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1. Introduction 

1.1. Origin of the problem. At the end of the survey article [4] there is 
a list of open questions concerning the decidability of certain important 
elementary theories. 

One of these questions asks if  the elementary theory of complete 
normed rings (i.e. Banach algebras) is decidable. By classical work of 
Tarski the rings C and R are decidable [ 15]. It is easy to extend Tarski's 
results and prove that C and R are decidable normed algebras. From 
this we see that the elementary theory of Banach algebras is not essen- 
tially undecidable. Moreover, most known decidable tings are elementa- 
rily equivalent to omplete topological rings [ 1 ]. Thu~, it is reasonable 
to hope to obtain positive decidability results for Banach algebras. 

However, in this paper we prove rather general undecidability results 
for Banach algebras. 

1.2. Different formulations. There are various formulations of our prob- 
lem, according to the way we construe Banach algebras as structures for 
a first-order logic. 

The natural way to construe Banach algebras is as algebras (over C or 
R) endowed with a norm map to R. In this formulation, to be called 
the first formulation, Banach algebras are many-sorted structures for a 
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certain many-sorted logic. For many-sorted model-theory, consult [ 15 ]. 
Other formulations are obtained by forgetting some of the preceding 

structure. We get three other formulations in this way. 

Second formulation. If  we forget the algebra structure, we construe 
Banach algebras as rings with norms. 

Third formulation. If  we forget the norm, we construe Banach algebras 
as algebras. 

Fourth formulation. If  we forget the algebra structure and the norm, 
we construe Banach algebras simply as rings. 

1.3. Main results. Clearly a negative answer to the original pr~3blem in 
the fourth formulation (i.e. a proof  that the theory of the underlying 
rings of  Banach algebras is undecidable) implies a negative answer to the 
problem in the other formulations. Similarly, a negative answer in either 
of  the second or third formulations implies a negative answer in the first 
formulation. 

Our central result is that  the theory of  Banach algebras, construed sim- 
ply as rings, is hereditarily undecJdable. 

We present three proofs of this :esult, each giving significantly differ- 
ent information. 

The first proof  uses spectral theory, and establishes that if A is a Ba- 
nach algebra over C, with unit  and with trivial centre, and i fA is infinite- 
dimensional over its radical, then tl~e ring-theory of A is hereditarily un- 
decidable. An example of  such an A is ~(H,  H), the ring of  continuous 
linear operators on an infinite-dimensional Hilbert space H. 

The second proof  depends on Ersov's [3],  and establishes the strong 
result that the theory of the class of  groups of  invertible elements of  
finite-dimensional semi-simple Banach algebras is hereditarily undecida- 

ble. 
The third proof  uses Grzegorczyk's theorem [6] on the undecidability 

of the algebra of  closed subsets of  the Euclidean plane, and establishes 
that the theory of  commutative semi-simple Banach algebras, construed 
as rings, is hereditarily undecidable. 

En route to the first proof, we prove that i fA is a Banach algebra in- 
finite-dimensional over its radical, and we construe A simply as an alge- 
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bra,  t h e n  T h ( A )  is he red i t a r i l y  undec idab l e .  La t e r  we  p rove  the  analo-  

gous  resul t  fo r  n o r m e d  rings. 

2. Preliminaries 

2.1. F o r  d e f i n i t i o n s  and  basic fac ts  a b o u t  Banach  algebras,  see [2,  13 ] .  

F r o m  n o w  unt i l  S e c t i o n  9, we res t r i c t  ourse lves  to  Banach  a lgebras  ove r  

C, w i t h  uni t .  In Sec t ions  9 and  10, we  c o m b i n e  o u r  m a i n  resu l t s  w i t h  t h e  

t e c h n i q u e s  o f  c o m p l e x i f i c a t i o n  and  ad jo in ing  a un i t ,  t o  get  resu l t s  a b o u t  

algebras over  R and  algebras  w i t h o u t  uni t .  

2.2. W,~ list the  basic i ng red ien t s  o f  a Banach  algebra  A ove r  C, w i t h  un i t .  

These  ing red ien t s  are as fo l lows.  

2 .2 .1 .  T h r e e  sets M 0 ,  M1 ,  M 2 . M 0 is the  set  o f  e l e m e n t s  o f  the  a lgebra ,  

M l is t he  set C o f  scalars, and M 2 is t he  set  R. 

2 . 2 . 2 .  Ind iv idua ls  a o ,  . . . ,  a 5 . a o and  a I are  r e spec t ive ly  t he  ze ro  and  u n i t  

e l e m e n t s  o f M  0 . a 2 and  a 3 are r e spec t ive ly  t he  ze ro  a n d  u n i t  e l e m e n t s  o f  

M 1 . a 4 and  a 5 are  r espec t ive ly  the  ze ro  and  un i t  o f M  2 . 

2 . 2 . 3 .  O p e r a t i o n s  F 0 , ..., F 8 . 

F 0 • Mo 2 -* M 0 is a d d i t i o n  in M 0 . 

F 1 • M~ -~ M 1 is a d d i t i o n  in M 1 . 

F 2 • M~ ~ M E is addi t i  9n in M 2 . 

F 3 • Mo 2 -~ M 0 is m u l t i p l i c a t i o n  in M 0 . 

F 4 • M 2 -*/vi 1 is m u l t i p l i c a t i o n  in M 1 . 

F 5 ' M~ -~ M 2 is m u l t i p l i c a t i o n  in M 2 . 

F 6 : M l × M 0 ~ M 0 is scalar  mu l t i p l i ca t i on .  

F 7 : M 0 ~ M 2 is the  n o r m  m a p  f r o m  M 0 t o  M 2 . 

F 8 : M 1 ~ M 2 is t he  s t a n d a r d  n o r m  m a p  f r o m  C to  R. 

2 . 2 . 4 .  A b i n a r y  r e l a t ion  R 0 . R 0 is t h e  na t u r a l  o r d e r  < on  M 2 . 

T h u s  a B a n a c h  a lgebra  over  C, w i t h  un i t ,  is a 3 - so r t ed  s t r u c t u r e  

((Mi)i< 3 , ( R i ) i <  3 , (ai) i< 6 , (Fi)i< 9) , 

and  so has a s igna tu re  o as in [5 ] .  N o w  we  i n t r o d u c e  a f i r s t -o rde r  f i n i t a ry  

l anguage  a p p r o p r i a t e  to  s t r u c t u r e s  o f  s igna tu re  o. 
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2.3. Let Z? 1 be a first-order finitary language of signature o. The ingre- 
dients o f / ? !  are as follows. 

