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Abstract

The worldwide proliferation of mobile connected devices has brought about a revolution in the way we live, and will inevitably

guide the way in which we design the cities of the future. However, designing city-wide systems poses a new set of challenges

in terms of scale, manageability and citizen involvement. Solving these challenges is crucial to making sure that the vision of a

programmable Internet of Things (IoT) becomes reality. In this article we will analyse these issues and present a novel programming

approach to designing scalable systems for the Internet of Things, with an emphasis on smart city applications, that addresses these

issues.
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1. Introduction

The ubiquitous computing revolution has brought with it profound and widespread changes in our daily lives. It

has affected how we interact with others, the role of memory when we can constantly access digital storage, how

products are marketed and sold effectively through new channels, how we perceive and elect our leaders, amongst

many other aspects. These changes all emerge from combinations of embedded technologies and the availability of

mobile connected devices, and the services being offered to improve our individual lives. This emergent revolution

poses significant questions regarding the way in which we design the spaces that we inhabit. Such questions pertain

both to how we can optimise existing services so they function at their best given our new expectations, as well as

how to integrate these new models of individuality, interaction, commerce, etc. into the spaces and services that the

old models used to occupy.

The design of urban environments along these lines relate to smart city initiatives and are already starting to happen

worldwide, in pilot programs for instance in Santander11 Singapore10 and London2. On the commercial side, we

have also seen the appearance of companies such as StreetLine Networks12 and Worldsensing14, providing practical

solutions with current technologies. A key common factor in all these enterprises is the need to understand the city

better, in terms of how individuals use the city and how the city is affected by them. For example, we can think of

sensing the movement of people through the city to build population density models and thus know what areas attract
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attention and in what circumstances27. Another example is where we sense the impact on the environment that the

city services are having, for example by monitoring hot spots of air pollution and using this information to guide

traffic policies and road design and investment. One example of an existing project along these lines is the London

Air Quality Network, collecting air quality information in and around Greater London6. Sensing is thus key to inform

the design of future systems and to enable automation of services within the city infrastructure. Unsurprisingly then,

the first stage in all the Smart City initiatives has been to instrument the city with sensing devices.

The vision is thus to have widespread sensing of city conditions, and using this to guide infrastructure, policies

and services. However, one must be careful in the way in which one instruments the city and not lose track of long

term consequences. For instance, there are complexities and costs associated with the infrastructures (physical and

communications) that will be deployed. However, this is nothing compared with the potential costs of maintaining

such infrastructures. Further, if sensing truly becomes ubiquitous, bringing with it an explosion of devices communi-

cating data, then existing network infrastructures will surely become saturated. This has been foreseen by the research

community, and hard limits have been established some time ago16.

The idea of programming a network as a whole has been around for a while in the WSN area, and is termed

macroprogramming there. This idea is used for instance for distributed data query and processing, for instance in

tinyDB21 and Regiment24. While the concepts are similar, macroprogramming in WSN focuses on the aspect of

computation that pertains to data collection sensor networks, i.e. querying sensed data for a network as a whole and

performing operations on them. Moreover, traditionally in WSN research the focus is on heavily constrained devices.

As a result, most of the existing solutions have restrictions on the types of computations that can be performed to

make the problem more tractable. Whilst we also tackle the issue of data query when specifying the sources to be

used for an application, in this article we propose a mechanism for extensions to a general purpose language, whereby

the exact location in the network where to run code is determined based on an external specification of requirements

and data queries. These applications handle the whole spectrum of computation, including sensing, processing and

actuation duties. Moreover, we can run any program that can be run on the existing operating system. In research

in mobile computation and sensing offloading18,26 we see a similar move towards executing equivalent types of tasks

in both fixed and mobile nodes. This requires the same features and abstractions as in our work in conditionally

deploying computation throughout the (cloud to edge) network of heterogenous nodes, and we were inspired by this

body of work.

