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a b s t r a c t

A dynamic voltage scaling technique provides the capability for processors to adjust the
speed and control the energy consumption. We study the pessimistic accelerate model
where the acceleration rate of the processor speed is atmost K and jobs cannot be executed
during the speed transition period. The objective is to find amin-energy (optimal) schedule
that finishes every job within its deadline. The job set we study in this paper is aligned jobs
where earlier released jobs have earlier deadlines. We start by investigating a special case
where all jobs have a common arrival time and design an O(n2) algorithm to compute the
optimal schedule based on some nice properties of the optimal schedule. Then, we study
the general aligned jobs and obtain an O(n2) algorithm to compute the optimal schedule
by using the algorithm for the common arrival time case as a building block. Because our
algorithm relies on the computation of the optimal schedule in the ideal model (K = ∞),
in order to achieveO(n2) complexity, we improve the complexity of computing the optimal
schedule in the ideal model for aligned jobs from the currently best known O(n2 log n) to
O(n2).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Energy-efficiency has become the first-class design constraint besides the traditional time and space requirements.
Portable devices (like laptops and PDAs) equipped with capacity limited batteries are popular in our daily life. Two facts
make the energy problem more important. First, the battery capacity is increasing with a rate less than that of the power
consumption of the processors. Second, the accumulated heat due to energy consumption will reach a thermal wall and
challenge the designers of electronic devices. It is found that, in the CMOS processors, the energy consumption can be saved
by executing with a lower speed. Approximately, the speed is a cubic root of the power, which is known as cube-root-
rule. The dynamic voltage scaling (DVS) technique is widely adopted by modern processor manufacturers, e.g., Intel, AMD,
and IBM. It allows the processor to dynamically adjust its voltage/frequency to control the power consumption. The first
theoretical study was initiated decades ago by Yao et al. [20], where they make the standard generalization, a speed to
power function P(s) = sα (α ≥ 1). Usually, α is 2 or 3 according to the cube-root-rule of the processors. From then on, lots
of studies have been triggered in this field. It is usually formulated as a dual objective problem. That is, while conserving the
energy, it also needs to satisfy some QoS metric. When all jobs are required to be completed before deadlines, the metric
is called deadline feasibility. There are also works trying to simultaneously minimize the response time of the jobs, namely,
flow. A schedule consists of the speed scaling policy to determine what speed to run at time t and the job selection policy to
decide which job to run at that time.

∗ Corresponding author. Tel.: +852 27889538; fax: +852 27888614.
E-mail addresses:wweiwei2@cityu.edu.hk (W. Wu), minmli@cs.cityu.edu.hk (M. Li), cheneh@ustc.edu.cn (E. Chen).

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.12.013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82640611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2010.12.013
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:wweiwei2@cityu.edu.hk
mailto:minmli@cs.cityu.edu.hk
mailto:cheneh@ustc.edu.cn
http://dx.doi.org/10.1016/j.tcs.2010.12.013


W. Wu et al. / Theoretical Computer Science 412 (2011) 1122–1139 1123

If the processor can run at arbitrary speeds, then based on how fast the voltage can be changed, there are two different
models.
Ideal model: It is assumed that the voltage/speed of the processor can be changed to any other value without any
extra/physical cost or delay. This model provides an ideal fundamental benchmark and has been widely studied.
Accelerate model: It is assumed that the voltage/speed change has some delay. In practice, the processor’s acceleration
capacity is limited. For example, in the low power ARM microprocessor system (lpARM) [6], the clock frequency transition
takes approximately 25 µs (1350 cycles) from 10 to 100MHz. Equation (EQ1) in [6] pointed out that the delay for transition
from one voltage to another voltage is proportional to the difference of these two voltages. Within this scope, there are two
variations. In the optimistic model, the processor can execute jobs during the speed transition time, while in the pessimistic
model, the execution of jobs in the transition time is not allowed [21]. In this paper, we consider processors with a DC-DC
converter having an efficiency of 1. In other words, we assume that the transition does not consume energy according to
Eq. (EQ2) in [6].

1.1. Related works

In recent years, there have been many works on the impact of DVS technology.
For the ideal model, Yao et al. first studied the energy-efficient job scheduling to achieve deadline feasibility in their

seminal paper [20]. They proposed an O(n3) time algorithm YDS to compute the optimal off-line schedule. Later on, the
running time is improved toO(n2 log n) by Li et al. [17]. Anothermetric, the response time/flow,was examined by Pruhs et al.
in [18] with bounded energy consumption. It is first formulated as a linear single objective (energy + flow) optimization
problem by Albers et al. in [1]. This was then specifically studied in [5,14,7,2,3] under different assumptions. Chan et al.
[8] investigated the model where the maximum speed is bounded. They proposed an online algorithm which is O(1)-
competitive in both energy consumption and throughput. More works on the speed bounded model can be found in
[4,9,15]. Ishihara and Yasuura [12] initiated the research on discrete DVS problem where a CPU can only run at a set of
given speeds. They solved the case when the processor is only allowed to run at two different speeds. Kwon and Kim [13]
extended it to the general discrete DVS model where the processor is allowed to run at speeds chosen from a finite speed
set. They gave an algorithm for this problem based on theMES algorithm in [20]. Later, [16] improved the computation time
to O(dn log n) where d is the number of supported voltages. A survey on algorithmic problems in power management for
DVS by Irani and Pruhs can be found in [11].

For the accelerate model, there are little theoretical studies to the best of our knowledge, except that the single task
problem was studied by Hong et al. in [10] and Yuan et al. in [21]. In [10], they showed that the speed function which
minimizes the energy is of some restricted shapes even when considering a single task. They also gave some empirical
studies based on several real-life applications. In [21], the authors studied both the optimistic model and pessimistic model,
but still for the single task problem. They showed that to reduce the energy, the speed function should accelerate as fast as
possible.

1.2. Main contributions

This paper is the full version of our previous conference paper [19]. In this paper, we study the pessimistic accelerate
model to minimize the energy consumption. The QoS metric is deadline feasibility. The input is an aligned job set J with
n jobs, where jobs with earlier arrival times have earlier deadlines. The processor can execute a job with arbitrary speed
but the absolute acceleration rate is at most K , and the processor has no capability to execute jobs during the transition of
voltage. The objective is to find a min-energy schedule that finishes all jobs before their deadlines.

We first consider a special case of aligned jobs where all the jobs arrive at time 0. We call this kind of job set common
arrival time instance. We prove that the optimal schedule should decelerate as fast as possible and the speed curve is non-
increasing. Combining with other properties we observe, we construct an O(n2) time algorithm to compute the optimal
schedule.

Then we turn to the general aligned jobs to study the optimal schedule OPTK . The algorithm for the common arrival
time instance is adopted as an elementary procedure to compute OPTK . Most of the properties for the common arrival time
instance can be extended to general aligned jobs. By comparing OPTK with the optimal schedule OPT∞ in the ideal model,
we first prove that the speed curves of OPTK and OPT∞ match during some ‘‘peak’’s. Then we show that the speed curve of
OPTK between adjacent ‘‘peak’’s can be computed directly. The whole computation takes O(n2) time since we improve the
computation of OPT∞ (optimal solution of the ideal model) for aligned jobs from the currently best known O(n2 log n) to
O(n2). Our work makes a further step in the theoretical study of the accelerate model and may shed some light on solving
the problem for the general job set.

The organization of this paper is as follows. We review the ideal model and the pessimistic accelerate model in Section 2.
In Section 3, we study the pessimistic acceleratemodel and focus on a special but significant case where all jobs are released
at the beginning. We then turn to the general aligned jobs that have arbitrary arrival time in Section 4. Finally we conclude
the paper in Section 5.
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2. Model and notation

In this section, we review the ideal model proposed in [20] and the pessimistic accelerate model.
The input job instance we consider in this paper is an aligned job set J = {J1, J2, . . . , Jn} where each job Ji has an arrival

time r(Ji), a deadline d(Ji) (abbreviated as ri and di respectively), and the amount of workload C(Ji). The arrival times and
the deadlines follow the same order, i.e., r1 ≤ r2 ≤ · · · ≤ rn and d1 ≤ d2 ≤ · · · ≤ dn.

In the ideal model, the processor can change its speed to any value instantaneously without any delay. The power
function is assumed to be P(s) = sα(α ≥ 1). A schedule S needs to determine what speed and which job to execute
at time t . We use s(t, S) to denote the speed took by schedule S at time t and write it as s(t) for short if the context is
clear. We use job(t) to represent the index of the job being executed at time t . Jobs are preemptive. The processor has the
capability to resume the formerly suspended jobs. We take the deadline feasibility as the QoS metric, i.e., a job is available
after its arrival time and need to be completed before its deadline. A feasible schedule must satisfy the timing constraint di
ri

s(t)δ(i, job(t))dt = C(Ji), where δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise. The energy consumption is the power
integrated over time: E(S) =


t P(s(t, S))dt . The objective is to minimize the total energy consumption while satisfying the

deadline feasibility.
In the pessimistic accelerate model, the processor cannot change the voltage instantaneously. The acceleration rate is

at most K , i.e., |s′(t)| ≤ K . Moreover, no jobs can be executed during the transition interval with s′(t) ≠ 0 and there is
always some job being executed when s′(t) = 0 and s(t) > 0. The energy is the power integrated over the time where
s′(t) = 0 and s(t) > 0, thus E =


t|s′(t)=0,s(t)>0 P(s(t, S))dt . With such constraints, a feasible schedule is a schedule where

all jobs are completed before deadlines and the speed function satisfies |s′(t)| ≤ K . In a feasible schedule S, we denote
the maximal interval where the jobs run at the same speed as a block. Note that there is an acceleration interval (the time
used for acceleration) between adjacent blocks because changing the speeds needs some time, during which no workload
is executed. The optimal schedule is the one with the minimum energy consumption among all feasible schedules.

Let ts = mini ri and tf = maxi di. The workload executed in interval [a, b] by schedule S is denoted as C[a,b](S). If a job
J has I(J) = [r(J), d(J)] ⊆ [a, b], we say J is embedded in interval [a, b]. For simplicity, when we say ‘‘the first’’ time (or
interval), we mean the earliest time (or interval) on the time axis in left-to-right order. Using a similar definition as [16], we
say tu is a tight deadline (or tight arrival time respectively) in schedule S if tu is the deadline (or arrival time respectively) of
the job that is executed at [tu − ∆t, tu] (or [tu, tu + ∆t] respectively) in S where ∆t → 0. Let w(t1, t2) denote the workload
of the jobs that have an arrival time at least t1 and have a deadline at most t2, i.e. w(t1, t2) =

∑
I(J)⊆[t1,t2]

C(J). Define the
intensity Itt(t1, t2) of the time interval [t1, t2] to be w(t1, t2)/(t2 − t1).