2.3.1.  Infinitely many variables of each of three sorts, corresponding to 

M o , M  1 , M 2 .  

2.3.2.  Individual constants corresponding to a o, ..., a s . 

2. 3. 3. Operation-symbols of  appropriate arity, corresponding to 

Fo , ..., F 8. 

2.3.4.  A binary relation-symbol corresponding to R 0 . 

2.3.5.  An eql~ality symbol =. 

2. 3. 6. The usual quantifiers and connectives. 

2.4. Thus, a banacJa algebra over C, with unit, is a n / ? l  -structure. The 
language -~1 corresponds to the first formulation of 1.2. 

Next, we describe sublanguages o f / ? l  corresponding to the other 
formulations. 

/?2 is got frore /?1 by forgetting the symbols of/?1 corresponding to 
a 2 , a3, F 1 , F4,  F 6 , F 8 , and the variables of /?1 of the sort correspond- 
hag to M 1 . Then Z~ a corresponds to the second formulation. 

.C 3 is got from /71 by forgetting the symbols of/71 corresponding to 
a4, as , /72,  F s ,  FT,/78, R 0 and the variables of the sort co~responding 
to M 2. Then/?3  corresponds to the third formulation. 

/?4 is got f rom/?1 by forgetting the symbols of  Z? 1 corresponding to 

a 2 , a3, a 4 , as ,  F 1 , F2, F 4 , F s , F 6 , F 7 , F 8 , R 0 and the variables of sorts 
corresponding to M l and M 2. Then /?4  corresponds to the fourth for- 
mulation. ~4 is just the language of ring-theory. 

2.5. We define Ban 1 as the class of/?l 'structure~; which are Banach al- 
gebra over C with unit. 

For 2 <_ i <_ 4, we define Ban.,. as the class of/?/-structures which are 

reducts of  members of Ban I . 
Thus, Ban 2 is the class of underlying normed rings of Banach ~gebras 

over C with unit. Similarly Ban 3 is the class of underlying algebras, and 
Bar. 4 the class of underlying rings, of Banach algebras over C with unit. 
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2.6. Theories. We assume the basic notions and results of  model-theory 
and recursion-theory. See [4] .  

If Z? is a first-order language, an -O-theory is a consistent set of  A?- 
sentences closed under deduction. If 9ft is an G-structure than Th(q/t), 
the theory of 9ft, is the set of  all Z?-sentences ¢ such that  9It ~ ~P. If k 
is a class of  Z?-structures then "r:~(k), the theory of k, is the set of all Z?- 
sentences ¢ such that  c'tft ~ ¢ for all ~ ~ k. 

2.7. Undecidability. We assume a fixed G~del numbering of the languages 
£?i (1 <_ i <_ 4), so we can talk freely about recursive sets of Z?i-sentences. 
An Z?i-theory T is decidable if it is a recursive set. An Z?i-theory T is here- 
ditarily undecidable if all subtheories of T are undecidable. 

All the languages ~i (1 <_ i <_ 4) contain the standard language for 

ring theory, and the models in which we are interested arc rings, possib- 
ly with extra structure. If A E Ban/ then  A contains a subring isomorphic 
to Z, namely the subring of all elements n" e where n ~ Z c_ C, and e is 
the unit o f A .  For convenience we identify this subring with Z. Let N be 
the subsemiring of  non-negative integers. 

Lemma 1. Suppose A ~ Ban/and N is definable in A by a formula o f  £?,. 
Then Th(A) is hereditarily undecidable. 

Proof. Standard. See [4].  

We refer to [4] for the notion of the interpretability of one theory 
in another. 

An Z?-theory T is essentially undecidable if T l is undecidable for each 
£?-theory T 1 with T c__ TI" 

Lemma 2. Ira finitely axiomatizable essentially undecidable theory can 
be interpreted in T then T is hereditarily undecidable. 

Proof. See [4].  

2.8. Informal notat ion.  Suppose A ~ Ban 1 . Then A is an ~l-structure" 

((Mi)i< 3' (Ri)i< 1' (ai)i<6' (Fi)i< 9 ) '  

where M 1 is C and M 2 i~ R. 
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£71 has formal symbols  corresponding to the ingredients  o f  A. Now 

we provide familiar nota t ion ,  in terms o f  which  we will give our  defini- 
tions. 

Suppose x and y are members  o f M  0, X and/~ are members  o f  C and 
r and s are members  o f  R. We put.: 

0 = a 0 , 

e = a l ,  

0 C = a 2 , 

1 C = a 3 , 

O R = a 4 ,  

1 R = as ,  
x + y  = F 0 

~ , + #  = F 1 

r + s  = F 2 

x ' y  = F 3 

XOl~ = F 4 

r . s  = F 5 

X ' X  = F 6 

II x II - F 7 

I;kl = F 8 
and finally 

r < s  

(x, y) ,  
(x, u), 
(r, s), 
(X, y),  
(x, u), 
(r, s), 

(X, x), 
(xL 
(X), 

"~ R o (r, s).  

Obviously the graphs o f  the operat ions  of  subtract ion in M 0 , M 1 and 
M 2 are Z? 1-definable. In fact, subtract ion in M 0 is £?4"definable, sub- 
traction in M t is £?3"definable, and subtract ion in M 2 is .~O2-definable. 

We will somet imes  write 

x E A  

when we mean  

x ~ M  o. 

3. Spectra 

Suppose A ~ Ban 1 , and x ~ A. Sp A (x), the  spectrum o f x  in A, is the 
set 

{X~ C • x - X.e  is n e t  invertible in A}. 
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3.1. For reasons that  will emerge in the next section, we want to know 
when A satisfies the following condition: For each non-negative integer 
n there exists x n ~ A such that  each of  the integers 0, 1, ..., n is a mem- 

ber of  SPA (x n). (*) 

l .emma 3. Suppose A ~ Ban 1 . Then A satisfies (*) i f  and only i f  for  each 
non-negative n there exists Yn E A such that Spa (Yn ) has a least n + 1 
members. 

Proof. Necessity is trivial. 