2. Scaling IoT applications

The two major ways to combat this saturation are to try to decrease the amounts of data that are being transmitted

and to effect some form of network off-loading. In practical instrumentation architectures nowadays, sensor data is

typically relayed to a central sink, or cloud storage, for processing and archiving23,25. However, with widespread

instrumentation of the city, not all of this data is equally as valuable, and some of it has transient value only. For

instance, we might want to sense water pressure in a pipe with a very fine-grained resolution in order to detect a

leak and then actuate a valve controlling the pipe as soon as possible to avoid unnecessary water damage. In normal

situations, most of these samples will be highly redundant, and we do not need to store all of them for auditing.

In recent years, there has been a research movement to do in-network processing in sensor networks17, to optimise

their functioning. Indeed, in the previous example, if we perform the valve actuation calculations inside the network

we are able to not only reduce the delay in actuating the valve, but also decrease the amount of information that is

communicated to the cloud, freeing the communication medium. We believe this is essential to allow the city to be

further instrumented and automated without interfering with existing services. Complementary to the in-networking

approach is network off-loading. Here we minimise the communications range of the devices and instead of building

ridged routing trees to multi-hop sensed data around or have each device send data directly to its sinks, we empower

mobile devices to collect the data and relay it. This might utilise the physical movement of the device to carry out the

communication (in data mules for example) or off-load the traditional network by using ‘free’ communications such

as Bluetooth or Wifi-Direct to multi-hop data between mobile devices or piggyback sensed data over other regular

communications28.

So we can now think of a continuum where data is processed and relayed (also a form of processing) from source

devices via edge devices to the cloud. The question is where do we carry out processing, with what nodes and how? In
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The computing continuum:

In-network processing

Hybrid

Cloud

Less data

Less delay

Less power

More data

More delay

More power

Application example for the computing continuum design principle:

Cloud
S 1

A1
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(a) Traditional cloud based approach.

Cloud
S 1

A1

S 2

S 3A2 S 4

(b) Hybrid cloud/in-network approach.

Legend:

Nodes:
S n - Sensor

An - Actuator

Applications:
- Leak detection application

- Image processing application

- Temperature data mapping application

Fig. 1. The computing continuum as a design principle for IoT applications.

Figure 1 we can see an example network comprised of several sensors and actuators, as well as some cloud services.

In this network we are running three different services, affecting different subsets of the nodes. The first application is

the leak detection application from before, and uses data from sensors S 1 and S 4 to affect the state of the valve actuator

A2. The second application is an image processing application and uses data from sensor S 2 to guide the operation

of actuator A1. The third application, visualising temperature sensor data on a map, merely requires the output from

sensor S 3. On the left hand side we see a diagram of data transfer when all the data is being transferred to the cloud

for analysis and processing, before being used to affect the actuators. This has several negative consequences for the

performance of the network. First of all, there is plenty of data that is being relayed via nodes that are not involved

in a particular application, leading to communication congestion in those nodes (for instance S 2 is relaying data from

two different applications, and is not involved in one of them). Secondly, we can imagine that the delay between

reading sensor data from S 1 and actuating A2 will be quite high, as the data needs to traverse the whole network and

be processed in the cloud. Since leak detection is time-sensitive, as we explained before, this could be disastrous. On

the right hand side we see a more balanced distribution, where we have eliminated some of the congestion by doing

the computations for the leak detection application within the network. We have eliminated delay for this application,

and reduced congestion overall. We have not however changed the operation of the image processing application, as

it requires more processing power than would be available in edge nodes. Thus, where to place a particular module of

computation depends on the requirements for it, e.g. in terms of timeliness, redundancy and accuracy.
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We believe such hybrid approaches will be essential to allow smart city applications to both scale and be main-

tainable and we should start considering these problems when designing development environments for them. In this

way, we should think of the whole network, from edge to cloud, as a programmable device and design technologies

to facilitate this view when designing and deploying applications. These technologies will have to take into account

requirements that are essential for these types of applications. For instance, if we are using shared infrastructure to

build smart city applications, there are fundamental problems in terms of security and privacy that need to be resolved.