3. Optimal schedules for job set with common arrival time

For the jobs that have a common arrival time, we assume w.l.o.g they are available at the beginning, namely ri = 0 for
1 ≤ i ≤ n. In the following, we will derive a series of properties of the optimal schedule which help us design a polynomial
algorithm to compute the optimal schedule. The intuition behind the proofs is shown below. Comparing with the optimal
schedule for the ideal model, when the speed decelerates from a faster speed to a slower speed, some time will be lost in
the acceleratemodel. The optimal solution is composed of blocks and the speed is non-increasing (The speed between every
two blocks is decreasing). To find all the blocks, we search some ‘‘tight’’ points where the deceleration should begin at this
point of time, because at least one job’s deadline would be missed if the deceleration was delayed further. There are at most
n blocks to be computed which finally gives an O(n2) time algorithm.

We assume that ‘‘optimal schedule’’ mentioned in a lemma satisfies all the previous lemmas in the same section. We
abuse the notation between closed interval [t1, t2] and open interval (t1, t2) if the context is clear.

Lemma 1. Given a feasible schedule S with speed function s(t), assume that interval (ta, ta + ∆t) is all for acceleration purposes
(i.e. s′(t) ≠ 0 for t ∈ (ta, ta + ∆t)) and s(ta) = s(ta + ∆t). Then the schedule S̄ with speed function s̄(t) defined below, which
shifts the workload C[ta+∆t,tf ](S) left by ∆t time, is feasible and consumes the same energy as S.

s̄(t) =

s(t) t ∈ [ts, ta]
s(t + ∆t) t ∈ (ta, tf − ∆t]
0 t ∈ (tf − ∆t, tf ].

Proof. First, we show that S̄ is a feasible schedule. In S, suppose that job Ji is finished after ta + ∆t and before deadline di.
Since Ji is available at the beginning ri = 0, and it is not accelerated in (ta, ta + ∆t), when we shift Ji’s execution interval left
by∆t time, the resulting schedule is still feasible. Similarly by shifting interval (ta+∆t, tf ) left by∆t , the resulting schedule
S̄ is feasible. Moreover, after the execution is shifted, there is no workload being executed after tf − ∆t , thus the energy
consumed in (tf − ∆t, tf ) is zero. Finally, since the speed profile to execute the workload C[ta+∆t,tf ](S) does not change, S̄
has the same energy consumption as S. The lemma is then proved. �

Lemma 2. In the optimal schedule, the speed function will accelerate as fast as possible, i.e., either |s′(t)| = K or |s′(t)| = 0.
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Fig. 1. The transformation when |s′(t)| < K .

a b c
Fig. 2. Removing s′(t) = K .

Proof. We only need to remove the possibility of 0 < |s′(t)| < K . As shown in Fig. 1, when 0 < s′(t) < K , we prove
that another schedule which accelerates as fast as possible will cost less or equal energy. Suppose that (ta, tb) is the first
acceleration interval where 0 < s′(t) < K , we can set the acceleration rate as s′(t) = K in interval (ta, tc). Since the target
speed is not changed, this obviously implies tc < tb. Then nomatterwhat the speed function in (tb, tf ) is, it can be shifted left
by tb − tc time. This transformation will remove the acceleration rate 0 < s′(t) < K in (ta, tb) and ensure that the resulting
schedule incurs no more energy by Lemma 1. Similarly we can handle the case −K < s′(t) < 0. By repeatedly applying this
transformation, we can ensure |s′(t)| = K or |s′(t)| = 0 in (ts, tf ) for the optimal schedule. �

Lemma 3. In the optimal schedule, the speed function s(t) is non-increasing.

Proof. It suffices to remove the possibility s′(t) = K . If on the contrary there are some intervals with s′(t) = K , suppose
that the first interval with s′(t) = K is (ta, tb) as shown in Fig. 2. Assume that tc is the nearest time after tb where s′(t) ≠ 0,
i.e. tc = argmint>tb(s

′(t) ≠ 0). Let the speed in block (tb, tc) be s2. Note that the speed before ta is non-increasing. We
can further suppose that the speed in ta’s adjacent block (t ′a, ta) is s1 where s1 < s2 . We will show that there exists
another feasible schedule S̄ with less energy. The method is to merge C[tb,tc ](S) with C[t ′a,ta](S) and previous adjacent blocks
if necessary into a new block (t ′b, t

′
c) and let s̄′(t) = K in (t ′c, tc). Themerging process guarantees that the new block executes

the same amount of workload as the participating merging blocks. The merging process goes from right to left and stops
when the last unmerged block before t ′a has a higher speed than the speed of the new block. Suppose that the new speed in
(t ′b, t

′
c) is s∆, we first show that the energy in (ts, tc) is decreased by discussing two cases s∆ < s0 and s∆ ≥ s0, where s0 is

the speed in the start time ts. First, if s∆ < s0, then the workload C(t ′b,tc )
(S) is done in a single block (t ′b, t

′
c) (a unique speed)

in S̄. Note that such a new schedule is feasible (because jobs are finished earlier in the new schedule) and the speed in (ts, t ′c)
is non-increasing. Moreover, according to the convexity of P(s), the new schedule consumes less energy. Second, if s∆ ≥ s0,
then the workload C(ts,tc )(S) is done with a unique speed in block (ts, t ′c) in S̄ which also leads to a better schedule.

Notice that we have postponed the first interval where s′(t) = K to (t ′c, tc). Then we discuss the following two cases:
s′(t) = K for tc < t < td and s′(t) = −K for tc < t < td.

If s′(t) = K for tc < t < td, the first interval where s′(t) = K in S̄ is the acceleration interval (t ′c, td) and we can apply the
analysis again to gradually postpone the first interval s′(t) = K until the time tf . This finally results in a schedule with less
energy where s′(t) = K only exists in some rightmost interval (t̂, tf ). Note that (t̂, tf ) need not accelerate because there is
no workload after tf . Thus we have removed the possibility s′(t) = K .

If s′(t) = −K for tc < t < td, two subcases should be considered. If td − tc > tc − t ′c , let t
′′
c be the symmetric time point of

t ′c by vertical line t = tc (Fig. 2(b)). Note that s̄(t ′′c ) = s̄(t ′c). We can then shift the speed function s(t) in (t ′′c , tf ) left by t ′′c − t ′c
time. This removes the possibility s′(t) = K in (tb, td). Then we can recursively handle the first interval with s′(t) = K in
(td, tf ). If td − tc ≤ tc − t ′c , let t

′

d be the symmetric time point of td by vertical line t = tc (Fig. 2(c)). We then shift the speed
function s(t) in (td, tf ) left by td − t ′d time. Then (t ′c, t

′

d) will be the first interval where s′(t) = K . Hence, by applying the
analysis again we can gradually postpone the first interval with s′(t) = K to the rightmost interval (t̂, tf ). Since there is no
workload after tf , we can remove the final acceleration interval (t̂, tf ). This finishes the proof. �

Lemma 4. There exists an optimal schedule where the jobs are completed in EDF (Earliest Deadline First) order.

Proof. Suppose that Ji+1 is the first job which violates the EDF order, which means all jobs are finished in the order
σ(J) = (J1, . . . , Ji, Ji+t , . . . , Ji+1, . . .). Notice that jobs between Ji and Ji+1 in σ(J) have deadlines larger than di+1. We
will show that executing jobs in the order σ ′(J) = (. . . , Ji, Ji+1, . . . , Ji+t , . . .), which is obtained from σ(J) by swapping
Ji+t and Ji+1, and using the same speed function is still a feasible schedule. Obviously, jobs J1, . . . , Ji can be finished before
deadlines. Moreover, since the speed function does not change, the completion time of job Ji+t in σ ′(J) is the same as that
of job Ji+1 in σ(J). That is, Ji+t is finished at a time not later than di+1 (di+1 ≤ di+t ). Furthermore, in σ ′(J), jobs between Ji+1



1126 W. Wu et al. / Theoretical Computer Science 412 (2011) 1122–1139

and Ji+t are finished before deadline because they are finished before di+1 in σ ′(J). Thus the new schedule is feasible and
the energy remains the same. Then by applying a similar adjustment gradually, we can obtain an optimal schedule with the
completion time in EDF order. �

Lemma 5. In the optimal schedule S, job Ji is executed in one speedmin0≤t≤di,s′(t)=0 s(t).

Proof. This lemma is a special case of Lemma 15 and therefore we postpone the proof to Lemma 15. �

Fact 1. Given n jobs sorted by deadlines, suppose that job i’s workload is xi and it is originally executed for Ti time with xi
Ti

>
xi+1
Ti+1

.
If in another schedule, job 1 is executed for T1 + ∆ time and jobs 2, . . . , n are respectively executed for Ti − δi time where
∆ >

∑n
i=2 δi and the speeds satisfy x1

T1+∆
>

xi
Ti−δi

, then we have
∑n

i=1
xαi

Tα−1
i

>
xα1

(T1+∆)α−1 +
∑n

i=2
xαi

(Ti−δi)α−1 where α ≥ 1.

Proof. We remark that α can be a non-integer. Define ∆1 =
∑n

i=2 δi < ∆. It is sufficient to prove
∑n

i=1
xαi

Tα−1
i

>

xα1
(T1+∆1)α−1 +

∑n
i=2

xαi
(Ti−δi)α−1 . Theworkload x1 can be divided into n−1 parts x′

2, x
′

3, . . . , x
′
n. Let x

′

i =
δi∑n
i=2 δi

x1 where 2 ≤ i ≤ n.

Assume that x′

i is executed for T ′

i time. Let T ′

i =
δi∑n
i=2 δi

T1. Note that x′i
T ′
i

=
x1
T1
, T1 =

∑n
i=2 T

′

i and x1 =
∑n

i=2 x
′

i . We examine

the difference xα1
Tα−1
1

−
xα1

(T1+∆1)α−1 .

xα
1

Tα−1
1

−
xα
1

(T1 + ∆1)α−1
=


x1
T1

α

· T1 −


x1

T1 + ∆1

α

· (T1 + ∆1)

=


x1
T1

α

·


n−

i=2

T ′

i


−


x1

T1 + ∆1

α

·


n−

i=2

T ′

i +

n−
i=2

δi



=

n−
i=2


x′

i

T ′

i

α

· T ′

i −

n−
i=2


x′

i

T ′

i + δi

α

· (T ′

i + δi)

=

n−
i=2

x′α
i

T ′α−1
i

−

n−
i=2

x′α
i

(T ′

i + δi)α−1
.