Sufficiency. Suppose A satisfies the condition in the lemma. Let n be a 
non-negative integer. Select Yn E A such that SPA (Yn) contains distinct 
elements 3, 0, ..., Xn- Using the Lagrange Interpolation Theorem, select 
f ~  C[x] such that  f(X m ) = m lor  0 <- m <- n. Le tx  n =f (Yn) .  Then, by 
1.6.10 of  [13],  SpA (Xn) = (f(?~) :?~E SPA (Yn )) , SO 0, 1, . . . , h E  SpA(Xn). 
Since n was arbitrary, A satisfies (*). 

3.2. The radical. For  the definition and basic properties of the Jacobson 
radical of an algebra, see [7, 13]. 

I fA ~ Banl ,  let J (A  ) be the radical o fA .  J ( A  ) is a closed ideal of  A, 
and A/J(A)  has a natural structure of  Banach algebra. A is called semi- 
simple i f J ( A  ) = 0. 

Some useful facts about J ( A  ) are 3.2.1. - 3.2.3. below. 

3. 2.1. A/j~A ) is semi-simple. 

3.2.2. J ( A  ) = {y ~ A: 1 + ty is invertible for all t ~ A}. 

3.2.3. If r / :  A --, A /J (A)  is the natural projection then 

SPA/j(A)(~(X)) = SPA (X) for all x ~ A. 

For 3.2.1 see [ 13, page 561. For 3.2.2 see [ 13, page 55].  In 3.2.3 
the inclusion SPA (x) c_C_ SpA/j(A)(rI(X) ) is clear. The reverse inclusion fol- 

lows from the observation that an element invertible modulo the radical 
is invertible, and this is almost trivial from 3.2.3. 

3.3. l .emma 4. Suppose A ~ Ban 1 , and dim c (A/J(,4)) = n < ~*. Then, i f  
y ~ A, Sp A (y) has at mt:~t n elements, 
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Proof. By 3.2.1 and 3.2.3 we may assume A is semi-simple and 
dimc(A) = n. 

L e t y  ~ A. Then ~here e x i s t s f ~  C[x]  such t h a t f ( y )  = 0 and 
1 <- deg(f) <_ n - 1 .  Now by 1.6.10 of  [ !3 ]  

But 
SPA ( f ( y ) )  = {f(X) : ?~ E SPA (y) ) .  

Sp A ( f ( y ) )  = Sp A (0) = (0) .  

:. ~,E SpA(y)- - , / (? ,  ) = 0. 

.. Sp A (.v) has at most n members. 

3.5. Lemma 5. Suppose A ~ Ban 1 and d imc(A/J(A ) ) is infinite. Then 
there exists x ~ A such that SPA (x) is infinite. 

Proof. By 3.2.1 and 3.2.3 we may assume A is semi-simple. But then the 
lemma is a result of  Kaplansky [8, Lemma 71. 

l.emma 6. Suppose A ~ Ban:. Then A satisfies (*) i f  and only i f  
dim c (AH(A )) is infinite. 
Sufficienc~r. Suplaose dim c (A/J(A))  is infinite. Then by Lemma 3 and 5 
A satisfies (*). 

4. Constants and the Definition of N 

Suppose A ~ Ban 1 . We define Con as { X" e : ~, E C}. Then Con is a 
subring of A, isomorphic to C. With the convention of 2.7, N ~ Con. 
The elements of Con are called constants. 

We will show that ~fA satisfies (*) then N is definable from Con using 
only the notions of elementary ring theory. 

4.1. Some definitions~ Suppose x, y, z, t, u ~ A.  

<1.1. x l ly  ~ ( 3 z ) ( y  = xz ^ xz = zx). 

4.1.2. D(x ,  y, z) ~ ~ ( y - x ) l l z  h (y- -x)  is not  invertible. 
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4.1.3. ~ ( x )  ~ x ~ Con ^. 

( 3 t ) ( 3 u ) [ D ( O ,  t, u) ^ (~J)((y ~ Con ^ y 4= x A D ( y ,  t, u)) 

-~ D ( y  + e, t, it))]. 

4.2. Lemma 7. Suppose  A ~ Ban 1 a n d x  ~ A. Then ~I'(x) -* x ~ N. 

Proof. Suppose x q.: N and ~I,(x). Select t, u such that D(0,  t, u) and 

( V y ) ( ( y  ~ Con A y 4: x A D ( y ,  t, u)) 

D ( y  + e, t, u)). 

By induction we get 

for all n ~ N .  

But then 
n ~ N ~  t - n ' e  

:. N c__ Sp a ( t ) .  

D ( n ' e ,  t, u) 

not invertible 

But SPA(t)  is bounded [13, 1.6.4]. 
This gives a contradiction. 

:. ~ ( x ) - - ,  x ~ N. 

1.emma 8. Suppose  A ~ Ban l, and n ~ N. Suppose  t c A  and 

{ 0, 1, ..., n } ~ Sp A (t). Let  u = t" ( t - e )  ... ( t - n "  e). T~en for  ~ ~ C, 

D ( X . e , t , u ) ,  , X ~  {0, 1 , . . . , n} .  

Proof. Case 1. A commuta t i ve  and semi-simple. 

By Gelfand's Theorem [ 13, 3.1.20],  A is algebraically isomorphic to an 
algebra of continuous functions on a compact  Hausdorff  space X. The 
isomorphism preserves spectra, and the property D of 4.1.2, so we may 
assume withot;t  loss of  generality that  A is an algebra of cont inuous 
functions on a space X. 
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Clearly, i f m  ~ {0, 1, ..., n} ,  t - r e . e l i  u and t - m . e  is no t  invertible,  
so D ( m  .e, t, u). 

Conversely, suppose X ~ C and D ( X . e ,  t, u). Then  t - X . e  is no t  invert- 
ible, so X ~ Range( t ) .  Select x ~ X such that  t ( x )  = X. Since 
D ( ~ ' e ,  t, u), we have t - X . e l l  u, so there exists z such tha t  u = 
( t - ? ~ . e ) . z  . Now, ( t - ~ . e ) ( x )  = 0~ so u ( x )  = O. .. t ( x ) ( t ( x ) - l  ) ... 

( t ( x ) - n )  = 0, so t ( x )  = m for some m ~ { 0, 1, ..., n }. But t ( x )  = h, so 
X ~  {0, 1 , . . . , n} .  