Moreover, if nodes within the network are going to perform data processing for various stakeholders, we need to be

able to ensure isolation between these various applications. Techniques need to be in place to efficiently and fairly

utilise the shared networked resources in order to be able to deliver necessary data in a timely manner. Some form of

registry needs to be provided in order to be able to discover resources and define these applications. Finally, in terms

of city applications, we need to be able to support applications that could have significant real world consequences, in

terms of property damage, such as the pipe leak example, or even lives, if we think about automating the healthcare

systems. Thus, we need to be able to provide strong guarantees in terms of the application’s behaviour when needed.

3. Virtualisation on the edge

This paradigm of computation brings with it several challenges pertaining to application development and de-

ployment. In the previous setup, we motivate nodes running multiple applications that might belong to different

stakeholders. This is not a new problem in the field of cloud computing, where computing power is shared between

different users, and the users have no control over where their application is running. These applications need to be

run in isolation. The current solution for this problem in the cloud computing sector is virtualisation. Indeed, through

the usage of virtual machines in our case, applications can be deployed on any physical node, and transferred with-

out issue. Each individual node can run several applications, while every particular application views the physical

hardware as its own and is not affected by the operation of other applications. However, the virtualisation concept is

not trivial to extend to the edge of the network, where devices are low powered, have low processing capabilities and

have stringent battery constraints. One solution we have explored for this problem is to use lighter forms of virtuali-

sation, such as operating system-level virtualisation. Operating system-level virtualisation is a technique whereby all

the application instances, called containers, share the kernel of the operating system. Thus, the kernel is responsible

for providing isolation between these user-space instances, for instance in terms of file system, access to devices and

delimiting CPU quotas. This approach to virtualisation has the advantage of not requiring several full instances of

the operating system to be running, thus providing sub-second start-up times and being less CPU and memory in-

tensive on the host. The disadvantage is that all the applications need to be running on the same operating system.

This approach to virtualisation was added to the linux kernel by the linux containers project4 and support for easier

development, deployment and instance management is offered by the docker platform1. It should be noted however,

that this approach can extend to any operating system that supports isolation of processes in the same manner.

Another challenge is that the decision regarding where to process data needs to account for the heterogeneous

processing capabilities available to the continuum of devices/middle boxes/systems, and the fact that some nodes may

be battery powered, and we would like to maximise their lifetime. It is tempting to then adapt solutions reminiscent

of desktop computing, whereby a runtime is used on all nodes to abstract away the underlying hardware. This is the

approach taken in platforms such as Fog Computing15. However, we believe that given that the nodes are always

online and deployment can be initiated remotely and at any time, it makes sense to instead adapt compiler based

approaches where optimisation is done when the application is compiled/initially deployed. That is, we believe

that in order to cope with the large heterogeneity present in our target networks we should aim to have controlled

variation, rather than arbitrary homogeneity. Enforcing homogeneity on heterogeneous devices can lead to problems

in understanding the behaviour of applications, as we can never know for sure which modules will be running and

on which platforms they will end up on. This makes the behaviour of the system less intelligible. Nevertheless,

runtime approaches also have their advantages. It is much easier to provide tools and development support once

the hardware differences have been abstracted away. Moreover, runtime environments are more adaptable as the

runtime itself can handle migration and determine what nodes should be running the application at any given time

depending on changes in available resources, etc. However, the heterogeneity of devices and environments already

poses significant difficulties to application design and development, and abstracting this away can be harmful, by
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either precluding platform-specific optimisations, or hiding these in a way that makes the behaviour of the system less

intelligible. Intelligibility and manageability are extremely important to make sure that application development is

feasible in this complex environment. Otherwise, complex interactions involving the placement of computation and

communications can be hard to foresee. For example, migration of components in a highly distributed application is

non-trivial, as it has to be handled by all the components that communicate with the migrated component. Otherwise,

in a time-critical application like the pipe leak example, it can happen that the system takes a long time to propagate

the updated addresses for the application. This can lead to delays in the sensing-actuation loop, which are not due to

the system malfunctioning, but just the difficulty of accurately predicting delays in a system that is highly dynamic

by default. This link between dynamicity and lack of intelligibility motivates our choice of deployments remaining

static by default and only dynamic when necessary. Static systems are easier to reason about, and thus also easier to

guarantee the correctness of.