The second equality holds because T1 =
∑n

i=2 T
′

i and ∆1 =
∑n

i=2 δi. The third equality holds because x′i
T ′
i

=
x1
T1

and
x1

T1+∆1
=

x1
T1

T1
T1+∆1

=
x′i
T ′
i

1
1+ ∆1

T1

=
x′i

T ′
i +δi

.

Now it suffices to prove
∑n

i=2
x′αi

T ′α−1
i

−
∑n

i=2
x′αi

(T ′
i +δi)α−1 ≥

∑n
i=2

xαi
(Ti−δi)α−1 −

∑n
i=2

xαi
Tα−1
i

. To show this, we will prove that
x′αi

T ′α−1
i

+
xαi

Tα−1
i

≥
xαi

(Ti−δi)α−1 +
x′αi

(T ′
i +δi)α−1 . Define f (t) =

x′αi
tα−1 +

xαi
(Ti+T ′

i −t)α−1 . It is sufficient to show f ′(t) ≤ 0when T ′

i ≤ t ≤ T ′

i +δi

which will imply f (T ′

i ) ≥ f (T ′

i + δi).

We have f ′(t) = (1 − α)
x′αi
tα − (1 − α)

xαi
(Ti+T ′

i −t)α = (1 − α) · ((
x′i
t )α − (

xi
Ti+T ′

i −t )
α) because (xα)′ = α · xα−1 for all real

α ≥ 1. Since f ′(t) increases as t increases when α ≥ 1, we only need to show f ′(T ′

i + δi) ≤ 0. By x1
T1+∆

>
xi

Ti−δi
, we have

f ′(T ′

i + δi) = (1 − α) · ((
x′i

T ′
i +δi

)α − (
xi

Ti−δi
)α) ≤ 0 because x′i

T ′
i +δi

=
x1

T1+∆1
>

xi
Ti−δi

. This finishes the proof. �

Lemma 6. There exists an optimal schedule S,where the finishing time t̂ of each block (where limt→t̂− s′(t) = 0∧limt→t̂+ s′(t) =

−K) is a tight deadline.

Proof. Suppose on the contrary that blockp’s completion time t̂1 is the first such time point which is not a tight deadline.
Then for all the blocks that are before blockp, their completion times are tight deadlines.We assume that t̂0 is the completion
time of the nearest block before blockp. If such a time point does not exist, we set t̂0 = 0. We prove that the jobs in (t̂0, t̂1)
can be done with lower speed and longer length which leads to less energy. We start with the simplest case. As shown in
Fig. 3(a), in the new schedule S̄ with speed function s̄(t) that is drawn in a dashed line, the completion time of Ji is postponed
to its deadline di (postponed by di − t̂1 time). Meanwhile, we ensure that the blocks after di will keep their completion time
unchanged. To achieve this, jobs Ji+1, . . . , Jn will be done at a slightly higher speed compared with that in s(t). We first
consider the case that S̄ is feasible, i.e. no jobs miss deadlines in S̄. Notice that with such an assumption, the speed allocation
in (di, tf ) is unique after Ji’s completion time is postponed to its deadline (because the speed s̄(di) can be determined). We
will prove that such a schedule consumes less energy by using Fact 1. Suppose that the blocks after di have execution time
t2, . . . , tm in S and the executed workloads are x2, . . . , xm respectively. While workload xj is executed by tj − δj (2 ≤ j ≤ m)
time in S̄. Then the conditions xj

tj
>

xj+1
tj+1

and x1
t1+∆

>
xj

tj−δj
obviously hold where x1, t1 and ∆ denote the workload C[t̂0,t̂1](S),
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Fig. 3. Postpone procedure.

Fig. 4. An example that shows the choice of blocks.

the length of time executing x1 in S, and the difference of the length of executing x1 by S and S̄, respectively. The energy used
by S̄ is less than S by

∑n
i=1

xαi
tα−1
i

−
xα1

(t1+∆)α−1 −
∑n

i=2
xαi

(ti−δi)α−1 . Thus it remains to prove that ∆ >
∑m

j=2 δj.

To see this, consider the time u > t̂1, which is the first intersection between s(t) and s̄(t). We have s(u) = s̄(u). Note
that at the final time tf , the speed s̄(tf ) > s(tf ). In the interval [u, tf ], s(t) uses more time for speed transition than s̄(t) as
s(u)−s(tf )

K >
s̄(u)−s̄(tf )

K . Thus the length for executing jobs (the length of intervals with s′(t) = 0 in [u, tf ]) in S̄ is larger than
that of S. Furthermore, the difference between these two lengths is exactly ∆ − δ2 − · · · − δm. Hence we have ∆ >

∑m
j=2 δj.

Now we consider the general case, where some jobs miss deadlines if Ji is postponed to its deadline as we do above.
Notice that our transformation in Fig. 3(a) also makes sense whenwe only postpone the execution of Ji by any small amount
of time less than di − t̂1. Thus we first postpone the execution of Ji by a time less than di − t̂1 which makes a job Jk finish
exactly at its deadline and guarantees all the other jobs are finished by their deadlines. If k < i, we fix the schedule before
dk, let t̂0 = dk, and keep on dealing with the speed curve in [t̂0, di]. If k > i, we take another transformation as shown in
Fig. 3(b). Note that we assign an acceleration interval immediately after time dk. Such a transformation also ensures a better
schedule where the proof is quite similar to the simplest case. Then we first deal with the curve in [t̂0, dk] to make it satisfy
the lemma (also arriving at a fixed speed s′(dk) at dk), and then deal with the curve in [dk, tf ] with starting speed s′(dk) to
make it satisfy the lemma.

Thus step by step, we can ensure that t̂ is exactly one job’s deadline and completion time, namely tight deadline, in the
optimal schedule. �

Theorem 1. In the optimal schedule,

(1) The first block is the interval (0, dt)whichmaximizes
∑

J∈Jt C(J)
dt

whereJt = {Jj|dj ≤ dt ]} and t ∈ {1, . . . , n}, i.e. themaximum

speed in the optimal schedule is s1 = maxi
∑

J∈Ji
C(J)

di
.

(2) Suppose that block j has speed sj and finishes at Jtj ’s deadline, then the speed in block j + 1 is sj+1 = maxt
sj−K(dt−dtj )+


(K(dt−dtj )−sj)2+4K

∑t
i=tj+1 C(Ji)

2 where t ∈ {tj + 1, . . . , n}.

Proof. Fig. 4 shows an example. We first prove (1). According to Lemma 6, the finish time of the optimal schedule’s block
is one job’s deadline. Thus for the first block in the optimal schedule, if the finish time is Ju’s deadline, then the speed of
this block is

∑
J∈Ju C(J)
du

where Ju = {Jj|dj ≤ du} according to the EDF schedule in Lemma 4. We prove that the first block

of the optimal schedule achieves the maximum possible value
∑

J∈Jt C(J)
dt

where t ∈ {1, . . . , n}. Let u = argmaxt
∑

J∈Jt C(J)
dt

.

We suppose on the contrary that the first block finishes at Jv ’s deadline where v ≠ u. Note that
∑

J∈Ju C(J)
du

>

∑
J∈Jv

C(J)
dv

. If
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v < u, since the speed curve of the optimal schedule is non-increasing by Lemma 3, the total workload finished before du
will be at most du ·

∑
J∈Jv

C(J)
dv

and hence less than du ·

∑
J∈Ju C(J)
du

. Therefore some jobs in Ju will miss deadlines because all

jobs in Ju = {Jk|dk ∈ [0, du]} with a total workload du ·

∑
J∈Ju C(J)
du

should be finished before du. This is a contradiction to

the feasibility of the optimal schedule. If v > u, the total workload finished before du is also less than du ·

∑
J∈Ju C(J)
du

, again a
contradiction.

We prove (2) by induction. Assume as the induction hypothesis that the jth block of the optimal schedule has speed
sj and finishes at job Jtj ’s deadline where 1 ≤ tj < n. We will prove that the speed of the j + 1th block in the optimal

schedule achieves the maximum value
sj−K(dt−dtj )+


(K(dt−dtj )−sj)2+4K

∑t
i=tj+1 C(Ji)

2 where t ∈ {tj + 1, tj + 2 . . . , n}. Since
there is a transition interval with s′(t) = −K after block j’s finish time dtj , if block j + 1 finishes at Jt ’s deadline, then

the speed of block j + 1 satisfies sj+1 =

∑
J∈J(tj,t]

C(J)

dt−dtj−(sj−sj+1)/K
where J(tj,t] = {Jk|dk ∈ (dtj , dt ]} by Lemma 6. Assume that

u = argmaxt
sj−K(dt−dtj )+


(K(dt−dtj )−sj)2+4K

∑t
i=tj+1 C(Ji)

2 . Suppose on the contrary that the (j + 1)th block of the optimal

schedule finishes at Jv ’s deadline where v ≠ u. Write suj+1 =
sj−K(du−dtj )+


(K(du−dtj )−sj)2+4K

∑u
i=tj+1 C(Ji)

2 and svj+1 =

sj−K(dv−dtj )+


(K(dv−dtj )−sj)2+4K
∑v

i=tj+1 C(Ji)

2 . We have suj+1 > svj+1. If v < u, since the speed curve of the optimal schedule is

non-increasing (Lemma 3), the total workload finished between [dtj , du]will be at most (du −dtj −
sj−svj+1

K ) · svj+1 which is less

than (du −dtj −
sj−suj+1

K ) · suj+1. Thus some jobs in J(tj,u] will miss deadlines by a similar analysis with the proof of 1. Therefore,
it contradicts the feasibility of the optimal schedule. If v > u, the total workload finished between [dtj , du] is also less than

(du − dtj −
sj−suj+1

K ) · suj+1 which again leads to a contradiction. Therefore, the (j + 1)th block must finish at du. This finishes
the proof. �

Theorem 2. The optimal schedule can be computed by Algorithm 1 in O(n2).
Proof. Algorithm 1 is a direct implementation of Theorem 1. Steps 2–4 compute the first block. The two loops in Steps 6–10
compute the remaining blocks. By keeping the information of the summation on the computed jobs, the optimal schedule
can be computed in O(n2) time. �

Algorithm 1 CRT_schedule
1. t = 0;

2. s1 = maxi
∑i

j=1 C(Jj)
di

;
3. t = argmaxi s1 ;
4. Let the block with speed s1 be [0, dt ];
5. m = 1;
while t < n do

6. sm+1 = maxt+1≤i≤n
sm−K(di−dt )+


(K(di−dt )−sm)2+4K

∑i
j=t+1 C(Jj)

2 ;
7. t ′ = argmaxi sm+1;
8. Let the block with speed sm+1 be [dt + (sm − sm+1)/K , dt ′ ];
9. m = m + 1;
10. t = t ′;

end while

4. Optimal schedules for aligned jobs

4.1. Ideal model

In the ideal model, the acceleration rate is infinity K = ∞. We review the Algorithm YDS in [20] to compute OPT∞

as shown in Algorithm 2. The algorithm tries every possible pair of arrival times and deadlines to find an interval with
largest intensity (called critical interval), schedule the jobs embedded in the critical interval and then repeatedly deal with
the remaining jobs. Their algorithm has a complexity O(n3), which was then proved to O(n2 log n) in [17].

