficient to explicit the optimal strategy.
That is why we focus our attention on this process. We would like to compare the
processes Y for the three types of side-information of Section 3 and show that the
more relevant a side-information is, the bigger the process lY (and thus the optimal
wealth) is. To do that, we simulate simultaneously (i.e. for the same realization of )
the process + L of four agents.

e First, we simulate the process YLO of a non-insider.
e The first insider is an initial strong one. Since the beginning he knows the
functional L; = W (T). Since the law of L; given %, is a Gaussian law with mean
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W (t) and variance (T — t),

_ VT (x — W(0))?
o = grmen( =S5y 3)
and
1z )
712—0 with
_ _ VT (W(T) — Wi(1))*  Wi(T)>
Zl(l)_p(l’Ll)_\/T——zexp(_ AT—1 T >

e The second insider is a progressive strong one, at time ¢ (for all 0 <¢<T) he knows
the functional L,(¢) = 2W (T) + Br_; where Bis a Brownian motion independent
of Fr. Then p3 =0, p3 =1, p3 =1 and

2Q(W (1) = (1) + Bir-y)

p1(0) = T3

1 1 t
7. (0=5- 06 ( /0 p%(s>dW1(s)).

o The third insider is a weak insider, he antlclpes that the law of L; = Wl(T ) will
be a Gaussian law with mean m = fo = 1(0)1] (8)(bj — r)(s)ds and variance T.

Then (cf. [5])

1 1
ﬁ(’)z/me"p<n T -1 2T

that we simulate by mean of a Monte-Carlo method.

D Ul 10 S m)2> q
Y

Results: We notice (cf. Flg 10) that < 75 S Y < Yl <4 ¥ : the more informed an agent

is, the bigger his process iY i and - ‘ are very close together and the distance between
them stay quite constant as time evolves whereas - and 1 - get further away from -

as time 7 approaches.
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Appendix A
Al L= lpun(Pi(T))

In this simulation, a = 0.7, b = 1.1, Pi(T) = 1.5422. The first Poisson process

jumps at time 0.7039 and 0.9695, the second at time 0.8280 and 0.9129. cf.
Figs. 1-4.

Z
\—4
0 01 02 03 04 05 06 07 08 09 1
t
Fig. 1. Processes YLO and iY: a=0.7,b=1.1, P)(T)=1.5422.
- portefeuille sur bond 85 portefeuille sur actifl
2y .
T L

= -26 \/\w e
kel b
c -28 =
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5 30 5
[z 2
2 -32 2
3 3
g 34 T
5 £
8 -36 g

-38 5 il

-40 P S 45

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t

Fig. 2. Portfolio on the bond and portfolio on asset 1: a = 0.7, b = 1.1, P{(T) = 1.5422.
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ortefeuille sur actif2 ortefeuille sur actif3
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© 5.5 @
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(=5 o /ff
-6 20
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t

t

Fig. 3. Portfolio on asset 2 and portfolio on asset 3: a = 0.7, b = 1.1, P{(T) = 1.5422.

portefeuille sur actif4

7.5 T T T T T T T

71 1

portefeuille sur actif4 (t)

= non-initie
— initie

t

4 L L L L L L L L L
0O 01 02 03 04 05 06 07 08 09 1

Fig. 4. Portfolio on asset 4: a = 0.7, b = 1.1, P{(T) = 1.5422.

A.2. L =In(P(T)) — In(Px(T))

In this simulation, L = —0.316. The first Poisson process jumps at time 0.0227 and

0.466, the second at time 0.1875 and 0.718. cf. Figs. 5-9.

A.3. Comparison between the three types of side-information

In this simulation, the first Poisson process jumps at time 0.0369, 0.0567, 0.4211,
0.6968 and 0.9477, the second at time 0.0111, 0.2338. cf. Fig. 10.

We recall that ()X (1) = X(0)% (7).
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1Y

0 L L L L L L L L L
0O 01 02 03 04 05 06 07 08 09 1
t

Fig. 5. Processes Yio and iY: L =-0.316.

portefeuille sur bond
-15 T T T T T T T

T
- non-initie
— initie

portefeuille sur bond (t)

0O 01 02 03 04 05 06 07 08 09 1
t

Fig. 6. Portfolio on the bond: L = —0.316.
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In(P1)=In(P,)
0.2 T T T T T T T
— (In(P)-In(P,))(t)
o (In(P,)-In(P,)) (T)
0.1t E

In(Py)(®)-In(P,)(t)

-0.6 . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1

t

Fig. 7. In(Py(2)) — In(P>(1)): L = —0.316.
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0 01 02 03 04 05 06 0.7 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t

Fig. 8. Portfolio on asset 1 and portfolio on asset 2: L = —0.316.