This proves the result. 

Case 2. A commuta t ive .  Let  ~1 : A -* A / J ( A  ) be the natural  project ion.  

Then  {0, 1, ..., n} c_C_ SPA0(A)(t) by  3.2.3. Also r/(u) = B ( t ) ' ( ~ ( t ) - e ) . . . ,  

( r l ( t ) - n ' e ) .  S i n c e A / J ( A )  is semi-simple, we conclude from the first case 
tha t  for  ; ~  C , D ( X . e ,  n ( t ) , ' , , (u ) )  ( , X ~ {0,  1, . . . , n} .  

A s i n C a s e l , i t i s c l e a r t h a t i f m ~  { 0 , 1 ,  .... , n } then D ( m .  e, t, u). 

Suppose ;~. ~ C and D ( X ' e ,  t, u). Then t - L . e l l  u. By def in i t ion  of  II, 
i t  follows tha t  r~(t) - ~-ell  r/(u). Similarly, siace t - h .  e is not  iavertible,  
rt(t)  - ~, 'e is no t  invertible,  by  3.2.3. 

:. D(~, .e ,  r~(t), r/(u)). 

• ".X ~ - {0, 1 , . . . , n } .  

This concludes  the proof.  

Case 3. A arbitrary. As before,  it is clear tha t  if  m ~ { 0, J, ..., n } then  
D ( m . e ,  t, u). 

Conversely,  suppose X ~- C and D(?~'e, t, u). Then  X ~ SpA (t), and 
t - X , e l l  u. Thus  there exists  z such that  u = ( t - X ' e ) . z ,  and ( t - X ' e ) . z  = 

z . f l - X . e ) .  Then  clearly tz = zt. By [ 13, 1.6.14] there exists a maximal  
commuta t ive  subalgebra B o f  A such tha t  t ~ B, z ~ B, and e ~ B. By 

[13, 1 .6 .14] ,  SPB(X) = SPA(X) f o r x E  B. Thus  {0, 1, ..., n} c___ SPB(t)" 
Also, X ~ SpB(t  ). Since t and z are in B, u E B and t - h . e l l  u in B. Thus 
D(X . e ,  t, u)  in B. Since B is commuta t ive ,  Case 2 implies tha t  
X ~  {0, 1, ..., n} ,  proving the lemma.  

Lemma 9. Suppose  A ~ Ban 1 and A satisfies (*). l f  x ~ A,  then 

x ~ N - ~  ~ ( x ) .  
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Proof. Suppose x ~ N. Then x = n • e for some non-negative integer n. 
Since A satisfies (*), we may select t ~ A such that { 0, 1, ..., n } ~ Sp a (t), 

L e t u  = t . ( t - e )  ... ( t -n~e) .  By Lemma 8, i f k e  C then 

D(X.e ,  t,u)<--+ ;k6 (0,  1 , . . . ,n} .  

Thus D(0,  t, u) and 

(Vy ) ( ( y  e Con ^ y ¢ x ^ D(y ,  t, u)) 

-~ D ( y  + e, t, u). 

- , I ,  ( x ) .  

4.3. Undecidability of algebras satisfying (*). 

Suppose A ~ Ban 1 and A H ( A )  is infinite-dimensional. Then A satisfies 
(*), by Lemma 6. By I e m m a s  7 and 9, xI, defines N in A. So, by Lemma 
1, if xp is definable in 2i then the Z~i-theorv of A is hereditarily undecid- 
able. 

Clearly D(x,  y, z) is definable in Z~ 4 . Thus ~ wiU be Z?i-definable pro- 
vided Con is Z?i-definable. 

Trivially, Con is Z? 3 -definable, by: 

x ~ Con ~- -~ (::IX ~ M 1 )(x = ~." e). 

The preceding observations immediately give 

Theorem 1. Suppose A ~ Ban 3 and A/J(A ) is infinite-dimensional. Then 
Th(A) is hereditarily undecidable. 

Remark. This implies that  all infinite-dimensional semi-simple Banach 
algebras, construed simply as algebras, are undecidable. Examples are: 
a) C(X), the algebra of  continuous complex functions on an infinite 

compact Hausdorff  space X. See [ 13, Chapter I I I ] .  
b) Z~ (H, H), the algebra of  continuous linear operators on an infinite- 

dimensional Hilbert space H. See [ 13, Appendix A. 1.1 ] .  
We will prove in [ 10] that  all f'mite-dimensional algebras ov.~r C (not  

just Banach algebras) are decidable. 
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Corollary 1 to Theorem 1. Th(Ban 3 ) is hereditarily undecidable. 

Proof. Let X be the unit  interval [0, 1 ]. Then C(X) ~ Ban 3 . By Theorem 
1, Th(C(X)) is hereditarily undecidable. Since ThfBan 3 ) ~ Th(C(X)), 
Th(Ban 3 ) is hereditarily undecidable. 

Corollary 2. The theory o f  commutative Banach algebras, construed 
simply as algebras, is hereditarily undecidable. 

Proof. Immediate from the proof  of  Corollary 1, since C(X) is commu- 
tative. 

5. Defining N in /?4 

Since we want undecidability results for Banach algebras as rings, we 
want definitions of  N in 174, and so we want definitions of Con ili/~4" 

5.1. Suppose we can define in ~ i  a subset Con I of Con, such that  
N c__ Con1" Replace Con by Con 1 in the definition of  ~I,, to get a new 
notion ~1 .  The following lamme is proved in the same way as Lemmas 
7 and 9. 

Lemma 10. Suppose A ~ Ban 1 , and A satisfies (*). I f  x cA ,  then 

x e N ~ - +  ,I, 1 (x).  

Thus i fA ~ Ban/, and A satisfies (*), arid an appropriate set Con 1 is 
~?i-definable, then Th(A) is heredi, t~dly undecidable. In Section 6 we 
will apply a variant of  this obsereations when i = 2, to get the analogue 
of Theorem 1 for Banach algebras as normed rings. 

5.2. The centre. Suppose A ~ Ban 1 . We define Cen, the centre of  A, by: 

x ~ Cen ~-~ (Vy)(xy = yx).  

Obviously Cen is definable in/?4-  ? leady Con c_. Cen. 