We first show that the optimal schedule for aligned jobs in the ideal model can be computed in O(n2) time. The proof is
based on two key observations. First, the faster search for a critical special time (called descending-time/acending-time in
this paper). Second, some intervals/jobs can be independently picked out and then iteratively handled. In the proof, we use
OPT to denoted the solution returned by Algorithm 2.
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Algorithm 2 YDS Schedule for the Ideal Model
The algorithm repeats the following steps until all jobs are scheduled:
(1) Let [t1, t2] be the maximum intensity time interval.
(2) The processor will run at speed Itt(t1, t2) during [t1, t2] and schedule all the jobs with I(J) ⊆ [t1, t2] in EDF order.
(3) Then the instance is modified as if the time in [t1, t2] did not exist. That is, all deadlines di > t1 are changed to
max(t1, di − (t2 − t1)), and all arrival times ri > t1 are changed to max(t1, ri − (t2 − t1)).

Theorem 3. The optimal schedule for aligned jobs in the ideal model can be computed in O(n2) time.

Given an interval [tL, tR], all the fully embedded jobs’ workload over [tL, tR] is called average density of [tL, tR], which is

denoted as a_den([tL, tR]) =

∑
J|I(J)⊆[tL,tR] C(J)

tR−tL
.

Let rmin = minJ∈J r(J) and dmax = maxJ∈J d(J). We define a special kind of time as follows.

Definition 1. A time t is called down-point if a_den([rmin, t]) > a_den([rmin, t + ∆t]) where ∆t → 0. Further, if t̂ is
the latest time at which [rmin, t̂] has the highest average density among all other intervals, then t̂ is the global-down-point
(shorted as GDP) of [rmin, dmax], i.e. t̂ = max{argmaxrmin≤T≤dmax a_den([rmin, T ])}.

We define d to be a descending-time in OPT if limt→d− s(t,OPT) > limt→d+ s(t,OPT) (and correspondingly ascending-time
if limt→d− s(t,OPT) < limt→d+ s(t,OPT)). The following is a basic property.

Lemma 7. If d is a descending-time in OPT, then OPT never executes jobs with I(J) ∩ (d, dmax] ≠ φ in [rmin, d].

Proof. It is proved in [16] that every descending-time in OPT is a tight deadline (suppose that the job finished at this time is
Ji) if the schedule follows EDF order. On the other hand EDF schedule for aligned jobs generates no preemption. Therefore,
jobs with I(J) ∩ (d, dmax] ≠ φ cannot be executed before d since their deadlines are larger than d(Ji). �

We first derive some properties of GDP, comparing with the speed in OPT over J. Fig. 5 shows an example. The height of
the dashed line is the value a_den(·) over the interval that is covered by the line.

Lemma 8. If time g is the GDP of I = [rmin, dmax], then a_den([rmin, g]) ≤ limt→g− s(t,OPT) and a_den([rmin, g]) >
limt→g+ s(t,OPT).

Proof. First, if on the contrary a_den([rmin, g]) ≤ limt→g+ s(t,OPT), then we assume time d is the nearest descending-time
after g , which implies s(t,OPT) ≥ a_den([rmin, g]) when g ≤ t ≤ d. We have C[g,d](OPT) ≥ a_den([rmin, g]) · (d − g).
Since d is a descending-time, all the workload C[g,d](OPT) belongs to jobs with g < d(J) ≤ d by Lemma 7. Thus∑

J|g<d(J)≤d C(J) ≥ C[g,d](OPT) ≥ a_den([rmin, g]) · (d − g). We have

a_den([rmin, d]) =

∑
J|I(J)∈[rmin,d]

C(J)

d − rmin
=

∑
J|I(J)∈[rmin,g]

C(J) +
∑

J|g<d(J)≤d
C(J)

d − rmin

≥
(g − rmin) · a_den([rmin, g]) + (d − g) · a_den([rmin, g])

d − rmin

≥ a_den([rmin, g]).

Thus d has an average density at least that of g and d is later than g , this contradicts the definition of g .
Second, if on the contrary a_den([rmin, g]) > limt→g− s(t,OPT), we assume [c, d] is the nearest block before g which has

speed larger than a_den([rmin, g]) in OPT. Such a block exists because otherwise C[rmin,g](OPT) < a_den([rmin, g]) · (g − rmin)

which implies a_den([rmin, g]) =

∑
J|I(J)⊆[rmin,g] C(J)

g−rmin
≤

C[rmin,g](OPT)
g−rmin

< a_den([rmin, g]). According to the choice of d, we have
C[d,g](OPT) < a_den([rmin, g]) · (g − d). All jobs with d < d(J) ≤ g should be executed in [d, g] in OPT by Lemma 7. Thus∑

d<d(J)≤g C(J) ≤ C[d,g](OPT). By the definition of GDP, every time before g has average density at most a_den([rmin, g]).
Thus

∑
J|I(J)⊆[rmin,d] C(J) = (d − rmin) · a_den([rmin, d]) ≤ (d − rmin) · a_den([rmin, g]). We have

a_den([rmin, g]) =

∑
J|I(J)⊆[rmin,g]

C(J)

g − rmin
=

∑
J|I(J)⊆[rmin,d]

C(J) +
∑

J|d<d(J)≤g
C(J)

g − rmin

≤
(d − rmin) · a_den([rmin, g]) + C[d,g](OPT)

g − rmin

<
(d − rmin) · a_den([rmin, g]) + a_den([rmin, g]) · (g − d)

g − rmin

= a_den([rmin, g]).

Again a contradiction. Hence, the lemma is then proved. �
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Fig. 5. An example that shows the GDP g and GUP h for job set J.

Lemma 8 implies that GDP g is a descending-time in OPT. We remark that a normal down-point is not necessarily a
descending-time in OPT. Since each descending-time is one job’s deadline by [16], it is sufficient to compute the average
density in interval [rmin, di] for all deadlines di in order to find the GDP. Among all the |J| values, the GDP g equals the latest
deadline that achieves the maximum density, g = max{argmaxdi a_den([rmin, di])}.

On the other hand, if we symmetrically compute the average density over [t, dmax] in right-to-left order, we could
define the up-point t which has a_den([t − ∆t, dmax]) < a_den([t, dmax]) where ∆t → 0. Similar to Lemma 8, we
have a global-up-point (GUP) h ∈ [rmin, dmax] of I which corresponds to an ascending-time in OPT. Moreover, h =

min{argmaxri a_den([ri, dmax])}. The following property is useful for our algorithm to iteratively compute OPT.
Lemma 9. In the optimal schedule, jobs that are executed in [rmin, g] have a deadline at most g. Moreover, for jobs J where
r(J) < g and d(J) > g, if we re-scale the arrival time r(J) to be g, then OPT for the modified job set is the same as OPT for the
original job set.
Proof. It is sufficient to prove that the optimal schedule OPT never executes jobs with d(J) > g in [rmin, g]. This is true by
Lemma 7 since g is a descending-time. �

Note that this property holds symmetrically for a GUP h.
Lemma 10. In the optimal schedule, jobs that are executed in [h, dmax] have arrival time at least h. Moreover, for jobs J where
r(J) < h and d(J) > h, if we re-scale the deadline d(J) to be h, then OPT for the modified job set is the same as OPT for the original
job set.

By these observations, Algorithm 3 will pick out some sub-intervals in which OPT only executes jobs embedded in these
sub-intervals. In each iteration, by computing a pair of GDP/GUP times, the original interval/job-set is partitioned into atmost
three intervals/job-sets. Then it iteratively computes the optimal schedule for the three subsets. The algorithm terminates
when the re-scaled job-set has g = dmax and h = rmin. We then prove the following lemma which implies that if g = dmax
and h = rmin, then it is equivalent to finding a block in OPT.
Lemma 11. For aligned job set J, if g = dmax and h = rmin, then OPT executes all jobs with speed a_den([rmin, dmax]).
Proof. It suffices to prove that there is no descending-time/ascending-time in interval [rmin, dmax] when h = rmin and
g = dmax. We prove it by contradiction. Suppose on the contrary that such a time exists, then we assume block [ta, tb] is
the first (earliest) block that has speed s > a_den([rmin, dmax]) in OPT. Let [tc, td] be the nearest peak after ta ([tc, td] can
possibly be [ta, tb] itself). First, all blocks between [rmin, ta] have a speed at most a_den([rmin, dmax]) according to the choice
of [ta, tb]. Second, we will prove that OPT has a speed exactly a_den([rmin, dmax]) in the interval [rmin, ta]. We suppose on the
contrary that there exists at least one block between [rmin, ta] with a speed less than a_den([rmin, dmax]). Then the workload
C[rmin,ta](OPT) < a_den([rmin, dmax]) · (ta − rmin). By symmetrically applying Lemma 7, all workload C[rmin,ta](OPT) belongs
to jobs with I(J) ∩ [rmin, ta] ≠ φ. We have

a_den([ta, dmax]) =

∑
J|I(J)⊆[ta,dmax]

C(J)

dmax − ta

=

∑
J|I(J)⊆[rmin,dmax]

C(J) −
∑

J|I(J)∩[rmin,ta]≠φ

C(J)

dmax − ta

>
a_den([rmin, dmax] · (dmax − rmin − (ta − rmin)))

dmax − ta
= a_den([rmin, dmax])

which implies h > rmin, a contradiction.
Thus the interval [rmin, ta] is exactly a block with speed a_den([rmin, dmax]) in OPT. Then we have C[rmin,td](OPT) >

(td − rmin) · a_den([rmin, dmax]). By Lemma 7, all workload in C[rmin,td](OPT) belongs to jobs with d(J) ≤ td. We have

a_den([rmin, td]) ≥
C[rmin,td](OPT)

td−rmin
> a_den([rmin, dmax]) which indicates g < dmax by the definition of GDP. In this way, we

successfully obtain a contradiction and arrive at the conclusion that [rmin, dmax] should be one block in OPT when g = dmax
and h = rmin. �
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Now we can show that Algorithm 3 computes the optimal schedule for aligned jobs in O(n2) time. Steps 4–9 show the
re-scaling procedure. In both cases h < g (e.g. Fig. 5) and h > g , the job set J is divided into three subsets JL, JR, JM with
adjusted arrival times and deadlines. Notice that h = g is not possible because a time cannot be both a descending-time
and an ascending-time. By Lemmas 9 and 10, the optimal schedule computed for the re-scaled job sets can directly combine
into the optimal schedule for the original job set. Note that for the re-scaled jobs, the algorithm terminates when g = dmax
and h = rmin. Because this corresponds to the discovery of a block in OPT by Lemma 11.