4. Application development

In order to showcase the paradigm described above we have implemented a skeletal framework and the pipe leak

monitoring example we described. In this example, we have a water pipe that is being monitored for pressure, and

a valve that can be actuated remotely. We have assumed that the nodes are capable of running Linux, so that we

can use containers. We also delegate the handling of networking tasks to Linux. This is a reasonable assumption

with the appearance of devices, for instance from National Instruments13, or Texas Instruments5 capable of running

linux in embedded platforms. On the hobbyist side, we also have seen platforms like the Raspberry Pi8 or the

Intel Galileo3 providing low-cost fully-featured computing nodes for use in do-it-yourself IoT applications. We will

implement three concurrent applications in the system. The first one will be a straightforward dashboard presenting

all the information from the water network, including historical raw sensor readings and statistics, which we named

analytics. The second one will be the valve control application, that, based on the pressure reading, detects whether

there is a leak and actuates the valve accordingly, which we named leak. Finally, we will also present a manual

override through a web page, allowing the water company to override automatic control of the valve. This application

is called control. A representation of the data flow in these applications can be found in Figure 2. We have designed a

domain specific language in Haskell, which we called Scale, allowing us to develop these applications without thinking

about programming individual devices. In this language we have a notion of abstract sensors and actuators, which

are resolved when the application is deployed. In this case we have valve, pressure, dashboard and external

control

In Scale we can then write code for the aforementioned applications. For example in the pipe control case we can

load the specification so we can refer to the network components, query the concrete source, perform the calculation

to determine whether a leak is likely and actuate the valve. The code for the three applications in the example can

be found in Figure 2. The main commands that will be interpreted by the compiler to determine how to distribute

computation are Scale.querySource, Scale.handleSource and Scale.executeCommand. As an example of

this distribution, whenever the compiler finds Scale.handleSource in the application code, it will add code to the

sensor image to periodically report the sensor readings, and to the processing node to handle these readings when

they are reported, based on the MQTT publish-subscribe mechanism7. We assume that all devices are connected to

the Internet. Security is handled through MQTT security, which is based on SSL encryption20. The Scale compiler

that we designed will thus take the application code and produce containers to run on the edge devices (both sensing

and actuator processing units, e.g. the ones associated with the pressure sensor and the valve in our example) and the

cloud. We can then deploy the application by assigning physical IP addresses to each name, push the images remotely

to those devices and start the containers (in our case, we used SSH).

This example showcases the model that we advocate for building IoT software. We believe the focus should be

shifted from programming the individual devices and the cloud separately to thinking about the whole network, cloud

to edge, as a programmable environment. An open question lies in determining what abstractions are better suited for

presenting this unified view of the network, such that we do not hide details that are necessary to debug the applications

and understand its behaviour. We have deployed this scheme on the sensor nodes that will form part of the London

Living Labs, in Hyde Park in London. This deployment will comprise of several types of environmental monitoring

nodes, sensing parameters pertaining to soil quality, water quality, air quality, light pollution and more. These nodes
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analytics control

leak

Web

S valve

QoS specification:
leak: time-critical

analytics: best effort

control: time-critical

Scale compiler

Application code:
leak:

Scale.handleSource pressure

(\reading ->

if reading > threshold

then Scale.executeCommand turnOffValve

else return ())

analytics:

display (Scale.querySource pressure)

control (on button press):