§ 5. DefiningN in ~° 4 251 

Now let A be .C(H, H), the ring of  continuous linear operators on an 
infinite-dimensional Hilbert space H. As observed before, A satisfies (*). 
But also [ 13, 2.4.5] the centre of  A is Con. For  thisA,  Con is .e4-defin- 
able. More generally we have: 

Theorem 2. Suppose A ~ Ban 4 , A/J(A  ) is infinite-dimensional, and the 
centre o f  A is Con. Then Th(A) is hereditarily undecidable. 

Proof. Con = Cen, so Con is -@4"definable- Since A/J (A)  is infirtite-dimen- 
sional, q, defines N. Thus N is ~4-definable. The result follows by Lem- 
ma 1. 

Corollary. Th(Ban 4 ) is hereditarily undecidable. 

Proof. Let A be ~(H, H) as above. Then Th(Ban 4 ) ~ Th(A). By Theo- 
rem 2, Th(A) is hereditarily undecidable, whence the result. 

Remark. We do not  know any commutative A satisfying (*) for which 
Con, or an appropriate Con 1 , is "/~4"definable. At the same time we do 
not know any such A for which no Con 1 is definable, and in the light of  
Kaplansky's [8] it will be difficult to prove undefinability results. 

6. Interprethg Number Theory in ~72 

The main technical result ol this section is that  i fA ~ Ban 1 then we 
can define in .6?2, the language for normed rings, a set Kon ~ A such that  

NC__Kon c_ { k . e + j : k ~ C ^ / E J ( C e n ) } .  

Then, i fA satisfies (*), we can extend the techniques of  Section 4 to 
get an interpretation of  number theory in the 12 2-theory of  A, whence 
the &?2-theory of  A is hereditarily undecidable. 

6.1. Spectral Radius. Suppose A ~ Ban 1 and x ~ A. Then lim Ilx n II 1/n 
exists, and v(x), the spectral radius of x is defined as this 
limit. In fact, 

p (x)=  sup I~1. 
heSPA (x) 

See [ 13, 1.4.1 ]. 
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Neither  of  the above character izat ions o f  spectral radius is in the 
form of  an Z? 2 -definit ion.  

Definit ion 6.1.1. Cen 1 = {y ~ Cen: (y  = 0) v 
(y  is inverfible ^ Ily-1 II -- llyt1-1 }. 

Del ini t ion 6.1.2. Sp,~ (x) = (y  ~ Cen I • x - y  is no t  invertible}. 

Lerama 10. I f y  ~ Sp~ (x) then Ilyll <_ v(x). 

Proof. Suppose y ~ Sp.~ (x). T h e n y  ~ Cen I . I f y  = 0 then [lyll = 0 ~  v(x). 
Suppose y :/= 0. Then  y is invertible, and fly - l  I1 = Ilyll-l.  Suppose 

Ilyll > v(x). Then,  by [ 13, page 10] ,  
v(xy -1 ) <-- v(x) v(y -1 ) 

<-- v(x) Uy -1 II 
= v ( x ) I l y l 1 - 1  

< 1 .  
"[hen by [13, page 18],  e - x y  -1 is invertible, and since x - y  = y (xy  -1 - e )  
it follows that  x - y  is invertible. 
. ' . y ¢  Sp~ (x). 

We conclude that  Ilytl <_ v(x). 

Corollary 1. v(x) = su~ llyll. 
yeSPA (x) 

Proof. By the lemma, 

su~p II y I1 <_ v (x). 
yeSpA (x) 

But there exists ~, ~ C such that  ~ ~ Sp a (x) and v(x) = IXt, since Sp A (x) 
is compact .  L e t y  = X.e. T h e n y  ~ Sp~ (x), and Ityll = [XI = v(x). 
.'. v(x) <_ sup Ilyll. 

y eSp/~ (x ) 

• = SU v(x) yeSp~A(x) Ilyll. 

Corollary 2. v is Z?2-definable. 

Proof.  Clearly Cen 1 and Sp~ are Z?2..definable. The result follows. 
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6.2. Definition 6.2~ 1. 
M(x)  *--* x ~ Cen ^ (Vy E Cen)(v(xy) = v(x) v(y) ^ 

v ( ( x - e ) y )  = v ( x - e )  l~(y)). 

Clearly the predicate M is &?2"definable- 

l .emma 11. Suppose A ~ Ban 1 , and x ~ A. Suppose M (x ). Then there 

exists X ~ C such that Spa (x) c { X, X}. 

Proof. Firstly, we show that  the proof  reduces to the case when A is 
commutative and semi-simple. Cen is a ciosed subalgebra of A, and 
claerly ifM(x) then x ~ Cen and M(x)  in Cen. Further,  SPA (X) = SPcen(r). 
Thus the proof  certainly reduces to the case when A is commutative. 
The general commutative case reduces to the semi-simple case, by the 
usual device of factoring out the radical. We now assume A is commuta- 
tive and semi-simple. 

Consider the Gelfand isomorphism "" A ~ ,/i. See [ 13, Chapter III] 
for details. For  each y in A, v(p) = v(y), so M(~) in A. If  we have the 
lemma for A, we can conclude that  there exists X ~ C such that  
Sp~ (~) ~ { X, X). But Sp~ i (~) = SPA (x), whence the result. 

Thus our proof  is finally reduced to the case where A is a closed sub- 
algebra of  C(X) with the sup norm, where X is a compact Hausdorff 

v 

space. Let aA be the Silov Boundary o f A .  See [ 13, 3,3].  
Suppose M(x t. F o r y  E A, vO') = Ilyll, by [13, 1.4.2]. Thus 

Ilxyll = lixll. Ily!l, and II(x- e).yll - IIx-ell. Ilvll. 
We claim that i f a  E bA then Ix(a)l = Ilxll, and Ix(a) - 11= IIx-ell. 
By [13, Theorem 3.3.6], 

inf Ix(a)l = inf IIxyll 
~.'oA yea Hyll 

= [lxll, since M(x) .  
But Ix(a)l <_ llxll for all a ~ X. 
:. Ix(a)l = IIx!l for a ~ aA. 
Similarly, Ix(a) - 11 = iIx-ell for a E a h .  