Nowwe analyze the running time of Algorithm3. Looking for GDP andGUP (Step 2) in one job set needs atmostO(n) time
because there are at most 2n ascending/descending times. We can organize all the job sets we deal with by a tree reflecting
the subset relation between job sets. In this way, a leaf in the tree represents a block (the number of blocks is at most n) in
OPT because no further partition is done on the leaf due to the reason g = dmax and h = rmin. While the number of nodes
in the tree is the total number of different job sets for which we need to find GDP and GUP. We know that the number of
nodes in a tree is twice the number of leaves in the tree minus 1. Furthermore, by Lemma 11, every job set only needs to be
dealt with once. Therefore, the running time of Algorithm 3 is O(n2).

Algorithm 3 prec_Ideal(J)

1. rmin = minJ∈J r(J); dmax = maxJ∈J d(J);
2. Find a GDP g ∈ [rmin, dmax] and a GUP h ∈ [rmin, dmax].
/* Compute the schedule for the minimal interval*/
if g = dmax and h = rmin then

3. Execute all jobs with speed s = a_den([rmin, dmax]) in EDF order.
else

/* Otherwise, re-scale the jobs into three subsets*/
if h < g then
4. JL = {J|I(J) ∩ [rmin, h] ≠ φ where we adjust d(J) = min{d(J), h};
5. JR = {J|I(J) ∩ [g, dmax] ≠ φ where we adjust r(J) = max{r(J), g};
6. JM = {J|I(J) ⊆ [h, g]};

end if
if h > g then
7. JL = {J|I(J) ⊆ [rmin, g]};
8. JR = {J|I(J) ⊆ [h, dmax]};
9. JM = J\JL\JR where we adjust d(J) = min{d(J), h} and r(J) = max{r(J), g};

end if
end if
/* Iteratively compute over the subset JL, JR, JM if they are not empty*/
10. prec_Ideal(JL); prec_Ideal(JR);prec_Ideal(JM);

4.2. Accelerate model

In this section, we study the optimal schedule for the general aligned jobs. Note that jobs with a common arrival time
is a special case of aligned jobs. We first extend some of its basic properties in Section 4.2.1. We will compute the optimal
schedule for aligned jobs by adopting Algorithm 1 as a building block. We use OPTK to denote the optimal schedule where
K is the maximum acceleration rate.

Given a block blockp, we denote the corresponding interval as [L(blockp), R(blockp)]. We define virtual canyon to be a
block with length 0. Next, we derive some properties of OPTK .

4.2.1. Basic properties
Lemma 12. There is an optimal schedule where jobs are executed in EDF order.

The proof for the extension is similar as Lemma 4.

Lemma 13. In the optimal scheduleOPTK , the speed functionwill accelerate as fast as possible, i.e., either |s′(t)| = K or s′(t) = 0.

Proof. If there exists an acceleration interval [a, b] with |s′(t)| < K as shown in Fig. 6, then we can construct a virtual
canyon blockp between [a, b] and let the acceleration rate in [a, L(blockp)] and [R(blockp), b] be −K and K respectively. If
s(L(blockp)) < 0 due to this transformation, then we replace the curve below s = 0 by a segment with speed 0. This can
remove the possibility 0 < |s′(t)| < K , and ensure that the schedule is feasible and the energy does not increase. �

Unlike Lemma 3, s′(t) = K cannot be eliminated in OPTK .
Among all the blocks, we define the block [ta, tb] where limt→ta− s′(t) = K ∧ limt→ta+ s′(t) = 0 and limt→tb− s′(t) =

0 ∧ limt→tb+ s′(t) = −K to be a peak. Reversely, the block where limt→ta− s′(t) = −K ∧ limt→ta+ s′(t) = 0 and
limt→tb− s′(t) = 0 ∧ limt→tb+ s′(t) = K is called a canyon.
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Fig. 6. Virtual canyon.

We say t̂ is down-edge-time if limt→t̂− s′(t) = 0 ∧ limt→t̂+ s′(t) = −K or limt→t̂− s′(t) = K ∧ limt→t̂+ s′(t) = 0.
For example, both the start time and finish time of a peak are down-edge-times. Note that for jobs with a common arrival
time, s(t) is non-increasing, thus the finish time of a block is a down-edge-time. The following lemma extends Lemma 6 to
consider the aligned jobs.

Lemma 14. In the optimal schedule OPTK , every down-edge-time is either a tight deadline or a tight arrival time.

Proof. We first show that down-edge-time t̂ is a tight deadline when limt→t̂− s′(t) = 0 ∧ limt→t̂+ s′(t) = −K . In the
optimal schedule, assume block [a, t̂] has a down-edge-time t̂ . Suppose on the contrary that the job executed at time t̂ (let
the job be J) has a deadline d(J) > t̂ . We will prove that the energy can be reduced which contradicts the optimality. Note
that the definition of down-edge-time implies the existence of a canyon which has a finish time (assume to be d) larger
than t̂ . Then the speed function s(t) in interval [a, d] is non-increasing. This allows us to apply the similar transformation
as in the proof of Lemma 6. The method is also to gradually postpone the completion time of J , which will finally ensure
all down-edge-times in [a, d] are tight deadlines (or tight arrival times symmetrically). Since all the jobs that are executed
originally after time t̂ are now executed with a higher speed and executed later after the postpone procedure, this will not
violate the timing constraint (both for arrival time and deadline). Thus in this case we can ensure that t̂ is a tight deadline.
For the other type of down-edge-time, we can similarly show that it is a tight arrival time. This finishes the proof. �

Lemma 15. In the optimal schedule OPTK , each job J is executed only in one block, and this block is the lowest one in interval
[r(J), d(J)].

Proof. If a job J is executed in several blocks, we can see that these executionsmust form a continuous interval if we remove
all the acceleration intervals, because for aligned jobs no preemption will happen since the schedule follows EDF order by
Lemma 12.

W.l.o.g. we assume that OPTK executes J in two adjacent blocks blockp−1,blockp, and R(blockp−1) is a down-edge-time
(in this case limt→R(blockp−1)− s′(t,OPTK ) = 0 ∧ limt→R(blockp−1)+ s′(t,OPTK ) = −K ). This contradicts Lemma 14 because
at time R(blockp−1), OPTK executes job J with d(J) > R(blockp−1). Thus every job J can only be executed in one block in
OPTK . Moreover, assume that on the contrary J is not executed in the lowest block overlapping [r(J), d(J)]. Without loss of
generality, we can assume that J is executed in blockp with speed s and there is another block blockq on the right of blockp
with speed less than s and d(J) > L(blockq). Then there exists a down-edge-time t in the interval [R(blockp), L(blockq)]which
is a tight deadline or equivalently a job’s deadline and completion time (Let this job be J ′). If J = J ′, then it is a contradiction
because d(J) > L(blockq); if J ≠ J ′, then J ′ is executed after J but has a deadline before d(J). According to Lemma 12, J ′ should
be executed before J since the input job set is an aligned job set, a contradiction. �

4.2.2. O(n2) time algorithm to compute OPTK
To find the optimal schedule, our method is to identify some special blocks belonging to OPTK . After enough blocks are

selected, the remaining interval of OPTK can be easily computed. To be more specific, we compare OPTK with schedule
OPT∞, which is the optimal schedule for the special case K = ∞, namely the ideal model. We observe that the block with
the highest speed (we call it global-peak) of OPTK can be computed first.

Lemma 16. OPTK executes the same as OPT∞ in the first critical interval.

Proof. Suppose that [a, b] is the first critical interval computed by Algorithm 2. Then in OPT∞, all jobs with I(J) ⊆ [a, b] are
executed at a speed Itt(a, b). We prove this lemma by investigating two properties of OPTK .

The first property is: in OPTK , no jobs need to be executed with a speed higher than Itt(a, b). For any job, OPTK runs it in a
unique block (speed) according to Lemma 15. Let J be the job with the highest speed s in OPTK . We suppose on the contrary
that s > Itt(a, b) and it belongs to block p. Because the two down-edge-times of blockp are exactly a tight deadline and a
tight arrival time, the interval of blockp will have a larger intensity than [a, b] because the job set under investigation is an
aligned job set, a contradiction. Thus the first property is true.

The second property is: for any job with I(J) ⊆ [a, b], OPTK cannot run it with speed s < Itt(a, b). According to
Algorithm 2, the first critical interval [a, b] execute all (and only) jobs with I(J) ⊆ [a, b]. Note that when all the jobs with
I(J) ⊆ [a, b] run in EDF order and with speed Itt(a, b), the workloadw(a, b) are finished exactly at b. If any one of these jobs
runs with a lower speed than Itt(a, b) in OPTK , then to ensure that the remaining workload satisfies the timing constraint,
some jobs must have a speed s > Itt(a, b). This contradicts the first property above.

The combination of the two properties indicates that OPTK runs all/only jobs with I(J) ⊆ [a, b] at a speed of exactly
Itt(a, b) in the interval [a, b]. This is the same as that of OPT∞. Therefore, the lemma is true. �
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Fig. 7. Possible cases of the separation-time.

After we have fixed the first block (global-peak) of OPTK , a natural question is whether we can apply the same proof of
Lemma 16 to select other blocks. For example, in the remaining interval of OPT∞, does the block with maximum intensity
have the same schedule as that of OPTK? Although this is not true, we will show that some other blocks in OPT∞ can be
proved to be the same as OPTK . The key observation is that by appropriately dividing the whole interval into two sub-
intervals, the block with the maximum intensity inside one of the sub-intervals in OPT∞ can be proved to be the same as
OPTK . Our partition of intervals is based on amonotone-interval defined below.

Definition 2. Given a schedule, we define the sub-interval where the speed function/curve is strictly non-increasing or
non-decreasing to be amonotone-interval.