Scale.executeCommand toggleValve

Image for sensor and hybrid nodes Image for actuator and hybrid nodes

Fig. 2. The pipe leak example and operation of the Scale compiler.

use the Intel Galileo platform as mains powered gateway nodes, and the Intel Edison boards for the battery powered

satellite nodes. Both of these nodes run Linux, and can be used with our framework. In the final deployment the

platform will be used to allow sandboxed experimentation with the network, whilst retaining normal operation of the

sensor network, delivering readings in a timely fashion. The usage of lightweight containers for edge virtualisation

along with duty cycling allows us to keep the battery life of the sensor nodes practical, even though we are using

fully-fledged x86 computers.

We have been exploring the idea of specifying the requirements of the application in terms of timing, redundancy,

etc. so that we can then automatically determine where to deploy the code. Moreover, we might want to provide

different implementations for code running in different parts of the network, for example for power optimisation

reasons. It is then hard to ascertain whether the behaviour will not change by changing the specifications of the

application, as we might be producing code to run on a different device. This can cause problems when devices use

different internal representations for data that are not of different types. In this case, it can happen that values get

interpreted erroneously, causing actuators to be effected when it is harmful for them to be. We have been exploring

formal methods to make this variability more controlled. In particular, we can already use type systems to enforce the

separation between two alternatives of the program (for instance one running on a cloud virtual machine and another

running on an edge node), and make sure that when they are combined, this combination is well formed22. We have

used this language to create two different versions of a sensor program, which use two different types of sensor, with

different precisions. The compiler then guarantees that data produced with one sensor will never be misinterpreted as

data produced by the other sensor, and that conversions occur as needed. Using current approaches, this variability is

something that is usually handled with either common supertypes (potentially paired with dangerous downcasts) or

tagged unions (which increase the amount of bookkeeping the programmer needs to do, usually with an associated

runtime cost). Our technique allows compilers to statically guarantee that representation mismatch errors will not
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happen. We can then provide stronger guarantees that critical systems will not go wrong by misinterpreting data in

this way.

5. Citizen involvement and future issues

The role of citizens in the management of the city and adopted policies has definitely changed with the ubiquitous

computing revolution. Adding support for citizen participation is thus paramount when designing systems for smart

cities that will not alienate its inhabitants. Participatory and opportunistic sensing19 are also becoming increasingly

important due to these factors. For example, the Safecast project9 shows how one can assemble a participatory

community for doing a task that is usually fulfilled by specialised teams, in this case mapping radiation levels. In our

system, from a sensing point of view, citizens contribute their own home sensing systems to be used for optimising the

city infrastructure. This is achieved by having a registry of sensors, where citizens can add their devices. Moreover,

if this data is made publicly available they can then use data from other relevant public devices in setting their own

actuation policies in their homes. As a simple example, if they are missing an outside temperature sensor they could

just use the data from the sensor of a neighbour that has been made available to control their HVAC system. A

critical question when considering using other people’s data is incentivisation. Our example suggests a simple model

of incentivisation, where you give access to your data in return for having access to other people’s data in order to

optimise. However, it is more interesting to try to quantify the value of this data for each stakeholder, and trade data

in a market as in our prior work28.

Smart cities are an inevitable step forward in the design of cities, in order to integrate the technological changes

that already pervade our daily lives into the spaces we inhabit. This new city-wide computing paradigm poses hitherto

unseen challenges in terms of scale, heterogeneity and capacity that necessitate new development approaches and

software platforms. We have proposed a unified cloud to edge solution based on compile-time containerisation of

applications and automatic choice of target deployment locations according to QoS specifications for the application.

This integrates the choice of where to place each software module in the in-network to cloud computing continuum,

in order to create a hybrid solution for development of IoT applications, integrating both cloud and edge. This

integration is transparent for the system designer, who can merely specify high-level QoS requirements. Nevertheless,

intelligibility is preserved, as the deployment locations are determined statically at deployment time.
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