A.4. Proof of Proposition 4.4

The insider knows whether the terminal price of the ith asset will be or not
between a and b: L =y, 5)(Pi(T)).

T

r 1
(21 = o)+ [ (56 = S ) as+ [ awerawe

T
+ / In(l + oav(s)) AN (),
0
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Fig. 9. Portfolio on asset 3 and portfolio on asset 4: L = —0.316.
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Fig. 10. Comparison of the processes Ly for four agents.

PIL = 117,] = P[In a< In(PAT))< Inb|7 ]
T
_ P[kams / G () AW (5) + In(1 + oy (5)) AN(s) <ks(1)

because ftT aiw(s)dW(s) + In(1 + a;x(s)) dN(s) is independent of #, and Vx € R, k,
(defined in (4.3)) is % ,-measurable. What is the law of ftT oiw(s)dW(s) + In(1 +
oin(s))dN(s)? Since N; is a Poisson process with intensity k;, if ‘L'i: is the ith time of
jump of N;, the random variables (rf i Ti:)izl are independent; their law is
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exponential with parameter x;. Thus, the law of @,....7 ) has for density
lo<r <<z Kk e "' dty - - - dt;, with respect to the Lebesgue measure on R¥. Therefore,
let fbe a bounded real measurable function and we introduce the sets

Diri ={(t1,. .. tyir) € RPF0O<H < - <1, 1 <1LH,

<--- <Zp+k—] < T<tp+k}a

Firx={(t,....0r) e RN 0O<r< < - < <T).

T
Ee (f ( [ ma+ o0 dN.,»(s)))

k—1
= Z Z K;’”‘/ f <Z In(1 + agf(lp+1))> e Nk dry - dtyy
> Dt,T,/c

1=0
= Z K]k ;cf / d - 'dtp—l / e Nilp+k dtp-ﬁ-k
>0 0<1 < T<tyyp

Sl S
k—1
x / (Z In(1 + a,](t,,H))) dt, - dtp+k1>
IS St ST
k
= Z e (T=04 k (Z In(1 + O',:/(l[))) dey - - - de
=1

k=0 FtTk

We use the convention that fF (x—i—zl In(1 +oy(2))dey - - dy = f(x) if

k = 0. The last equality follows from a change of index in the last bracket and
from the fact that

Z;Cf / dey - -dt,y / e Kilp+k dtyx
p>1 0 <<ty <t T<tpik

-1
_ Z (tf° e — o= Ki(T—1)

Since the Poisson processes Ni,..., N, are mutually independent,
k;

T
Es (f ( JRIEET dN(s)))

n L .
_ e 1(T—1), / Z In(1 + 01]([/1 ) H dtll
/ (Fz,T,kI-)"

J=1k;>0 J=1 1=1 =1

(A.1)
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with (F,,T,kj)” defined in (4.4). f,T oiw(s) dW(s) is independent of (N, ..., N,), its law

is a Gaussian law with mean 0 and variance X, = ftT lloim (s))|* ds, thus
T
£ (1([ w9 awe+ 1 + 2to) dN(s))>
t

n
= /RH Z e—x,-<T_z)K]’ff /(F X+ Z Z In(1 + o3(23,)
j=1 /{jZO

J=1 =1
x2

exp(— )
dx H du,.

J2nX,

li=1

Therefore

Pllay(PAT)) = 1|7,] = /H 3 e,

J=1kj=0

X I
/(F Tk y (ka(l)<)~+z 12/ _ In(l+0(75 1))<kb(z)

oof52)
exp

J2n,

) dxH di,.

li=1

This yields the formulas of p(z,1) and p(z,0) given in Proposition 4.4.
The coefficient of dp(z,1) on dW () is

7KI(T )
H7=1Zkf / (f(zﬂj)(ka(l)) f(r, )(kb(l))> H, L At oiw (1)

—K;T— 22
e 0 ;
fR j= IZk]>O / le-:ldtjlj
(Fork)" /

ku(0)<,\+z Z,f p In(1+03(47,)) <kp(0)
with f(,ﬂj ) defined in (4.5). The coefficient of dp(z,0) on dW(?) is
—K/(T 1) k

H/ 12/9;0 \/— o (f(’/lj)(kb(t)) _./l(zﬂj)(ka(f))> szzldlf,‘/jo'iw(t)

T—
K 220 k

n kj ’ kj
Je 11 1219;0 N> P Dk kp(001C (x + Z/:121,21 In(1 + m,-(l,-g-))) d)»H]/:] diy,
Tk

Thus we obtain the expression of p¥(f) given in Proposition 4.4, with a(f) defined in
p. 11. O
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