Here and in the following, by ‘‘strictly non-increasing’’ wemean non-increasing but not constant; similarly by ‘‘strictly non-
decreasing’’ we mean non-decreasing but not constant. Since the speed in OPTK outside the global-peak [a, b] is at most
Itt(a, b), there exists a monotone-interval immediately after time b (non-increasing curve) and symmetrically before time
a (non-decreasing curve). At time b and a, the speeds are respectively sb = Itt(a, b) and sa = Itt(a, b).

In the following, we will study a schedule S[b,t1] (only specifying speeds in interval [b, t1]) with monotone-interval [b, t1]
(non-increasing speed with s(b, S[b,t1]) = s(b,OPT∞)). Suppose that t1 is the first (earliest) intersection of the two curves
s(t, S[b,t1]) and s(t,OPT∞)with limt→t+1

s(t,OPT∞) > 0. Fig. 8 shows an example. Wewill compare the speed curve of OPTK
with that of S[b,t1] based on the definition below.

Definition 3. In interval [b, t1], we say that t is a separation-time of OPTK w.r.t S[b,t1] if their speed curves totally overlap in
interval [b, t] and separate at t + ∆t where ∆t → 0.

Fact 2. If there exists a schedule S[b,t1] (let the lowest/latest block and the second lowest block in S[b,t1] be [t0, t1] and blockp̄)
satisfying the following properties,

• (1) s(t1, S[b,t1]) < limt→t+1
s(t,OPT∞).

• (2) Block [t0, t1] executes all jobs with I(J) ∩ [t0, t1] ≠ φ.
• (3) S[b,t1] restricted to [b, R(blockp̄)] is feasible for all jobs with d(J) ∈ (b, R(blockp̄)] and only executes these jobs. The down-

edge-times in S[b,R(blockp̄)] are tight deadlines.

Then, let t̂ be the separation-time of OPTK w.r.t S[b,t1], we have

• (a) b < t̂ < t1 and limt→t̂+ s′(t,OPTK ) ≠ −K.
• (b) the speed curve of OPTK in interval [t̂, t1] is strictly non-decreasing.
• (c) OPTK executes all jobs with I(J) ∩ [t0, t1] ≠ φ before time t1 and time t1 is a down-edge-time with limt→t−1

s′(t,OPTK ) =

K ∧ limt1→t+1
s′(t,OPTK ) = 0. Furthermore, OPTK executes a job J with r(J) = t1 at time t1.

Proof. As shown in Fig. 7, suppose that S[b,t1] has blocks [ta, tb], [tc, td], . . . , [t0, t1] in left-to-right order. We first remove
the possibility that t1 ≤ t̂ . Let [t2, t3] be the nearest peak after t1 in OPT∞. We can see that if t1 ≤ t̂ , then OPTK cannot have
a speed curve strictly non-increasing in [t1, t3] because otherwise some job will miss the deadline. Therefore, there exists a
canyon (or virtual canyon) after t1 in OPTK , and we assume that [tu, tv] is the first block after this canyon. We have tu < t3.
In this case, OPTK executes the workload C[tu,tv ](OPTK ) later than that in OPT∞ which contradicts ‘‘tu is a tight arrival time
in OPTK ’’. Until now, we have removed the possibility t1 ≤ t̂ .

Now we prove the second part of property (a). First, OPTK has a monotone-interval (non-increasing) after time b, from
the analysis above, we know that the separation-time of OPTK w.r.t S[b,t1] satisfies b < t̂ < t1. We then discuss case by case.
If limt→t̂+ s′(t, S[b,t1]) = −K , we have limt→t̂+ s′(t,OPTK ) ≠ −K by the definition of separation-time. If s(t̂, S[b,t1]) = 0,
obviously limt→t̂+ s′(t,OPTK ) ≠ −K . For the remaining case that limt→t̂+ s′(t, S[b,t1]) = 0 ∧ s(t̂, S[b,t1]) ≠ 0, we suppose
on the contrary that limt→t̂+ s′(t,OPTK ) = −K . We assume that the block containing t̂ is [tu, tv]. Note that the workload
C[tu,tv ](S[b,t1]) needs to be finished before time tv in OPTK , because tv is a tight deadline according to condition (3). This
implies that OPTK cannot be strictly non-increasing in (t̂, tv] because otherwise some jobs will miss deadlines. Thus we
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assume blockp to be the first canyon after t̂ and block [t ′u, t
′
v] to be the nearest block after blockp. Note that t ′u should be a

down-edge-time and a tight arrival time. However, OPTK executes C[t ′u,t ′v ](OPTK ) later than that in S[b,t1] restricted to [t̂, t1].
Thus tu cannot be a tight arrival time due to condition (3), a contradiction.

For property (b), since t̂ is a separation-time, we have limt→t̂+ s′(t,OPTK ) = K or limt→t̂+ s′(t,OPTK ) = 0 by property
(a). Suppose on the contrary that there exists a block (let it be [tu, tv] with speed s and tv < t1) such that OPTK is strictly
non-decreasing in [t̂, tv] and limt→t̂+v

s′(t,OPTK ) = −K . Two subcases should be discussed. If tu = t̂ , then tv is a down-
edge-time and hence also a tight deadline according to Lemma 14. However, we note that the speed of the block [tu, tv] in
OPTK is higher than the speed of all the blocks between [t̂, t1] in S[b,t1]. Therefore, C[tu,tv ](OPTK ) is finished earlier in OPTK
than the corresponding workload executed in S[b,t1]. By condition (3), time tv cannot be a tight deadline which contradicts
Lemma 14. If tu > t̂ , then tu is a tight arrival time and tv is a tight deadline by Lemma 14. C[tu,tv ](OPTK ) belongs to the jobs
with I(J) ⊆ [tu, tv]. However, S[b,t1] has a speed lower than that in OPTK in [tu, tv]. Thus some jobs will violate the timing
constraints in S[b,t1] which contradicts condition (3).

The above analysis shows that OPTK must have a speed curve that coincideswith S[b,t1] in interval [b, t̂]where b < t̂ < t1.
Furthermore, OPTK is strictly non-decreasing in [t̂, t1].We nowprove property (c). The above analysis shows that the nearest
canyon after b in OPTK contains separation-time t̂ . Assume that [tl, tr ] is the canyon with speed s′. Suppose that S[b,t1] has
speed s0 at block [t0, t1]. Note that s′ ≥ s0 since t̂ < t1. We can further remove the possibility s′ = s0. Because otherwise
t0 ≤ t̂ < t1 and limt→t̂+ s(t,OPTK ) = K . There exists a tight arrival time (assume to be tu) immediately after t̂ . The
workload C[t̂,t1](S[b,t1]) is executed later (starting from time tu) in OPTK and this contradicts that tu is a tight arrival time. We
will discuss the two cases that limt→t−1

s(t,OPTK ) = K and limt→t−1
s(t,OPTK ) = 0. First, if limt→t−1

s(t,OPTK ) = 0, then
there exists a block [tu, tv] with tu < t1 ≤ tv in OPTK and [tu, tv] is after the canyon [tl, tr ] (otherwise [tu, tv] = [tl, tr ], then
OPTK is doing the workload faster than S[b,t1] in [tl, t1] but they are doing the same amount of workload, a contradiction).
Thus tu is a down-edge-time. Let the speed in [tu, tv] be s′′. We have s′′ > s′ ≥ s0. Interval [tu, t1] cannot execute the jobs
with I(J) ⊆ [t1, tf ]. However, the workload C[tu,t1](OPTK ) is executed later and with a higher speed in OPTK than that in
S[b,t1]. By the feasibility of S[b,t1] (condition (3)), time tu cannot be a tight arrival time, which is a contradiction. Second, if
limt→t−1

s(t,OPTK ) = K , we can remove the possibility of limt→t+1
s(t,OPTK ) = K . Because otherwise there exists a block

[tu, tv] immediately after t1 where tu is a tight arrival time. However, this is impossible since all jobs with I(J) ⊆ [t1, tf ]
is executed after t1 and thus one of the jobs with r(J) = t1 or I(J) ∩ [t0, t1] ≠ φ is the first job executed in tu in OPTK
(ties can be arbitrarily broken). This contradicts the fact that tu is a tight arrival time. Thus the only case that remains is
limt→t−1

s(t,OPTK ) = K ∧ limt→t+1
s(t,OPTK ) = 0. Note that t1 is a down-edge-time in this case and should be a tight arrival

time. Thus jobs with r(J) < t1 cannot be executed at t1 in OPTK . In other words, OPTK can only execute the jobwith r(J) = t1
at time t1. Therefore, all jobs with I(J) ⊆ [t0, t1] ≠ φ are executed before t1 because OPTK executes the jobs in EDF order.
This finishes the proof of property (c). �

Fact 3. If there exists a schedule S[b,t1] satisfying the three conditions in Fact 2, let [a2, b2] be the maximum intensity block in
OPT∞ among the remaining interval [t1, tf ], then OPTK has the same schedule as OPT∞ in interval [a2, b2].

Proof. S[b,t1] has divided the interval [ts, tf ] into two sub-intervals [ts, t1] and [t1, tf ]. By properties (b) and (c) in Fact 2, the
speed curve of OPTK in interval [t̂, t1 + ∆t] (∆t → 0) is strictly non-decreasing, where t̂ is the separation-time of OPTK
w.r.t S[b,t1]. Moreover, t1 is a down-edge-time and OPTK executes the job with r(J) = t1 in [t1, t1 + ∆t] and all jobs with
I(J) ∩ [t0, t1] ≠ φ in [ts, t1]. Since limt→t−1

s′(t,OPTK ) = K ∧ limt→t+1
s′(t,OPTK ) = 0, there exists at least one peak among

the interval [t1, tf ] in OPTK . W.l.o.g we assume the peak [tu, tv] ⊆ [t1, tf ] to be the interval with maximum speed s among
[t1, tf ] in OPTK . We will examine the schedule OPTK and OPT∞ in the interval [t1, tf ].