Thus, for a ~ aA, 
x ( a ) E  (X~  C : IXI= Ilxll} n {XE C : I X -  11= IIx-ell}, 
and this intersection is clearly of  the form ( X, X } for some X ~ C. (The 
intersection is not  empty,  since x(~) is a member, for a ~ aA). 
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Thus x ( a )  is X or  X for  each t~ ~ aA.  L e t y  = ( x - X . e ) ( x - X . e ) ) .  Then  
if  t~ ~ hA, y (a)  = 0. " y = 0. " Range (x) ~ (X, ~}, i.e. 

Sp A (X) C_. {X, X}, 

I .emma 12. Suppose A ~ Banl ,  and x ~ A. Suppose x ~ Cen and there 
exists X ~ Csuch that SPA (x) ~ {X, ~ .  ThenM(x) .  

Proof.  Just  as in Lemma  11, we need only  consider  the case where  A is 
a closed subalgebra o f  C(X)  wi th  the  sup norm,  where X is a compac t  
Hausdor f f  space. 

Since v(y)  = Ilyll f o r y  E A,  we wan t  to establish that  IlxyU = Ilxll ° Ilyll 
and II(x-e).yll  = i l ( x - e ) . y l l ,  for  a l l y  ~ A. 

Since SPA (x) ~ { X, X }, 
Range (x) ~ (X, X }, so 
Ix(tOI - Ilxll for  all a E X. 

Thus Ilxyll = %u~ I(xy)(ot)l = s u~ Ix(ot).y(ot)l 

= , x , .  Jy< )l = 

= II x l l  • II y l l .  

Similarly, SPA (x--e) C_C_ { X - l ,  X - I  ),  so II(x-e).yll  = lix-ell • IlyU. 
" M ( x ) .  

Corollary.  M(x) i f  and only i f  x ~ Cen and there exists X ~ C such that 
Sp A (x) c_ {X, X). 

Proof. Immedia te  f rom Lemmas  11 and 12. 

6.3. Def ini t ion 6.3.1. x ~ Kon ~ (Vy ) (M(y )  -~ M(xy)) .  Clearly Kon is 
Z? 2-definable. - 

I .emma 1 3 .  S u p p o s e  A E Ban 1 . Then 
i) Kon (_: { X- e + / "  X ~ C ^ ] ~ J(Cen)} ; 

ii) i f  X ~ C and X is real then X'e ~ Kon. 

Proof. i) First  we observe tha t  we need only  consider  the case when  A is 
commutat ive .  Fo r  i f x  ~ Kon then  M(x) ,  since M(e). Thus  x ~ Cen. 
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Moreover, x ~ Kon in Cen. So if we have the result for Cen then we get 
it for A. 

So, assume A i,~ commutative and x ~ Kon. Then M ( x ) .  Let i be a 
square root  o f - 1  in C. Then Spa ( i ' e )  = {i}, s o M ( i . e )  by corollary to 
Lemma 12. Since ~ ~ Kon, M (x" (i" e)), so M (i. x). Now, since M (x), 
there exists ?~ ~ C such that Sp a (x) c_ {~, 3`}, by the corollary to Lemma 
12. Similarly, there_ exists # ~ C__such that Spa (ix) ~ (t~,-~}. But 
SpA ( i , x )  c__ {i3., i3`}. If3` ~ 0, iX~ i~.. We co:,ciude that Sp. 4 (x) is a 
singleton, and without  loss of  generality SPA (X) = ( 3`}. Therefore 
Sp a ( x - 3 ` ' e )  = ( 0}. Since A is commutative, [ 13, 2.4.61 implies that  
x - X .  e ~ J ( A )  = J(Cen). Thus x = ~," e + j, where j ~ J(Cen), as required. 

ii) Suppose ;~ ~ C and 3, is real. Suppose M (y). Then by the corollary 
to Lemma 12, there exists ta ~ C such that Sp A f y ) ~  (/a, ~}. Thus 
SPA ((3`'e) C__ {X/~, ~ ) ,  since 3  ̀= 3 .̀ By the corollary to Lemma 12, 
M((Xe ) , y ) .  We conclude that 3`.e ~ Kon. 

6.4. Definition 6.4.1. Kon N = Kon n ( 3`. e + ] • 3  ̀~ N n j ~ J (Cen)}. 

Our objective is to show that  Kon N is Z? 2-definable, provided A sat. 
isfies (*). This involves modifying the technique of Section 4. 

Definition 6.4.2. ~ K ( x )  , , x ~ Kon n (:lt)(~lu)[D(O, t, u )n  

( V y ) ( ( y  ~ Kon A y - - x  ~ , ' (Cen) n D ( y ,  t, u)) 

~, (3 z ) (D(z ,  t, u) ^ z - ( y  + e) ~ J(Cen)))] .  

I.emma 14. Suppose  A ~ Ban I and x ~ A. Then * K ( X )  -* x ~ KonN. 

Proof. Suppose x q~Kon N and ~Px(x). Select t, u such that  D(0,  t, u) and 
(*¢y)[(y ~ Kon ^ y - x q~ J(Cen) ^ D ( y ,  t, u)) 

-~ (3z ) (D(z ,  t, u) ^ z - ( y  + e) ~ J(Cen))] .  
Since xI' K (x), x ~ Kon, so x = 3`" e + j,  where 3`'~ C and j ~ J(Cen).  If 
y = n- e + l, where n ~ N and ! ~ J(Cen),  then y - x  ~ J(Cen),  sinc,e 
3  ̀¢ N. It follows by induction thal for each n ~ N there exists 
I n .~ J(Cen) such t h a t D ( n . e  + I n, t, u). In particular, t - ( n . e  + In) is not  
invertible. Now, l n ~ Cen. Let B be a maximal commutative subalgebra 
of  A, containing t. Since l n E J(Cen),  SPcen(ln) = (0},  so by [ 13, 1.6.14] 
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Sp/~(l n) = { 0}, so I n ~ J(B),  by [13, 2.4.6].  Therefore, by 3.2.3 

Sps (t) = SpB ( t  - l n ) 

=SPA ( t - - I  n).  
Since n ~ Sp A (t - l,,), n ~ Sp o (t). 
." N c_c_ SpB (t), a contradiction, since SpB (t) is bounded. 

: ,I x ( x )  x s K o n u .  

Lemma 15. Suppose A E Ban 1 and A satisfies (*). Le t  x ~- 4. Then 
x K o n  u -* ` i x  (x ) .  