We know that tu is a tight arrival time and tv is a tight deadline by Lemma 14. If s > Itt(a2, b2), since OPTK executes
all/only jobs with I(J) ⊆ [tu, tv] in [tu, tv] (otherwise violating Lemma 14), this implies that OPT∞ has an intensity in
[tu, tv] larger than that in [a2, b2]. This contradicts the condition that ‘‘[a2, b2] is the maximum intensity block in [t1, tf ]’’.
If s < Itt[a2, b2], then since the total workload of jobs with I(J) ⊆ [a2, b2] is exactly (b2 − a2) · Itt(a2, b2), OPTK cannot
complete all these jobs with a speed less than Itt(a2, b2). Therefore s = Itt(a2, b2). Now we look at OPTK restricted to the
interval [a2, b2], if OPTK uses a speed less than s in part of [a2, b2], then in order to finish all the workload of jobs with
I(J) ⊆ [a2, b2], OPTK must use a speed higher than s in some other part of [a2, b2], which contradicts the definition of s.
Hence, OPTK will execute all/only jobs with I(J) ⊆ [a2, b2] in interval [a2, b2] and the speed is exactly Itt(a2, b2). This is the
same as the schedule OPT∞ in [a2, b2]. This ends the proof. �

Nextwe present Algorithm 4which can compute a schedule S[b,t1] satisfying the three conditions in Fact 2. This algorithm
repeatedly calls Algorithm 1 to handle several blocks in OPT∞. Blocks in OPT∞ starting from the global-peak are indexed as
0,1,2,. . . . We use s(blockp) to denote the speed of blockp in OPT∞. It outputs a monotone-interval starting at time b (which
equals R(block0)), where the speed at b should be s(b) = Itt(a, b) according to Lemma 16. Let t1 = R(blockr) where blockr is
the current block being handled. The algorithm terminateswhen the lowest speed in [b, t1] is less than s(L(blockr+1),OPT∞).
Fig. 8 shows an example, where S[b,t1] is the schedule with monotone-interval computed by Algorithm 4 and [t1, tf ] is the
un-handled interval in OPT∞.

Lemma 17. Algorithm 4 computes a schedule S[b,t1] with a non-increasing speed curve in O(n2) time.
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Fig. 8. An example that shows schedule S[b,t1] in monotone-interval [b, t1].

Fig. 9. An example for Algorithm 4: In the first iteration, we have ¯̄t = b and slast = sb . block1 is the selected blocki . Thus interval [tL, tR] = [b, R(block1)]
will be handled with p = 1 and job 2 adjusted. Since there is only one block in the computed schedule S, the finish time of the second lowest block is still
¯̄t = b.
In the second iteration, slast is still sb . Job 2 is recovered. block3 is the selected blocki . Thus interval [tL, tR] = [b, R(block3)] will be handled with p = 3 and
jobs 2, 5 adjusted. For the computed schedule S, the finish time of the second lowest block is ¯̄t as shown in (c).
In the third iteration, job 5 is recovered. slast is set to be s(¯̄t, S). block4 is the selected blocki . Thus [tL, tR] = [¯̄t, R(block4)] will be handled with jobs 5, 6
adjusted. The new computed schedule S has lowest speed less than s(block5) as shown in (d). Therefore, Algorithm 4 terminates here.

Proof. The concept of Algorithm 4 is to utilize Algorithm 1 to handle the blocks (common arrival time job instance by
appropriate re-scaling) in OPT∞. Fig. 9 shows an example. Let [tL, tR] be the current interval that is handled and S[tL,tR] be
the computed schedule in the current iteration where s(t, S[tL,tR]) is non-increasing. Let ¯̄t be the finish time of the second
lowest block in S[tL,tR]. In the next iteration, if s(tR, S[tL,tR]) > s(blockp+1) where blockp+1 is the first un-handled block in
OPT∞, the algorithm will set slast = s(¯̄t, S[tL,tR]) > s(tR, S[tL,tR]) > s(blockp+1) in Step 4. The schedule computed in [b, ¯̄t] is
fixed as part of S[b,t1]. We would like to further compute a monotone-interval after ¯̄t (it is non-increasing in this case) in
the next iteration, which has starting speed slast and satisfies that every down-edge-time is a tight deadline (property 3) of
Fact 2. Remember that Algorithm 1 outputs a non-increasing speed curve and every down-edge-time is a tight deadline.
Thus we utilize Algorithm 1 to generate such a schedule. Two properties should be guaranteed. The computed schedule
by Step 10 should be not only non-increasing but also feasible for the jobs’ timing constraints. To ensure that Algorithm 1
generates a non-increasing speed curve, we choose the blocki after ¯̄t (Step 5) and hence Algorithm 1 will handle interval
[¯̄t, R(blocki)] in the next iteration. After the adjust procedure Steps 7–9, all jobs have I(J) ⊆ [¯̄t, R(blocki)]. All these jobs will
be the input for Algorithm 1 with starting speed slast at time ¯̄t . Their arrival time will be adjusted to be the same (at time
¯̄t) while computing. For Algorithm 1 with adjusted jobs, we note that only when there exists a time t ∈ [¯̄t, R(blocki)] with∑

J|I(J)⊆[¯̄t,t] C(J) > (t − ¯̄t) · slast should it output a schedule violating the ‘‘non-increasing’’ requirement. According to the
choice of blocki, OPT∞ has speed s(blockp+1) > s(blockp+2) > · · · > s(blocki) and s(blocki) < s(blocki+1). Note that in S[tL,tR]

from the last iteration, the lowest block (let it be blockq) may execute jobs with original deadline d(J) > tR. These jobs will
be recovered in Step 3. In Step 8, these jobs will be adjusted and there may be more jobs with deadline d(J) > R(blocki)
having their deadlines adjusted to R(blocki). If originally all these jobs have d(J) ≤ R(blocki), they are obviously executed
before time R(blocki) in OPT∞ and thus

∑
J|I(J)⊆[¯̄t,t] C(J) ≤ C[L(blockq),R(blockq)](S[tL,tR]) + C[L(blockp+1),t](OPT∞) < (t − ¯̄t) · slast

for t ∈ (R(blockq), R(blocki)] and
∑

J|I(J)⊆[¯̄t,t] C(J) ≤ C[L(blockq),t](S[tL,tR]) < (t − ¯̄t) · slast for t ∈ [¯̄t, R(blockq)]. If some adjusted
jobs originally have d(J) > R(blocki), then C[L(blocki),R(blocki)](OPT∞) is at least the total workload of these jobs, because jobs
with d(J) > R(blocki) are not executed after time R(blocki) in OPT∞ by applying Lemma 15 for K = ∞. Thus the adjusted
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Fig. 10. The schedule OPTK restricted in the interval between two (local-)peaks.

jobs also satisfy
∑

J|I(J)⊆[¯̄t,t] C(J)/(t−¯̄t) < slast by similar reasons, which implies that the computed schedule in [¯̄t, R(blocki)]
is non-increasing.

Since Algorithm1 handles the special casewhere every job has a common arrival time, we have tomodify the arrival time
of the input jobs with I(J) ∩ [tL, tR] ≠ φ and r(J) > tL to be tL (common arrival time, Step 7). The computed schedule has a
non-increasing speed curve in [tL, tR] and each down-edge-time is a tight deadline.We need to show that the schedule is still
feasible for the input before modification (where I(J) ∩ [tL, tR] ≠ φ and r(J) > tL). This can be verified since the computed
schedule can be considered as a process to postpone the jobs’ execution time until each down-edge-time is a tight deadline
as shown in Lemma 6. With the starting speed slast > s(blockp+1), jobs in the computed schedule with modified input is
executed with a higher speed than that of OPT∞ in [tL, tR]. Thus jobs in the computed schedule with modified input begin
to execute later than that of OPT∞ and hence the computed schedule is still feasible for the non-modified input.

We finally examine the running time for this algorithm. Suppose that in iteration i, ni jobs are involved and the resulting
schedule computed in the current block consists of ki blocks, then the time needed to do this computation is O(ki ∗ ni);
furthermore, at least ki − 1 jobs will have their schedule fixed and no longer be involved in the future computation. Since
every job can only fix their schedule once, we conclude that the total time neededwill be O(

∑
ki ∗ni)where

∑
(ki −1) ≤ n.

This implies the O(n2) running time. �

Among the un-handled intervals (e.g. [t1, tf ]), we define the local-peak to be the peak which has the local maximal
intensity in OPT∞. For example, in [t1, tf ], [a2, b2] is the local-peak (Fig. 8). The following lemma shows that the schedules
OPTK and OPT∞ are the same in local-peaks.

Lemma 18. The schedule of local-peaks in OPTK is the same as OPT∞.

Proof. Algorithm4 (Fig. 9 shows an example) results in a schedule S[b,t1] inmonotone-interval [b, t1]by Lemma17. It suffices
to prove that the computed schedule satisfies Fact 3. Thus we only need to verify the three conditions in Fact 2.

Condition (1) holds since the algorithm terminates when slast < s(L(blockp+1),OPT∞). It remains to show conditions (2)
and (3). In a single iteration handling the block [tL, tR], let the computed schedule be S[tL,tR]. We suppose that blockq is the
lowest block in S[tL,tR]. The way of adjusting jobs implies that all jobs with I(J) ∩ [L(blockq), R(blockq)] ≠ φ are executed in
the lowest block blockq. Furthermore, the recover procedure (Steps 3–5) ensures that at each iteration (and hence the final
iteration), this property holds. Therefore, condition (2) is true. For condition (3), we let [t0, t1] be the lowest block after the
final iteration and let blockp̄ be the second lowest block. No jobs with I(J) ∩ [t0, t1] ≠ φ will be executed in [b, R(blockp̄)]
because R(blockp̄) is a tight deadline and all such jobs are executed in [t0, t1] due to the adjust procedure. On the other
hand, since all involved jobs with d(J) ⊆ (b, t0] are recovered before the schedule for them in S[b,t1] is computed, the final
schedule S[b,t1] must be feasible for them as the original input. And each down-edge-time is a tight deadline by the property
of Algorithm 1. Hence, condition (3) is also true, which implies the correctness of the lemma. �

Note that there is a monotone-interval respectively before and after the computed global-peak or local-peaks. We can
repeatedly call Algorithm 4 (a symmetric version of Algorithm 4 can be used to compute a monotone-interval before a
‘‘peak’’) until no such peak exists in the un-handled intervals. Then the schedule of the remaining intervals (all intervals
between the adjacent peaks computed in Algorithm 6) can be uniquely computed as shown in Lemma 19.

Lemma 19. The schedule of OPTK in intervals between two (local-)peaks found by Algorithm 6 can be computed by Algorithm 5.
Notice that in Algorithm 5, ‘‘down-edge-time’’ means the corresponding point on the speed curve at the down-edge-time.