Proof. Suppose x ~ Konjv. Then there exists n ~ N and ] ~ J (Cen)  such 
t h a t x  = n . e  +], and x ~ Kon. Since A satisfies (*) we can pick t ~ A 
such that {0, ..., n )  c_c_ Spa ft). Let u = t ( t - e )  ... ( t - n ' e ) .  Then, by Lem- 

ma 8, i f k ~  C , D ( k . e ,  t, u)~--~ X ~  {o, 1, . . . ,n} .  
In particular, D(0,  t, u). 

Supposey  ~ Kon, a n d y  - x ~ J(Cen),  and D(y ,  t, u). By Lemma 13, 

there exists ~, ~ C and l ~ J (Cen)  such t h a t y  = ~,.e + 1. Since D(y ,  t, u), 
( t -y) l iu,  so there exists v such that  u = ( t - y ) .  v = v.  ( t - y ) .  Let B be a 
maximal commutative subalgebra of  A containing e, t, and v. Then 
Cen ~ B. T h u s y  ~ B and ( t -y) l lu  in ,3. Since D(y ,  t, u), t - y  is not in- 

vertible, so it follows that  D ( y ,  t, u) ~a B. Also, l ~ J(Cen),  so SPcen (l) = 
{ 0}, so SpB(I) = { 0}, so l E J(B)  since B is comm,;tative. Let 

ri: B -* B/J(B) be the natural pr'~jection. Just as in the proof of  Lemma 
8, D ( ~ ( y ) ,  n(t), n(u)), so D( ,~ 'e  + rl(l), n(t), n(u)), so  
D(k . e ,  ~l(t), rl(u)). Therefore, by Lemma 8, k ~- {0, 1, ..., n}. But 
y - x  q~ J(Cen),  s9 k ~ { 0, 1, ..., n -  1 }. Let z = (X + 1)" e. Then 
z - (y  + e) = l ~ J(Cen),  and D(z,  t, u) by Lemma 8. 

We conclude that  ` i x  (x). 

Corollary. Kon N is ~o2-definable, i f  A satisfies (*). 

Proof. `IK is clearly ~o 2-definable. 

6.5. Suppose A ~ Ban 1 and A satisfies (*). Then Kon N is ~2"definable. 

Definition 6.5.1. 
x ~ P~--, ( 3 v ) ( y  ~ Konjv ^ y - x  ~ J(Cen)).  

Then P is Z?2-definable, because J is Z?2-definable via 3.2.2. 
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N o t e .  P - Konr¢, but  there is no need to prove this. Trivially, Kon N z_c_ p. 

I.emma 16 .  

(P, +, • >/= 

i) P is closed under + and ". 
ii) Let  = be congruence modulo J(Cen). Then 

~- (N, +, • ) .  

Proof. Trivial. 

Thus we have proved that  i fA ~ Ban 2 and A satisfies ( * ) t h e n n u m -  
ber theory is interpretable in Th(A). Thus Th(A) is hereditarily undecid- 
able. 

Theorem 3. Suppose A ~ Ban 2, and A/J (A  ) is infinite-dimer:sional. Then 
Th(A ) is hereditarily undecidable. 

Proof. Done. 

Corollary 1. Th(Ban 2) is undecidable. 

Proof. Let A = C(/). Then Th(A) is hereditarily undecidable, and 

Th(Ban 2) ~ Th(A ). 

Corollary 2. The Z?2-theory o f  commutative Banach algebras is undecid- 
able. 

Proof. See Corollary 1. 

Remark. Con is not  in general definable in .Q2 o Take A = C 2, with 
U(x, y)ll = max (Ixl, lyl). Define o: A-+ A by o((x, y))  = (x, y ) .  

Then 0 is a ring isomorphism of  A, and tr is an isometry. But Con is 
not  closed under o, for (i, i) ~ Con but  o((i, i)) = (i, - i )  4: Con. By 
Padoa's test, Con is not  Z? 2-definable. 

However, in this example, Kon = {~ .e  " ~ ~ R}, so we can define i,a 
Z? 2 a subset Con 1 of  Con with N ~ Con 1 . 

We know of  no A for which no such subset Con 1 is Z~2-definable. 
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7. Finite-dimensional semi-simple Banach algebras 

Suppose i = 2 or 3, and A ~ Ban/. We known that i fA is infinite-dimen- 
sional and semi-simple then Th(A) is hereditarily undecidable. 

Now we look at finite-dimensional semi-simple algebras. By [ 10] each 
such algebra has decidable ~?3"the°ry. We do not know any such algebra 
with undecidable ~2-theory,  but we conjecture that such algebras exist. 

7.1. The group of inveriible elements. Let A ~ Ban I . The set of  inverti- 
ble elements of A forms a group Gp(A) under -. The elementary theory 
of Gp(A) is formalized in a sublanguage Z? 5 of ~4.  The or~ly non-logical 
~ymbols of .6? 5 are the constant corresponding to e, and tt~e operation 
symbol corresFonding to .. ~5 is just  the usual language for group the- 
ory .  

Let n be an integer >_ 1. C n has a natural structure of n-dimensional 
Hilbert space ever C. Consider ~?(C n , C t, ~ ',.he Banach algebra of contin- 
uous linear operators on C n . The underlying ring of ~ ( C  n , C n ) is just  
Mn(C), the ring o f n  × n matrices over C. Let A = ~ (C n, cn).  Then 
Gp(A) = GLst (C), the group of n X n invertible metrices over C. 

For any field K, define M(K) = (GLn(K) : 1 <- n < co}. Ersov [3] 
proved that Th(M (K)) is hereditarily undecidable. 

From this we deduce: 

Theorem 4. Let  P be the class o f  groups o f  invertible elements or  finite- 
dimensional semi-simple Banach algebras. Then Th(P) is hereditarily 

undecidable. 

Proof. M(C) c__ F, since M n (C) is semi-simple for each n. The result fol- 
lows immediately from Ersov's result. 

Corollary 1. The ~5- the°ry  o f  the class or  finite-dimensional semi-simple 
Banach algebras is hereditarily undecidable. 

Proof. Immediate from Theorem 4, and the observation that Th(P)  is 
interpretable in the .6? 5 -theory of the class of finite-dimensional semi- 

simple Banach algebras. 
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Corollary 2. Let 1 <_ ~ <- 4. The Z?i-theory of  the class o f  finite-dimen- 
sional semi-simple Banach algebras is hereditarily undecidable. 