Proof. Fig. 10 shows an example. We need to compute the optimal schedule in the interval between two adjacent peaks
[a1, b1], [a2, b2] that are computed inAlgorithm6.W.l.o.g assumeAlgorithm6 finds [a1, b1] first and then computes S[b1,t1] in
monotone-interval [b1, t1]. After [a2, b2] is found, Algorithm6will compute amonotone-interval [t2, a2] and schedule S[t2,a2]
by calling Algorithm1 symmetrically handling the blocks in [t2, a2].We first prove that these two curves intersect each other
(notice that there are no un-handled intervals now). Otherwise without loss of generality, we assume that the speed curve
of S[t2,a2] is above that of S[b1,t1]. Then, we have s(t2,OPT∞) > s(t2, S[b1,t1]). Therefore, since t1 is the first intersection after b1
between S[b1,t1] and OPT∞, we must have t1 < t2. This implies an un-handled interval [t1, t2], a contradiction. Assume that
the two speed curves intersect at time t̄ (if they intersect at a line segment, we can pick any point on the line segment as t̄).
Note that the speed curves in [b1, t̄] and [t̄, a2] are respectively non-increasing and non-decreasing. The down-edge-times
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Algorithm 4 Computing a Monotone-interval
Input: OPT∞, Schedule computed by YDS.
[a, b], computed peak (it can be the global-peak or local-peak)
sb, Starting speed at time b.
Output: S[b,t1], a monotone-interval starting from b and its corresponding schedule.
/* Let [tL, tR] be the current interval being handled. Let S be the the computed schedule for current interval [tL, tR].
slast denotes the lowest speed in the computed S. blockp+1 is the first un-handled block in OPT∞.*/
1. slast = sb; tL = tR = b; S[b,t1] = φ; S = φ; p = 0; ¯̄t = b.
2. In OPT∞, index the blocks from the peak [a, b] as block0, block1, block2, . . . in the left to right order.
while slast ≥ s(blockp+1) do

/*recover procedure*/
if S ≠ ∅ then
3. For jobs that are executed in the lowest block of S, recover their arrival time/deadline to the original value.
4. Reset slast to be the speed of S in time ¯̄t;

end if
5. Select blocki to be the block after tR in OPT∞ with i.e. s(blockp+1) > · · · > s(blocki) and s(blocki) < s(blocki+1); if
such a block does not exist, then let i = p + 1; Reset tR = R(blocki).
6. Set p = i;
/*adjust procedure*/
for every job with I(J) ∩ [tL, tR] ≠ φ do
7. Adjust r(J) to be max{r(J), tL};
8. Adjust d(J) to be min{d(J), tR};
9. Backup the original value of r(J) and d(J);

end for
/*handle interval [tL, tR] in OPT∞*/
10. Call Algorithm 1 to compute a schedule S for jobs involved in Steps 7–9 according to common arrival time tL with
starting speed slast .
11. If the blocki found in Step 6 has speed 0, then we make S accelerate with rate −K after the last time with positive
speed and insert a virtual canyon at time tR.
12. Reset slast to be the lowest positive speed in the computed S.
if slast < s(blockp+1) then
13. S[b,t1] = S[b,t1] ∪ S; Return S[b,t1].

else
14. Let ¯̄t be the finish time of the second lowest (including the virtual canyon inserted in Step 11) block in S.
15. S[b,t1] = S[b,t1]∪ (S restricted in interval [tL, ¯̄t]).
16. Reset tL = ¯̄t .

end if
end while

in S[b1,t̄] (or S[t̄,a2]) are tight deadlines (or tight arrival times symmetrically) according to property (3) of Fact 2. Suppose that
OPTK has a separation-time t̂1 w.r.t S[b1,t1] and symmetrically a separation-time t̂2 w.r.t S[t2,b2]. We have t̂1 ≤ t̄ ≤ t̂2. (E.g. if
otherwise t̂2 < t̄ , then OPTK has part of speed curve between interval [t̂1, t̂2] that is below the speed curve of s(t, S[b1,t1]).
This implies that there exists at least a time with s′(t, S[b1,t1]) = −K where t̂1 < t < t̂2 ≤ t1, contradicting the property
(b) in Fact 2.) It is also easy to see that t2 ≤ t̂1 < t̂2 ≤ t1 (E.g. if otherwise t̂1 < t2, then after separation the speed function
of OPTK must go down at t2 by property (c) of Fact 2. However this contradicts property (b) of Fact 2.) By property (b) of
Fact 2, we know that the speed curve in OPTK should be non-decreasing in [t̂1, t1] and non-increasing in [t2, t̂2]. Therefore,
it should be a line with constant speed in interval [t̂1, t̂2]. Thus in OPTK , interval [t̂1, t̂2] with a constant speed is the lowest
block between the two peaks. This block will execute all jobs with I(J)∩[t̂1, t̂2] ≠ φ by Lemma 15. The speed for this lowest
block is unique. Because otherwise if OPTK has two possible speeds s and s′ with s < s′ for this block and the whole speed
curves in [ts, tf ] both complete the workload

∑
1≤i≤n C(Ji), then the one with speed s will complete less workload in total

than that with s′, a contradiction.
We note that once the speed s in this lowest block is determined, the separation-time t̂1 and t̂2 are hence known. We

can compute this speed by dividing the speed into several ranges so that speeds in the same range need to finish the same
set of jobs. Then we search from the lowest speed range to the highest speed range. If the maximum speed in a range (the
execution time is also longest in the range) cannot finish the jobs that should be executed by this range, then wemove on to
the next range until this condition does not hold. Then there is no need to move the speed into higher regions because the
ability to execute jobs grows more than the the workload of the new jobs added into the region. According to the existence
and uniqueness of the desired speed, we can just calculate it in the current region by solving some equation to achieve exact
feasibility. The details are shown in Algorithm 5. �
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Algorithm 5 Computing the Optimal Schedule between Two Adjacent Peaks
Input:
[a1, b1], [a2, b2], the two adjacent peaks found in Algorithm 6.
S[b1,t1], S[t2,a2], the two schedules computed by Algorithm 4. Choose one of the intersection points as t̄ .
Output: schedule of OPTK in interval [b1, a2].
1. For each down-edge-time p on s(t, S[b1,t1]) in [b1, t̄) or on s(t, S[t2,a2]) in (t̄, a2], let the point with the same speed on
the other curve be p′. If there are more than one such point, let p′ be the one minimizing |pp′

|; if there is no such point,
we do not consider line segment originating from p.
2. Sort all the segments pp′ by increasing order of their speed (denoted by Speed(p)) into p1p′

1, p2p
′

2, . . . , pmp
′
m (duplicate

segments are treated as one). The end points are relabeled so that pi is always on s(t, S[b1,t1]) and p′

i is always on s(t, S[t2,a2]).
3. Find augment segment for each segment pip′

i as follows. If pi and p′

i are both down-edge-time, then the augment segment
is pip′

i itself; if pi is a down-edge-time and p′

i is not, then the augment segment is pip′ where p′ is the closest down-edge-
timeon s(t, S[t2,a2]) to the right of p

′

i; the symmetric case is similarly defined.Weuse qiq′

i to represent the augment segment
of pip′

i .
for i = 1 tom do

4. Let C =
∑

I(J)∩[qi,q′
i]≠∅

C(J).

if ( C
|pip′

i |
< Speed(pi)) then

5. Let S[t̂1,t̂2] be the schedule that executes all jobs with I(J) ∩ [pi, p′

i] ≠ φ with speed s in interval [t̂1, t̂2].
(The parameters can be calculated as t̂1 = pi + T ; t̂2 = p′

i − T ; s = Speed(pi) − 2KT ; T =

Speed(pi)+K |pip′
i |−

√
(Speed(pi)−K |pip′

i |)
2+4KC

4K )
6. break;

end if
end for
7. The optimal schedule in interval [b1, a2] is (S[b1,t̂1] restricted to [b1, t̂1]) ∪ S[t̂1,t̂2] ∪ (S[t2,a2] restricted to [t̂2, a2]).

Theorem 4. Algorithm 6 computes OPTK for aligned jobs in O(n2) time.

Proof. The algorithm tries to find the global-peak and local-peak gradually, until none of them exists. The global-peak
is easy to compute. Note that we need to compute OPT∞ for searching. To find the local-peak iteratively, we compute
the monotone-interval (Algorithm 4) adjacent to the peak that is found. For the sub-intervals excluding the computed
monotone-interval, the maximum peak in OPT∞ of those sub-intervals are the local-peaks. After all such peaks are found,
the computed monotone-intervals from adjacent computed peaks will intersect each other and therefore Algorithm 5 can
be used.

The correctness of the algorithm follows naturally from the analysis in this section. Now we focus on the running time
of the algorithm. By using Theorem 3, OPT∞ can be computed in O(n2) time. Suppose that there are ni jobs to be handled
by one call of Algorithm 4. The time for this call will be O(n2

i ) as shown in Lemma 17. On the other hand, every job will
only be involved in two such calls (backward and forward). Therefore, the total running time of executing Algorithm 4 in
Algorithm 6 is O(n2) because

∑
ni ≤ 2n. Next, we analyze the execution of Algorithm 5 in Algorithm 6. Notice that the jobs

and down-edge-times involved in the calls of Algorithm 5 are disjoint. So we can first partition the jobs in O(n) time into
different groups according to which call it is involved in. Suppose that mi down-edge-times and ki jobs are involved in a
certain call of Algorithm 5. Then the running time of this call will be O(mi logmi + ki ∗ mi). Since

∑
mi < 2n and

∑
ki < n,

we can see that the total time for executing Algorithm 5 is also O(n2). Thus we can compute OPTK in O(n2) time. �

Algorithm 6 Computing the Optimal Schedule for Aligned Jobs
Input: Aligned job set J
Output: OPTK
1. Compute OPT∞.
2. Let the maximum intensity block in OPT∞ be the global-peak in OPTK .
3. Index the global-peak as an un-handled peak.
while there is a peak [L,R] un-handled do

4. Let OPTK execute jobs the same way as OPT∞ in [L, R].
5. Call Algorithm 4 to compute the monotone-interval starting from R (and also symmetrically a monotone-interval
ending at L).
6. If there are local-peaks in OPT∞ in the un-handled interval on either side of the monotone-intervals, then index the
local-peaks as un-handled peaks.

end while
7. Compute the OPTK for all the intervals between adjacent peaks found in the previous while loop using Algorithm 5.
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5. Conclusion

In this paper, we study the energy-efficient dynamic voltage scaling problem and mainly focus on the pessimistic
accelerate model and aligned jobs. All jobs are required to be completed before deadlines and the objective is to minimize
the energy.We start by examining the properties for the special casewhere jobs are released at the same time.We show that
the optimal schedule can be computed in O(n2). Based on this result, we study the general aligned jobs. The algorithm for
jobswith a common arrival time is adopted as an elementary procedure to compute the optimal schedule for general aligned
jobs. By repeatedly computing heuristic schedules that are non-increasing, we fix some peaks of the optimal schedule first.
This makes the optimal schedule in the remaining interval easier to compute. The complexity of the algorithm is O(n2)
since we improve the computation of the optimal schedule for aligned jobs in the ideal model to O(n2). The computation of
optimal schedules for general job sets under the pessimistic accelerate model remains as an open problem.
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