Proof. Immediate from Corollary 1, since Z? 5 is a sublanguage of Z? i. 

Remarks. 1. Ersov's result, with K = R, estab,!ishes the hereditary unde- 
cidability of the class of fimte-dimensional semi-simple real Banach al- 
gebras. 

With K = Qe, the field of p-adic numbers, we get a corresponding 
result for normed algebras over Qe- 

2. We do not know any A ~ Ban I for which Gp(A) is undecidable. 
3. The additive group of a Banach algebra is a torsion-free divisible 

abeiian group, and so is decidable [4] .  Also by completeness [4] of the 
theory of non-trivial torsion-free divisible abelian groups, the theory <~f 
the c,ass of additive groups of Banach algebras is decidable. 

7.2. The commutatl ,  ~ case. i t  is known [ 13, 2.4] that  i fA E Ban 1 and 
A is finite-dimensional, ~:ommutative and semi-simple then A is isomor- 
phic as an algebra to one o.~ ~:he algebras C n (1 <_ n < w). 

Theorem 5. The &?4-theory o f  the class o f  finite-dimensional, commuta- 
tive, semi-simple Banach algebras over C, with unit, is decidable. 

Proof. By the remark above, it saffices to prove that  the theory of  the 
class of  rings {cn:  1 <_ n < ~} is decidable. But C is a decidable ring, 
by Tarskrs theorem [ 151, so by a result of  Feferman-Vaught [4] the 
class {C n : 1 <_ n < ¢o) is decidable. 

One might hope to extend ~he above theorem from "/~4 to ~73. How- 
ever, this cannot be done. 

Theorem 6. For i = 1, 2 or 3 the Z?i-theory of the class o f  finite-dimen- 
sional, commutative, semi-simple Banach algebras over C, with unit, is 
hereditarily unclecidable. 

Proof. (In outliae). It suffices to consider the cases i --: 2 or 3. 
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i = 3. In [ 10] it is proved that  the theory of  the class of algebras 
{C n" n < ¢o} is hereditarily undecidable. (The proof  is a variant of  those 
in Section 4). The result fellows. 

i = 2. Suppose A = C n , n > 1. A minor extension of the proof of Lem- 
ma i 3 shows that  Kon is the set of  real constants. For n = 1, Kon = Con. 
Now, our proof  in [ 10] shows that { C n : 2 <_ n < w} is a hereditarily 
undecidable class o~ algebras over R. But R is uniformly definable in 

~ 2 ,  for these algebras. It follows that  the ~?2"the°ry of the class 
{ C n : 2 < n < o~} is hereditarily undecidable, whence the result. 

8. Commutative Banach algebras with undecidable ~?4"the°ry 

So far we have not  found any undecidable commutative :ing which 
is the underlying ring of a Banach algebra. There are in fact many such 
rings, as we now prove by a new technique. However, our results do not 
have the generality of  those in Sections 5 and 6. 

8.1. We will consider only the case where A = C(X), and X is a compact 
Hausdorff space. 

Lemma 17. The maximal ideals o f  C(X)are precisely the sets o f  the 
form { f  ~ C(X): f (~ )  = 0}, where ~ ~ X. 

Proof. See [ 13, 3,1 ]. 

Definition 8.~,.1. Suppose f ~  C(X). Then Z( f )  = {a ~ X: f (a)  = 0}. 

Clearly Z( j )  is closed i f f ~  C(X).  

Definition 8.1.2. Zer(X) is the partially ordered set consisting of the 
sets Z(f) ,  where)'  ~ C(X), under ~ .  

Lemma 18. Suppose f, g ~ C(X). Then Z( f )  n Z(g) ~ O. 
(Vr, s ~ C(X))(rf  + sg ~ e). 
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Proof. Necessity. Suppose Z(f )  n Z(g) 4: O. Then f(c:) = g(a) = O, for 
some a E X. Then clearly rf  + sg 4~ e, for all r, s ~ C(S). 
Sufficiency. Suppose rf+ sg 4= e, for all r, s ~ C(X). T h e n f  and g gene- 
rate a proper ideal, which extends to a maximal ideal. By Lemma 17, it 
follows that there exists a ~ X such that f ( a )  = g(a)  = 0. Thus 

Z(f )  N Z(g) 4: O. 

Lemma 19. Suppose f, g ~ C(X). Then 
Z ( f )  c_ Z(g) ~+ (Vh E CO()) [Z ( f )  n Z(h) ~ 0 ~ Z(g) N Z(h ) ~:: fD ]. 

Proof. Necessity is ~.rivial. 
Sufficiency. Suppose Z ( f )  ~ Z(g). Select t~ ~ X such that f(t~) = 0 and 
g(a)  :/: 0. Consider the disjoint closed sets (~} and Z(g). Since X is 
compact, X is normal [9] ,  so there exists h ~ C(X) such that  h (a )  = 0 

and h(fl) = 1 if/3 ~ Z(g). 
Then Z ( f )  n Z(h) 4: 0,  but 

Z(g)  n Z(h) = O. 
This proves the result. 

1.emma 20. The theory o f  Zer(X)can be interpreted in the Z? 4-theory 

o f  C(X). 

Proof. By Lemma 18, the relation Z ( f )  n Z(g) 4: ¢) is Z?4-definable. 
Then by Lemma 19 the relation L ( f )  C__ Z(g) is Z?4-definable. Then 
clearly Z ( f )  = Z(g) is Z?4-definable, since 
z ( D  = Z(g)  z ( f )  c__ z (g )  n Z(g) g Z(D.  
Define f ~  g by Z ( I )  = Z(g). 
On C(X)I- define <_ by: 

<__ g/_ z ( f )  c_c_ Z(g). 
Then (C(X)/~, <-) --- Zer(X), and so Zer(X) is interpretable in the .e 4- 

theory of  C(X), 

8.2. Lemma 21. S~ppose X is compact and metrizable. Then every cios. 
ed subset o f  X is o f  the form Z( f ) ,  for some f ~ C(X). 

Proof. Let d be the metric on X. Let M be a closed subset of  X. Def'me 

f ~  C(X) by f(tO = inf  d (a ,  ~). 
Then M = Z( f ) .  ~eM 
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Corollary. Suppose X is compact and metrizable. Then the theory o f  
the lattice o f  closed subsets o f  X is interpretable in the &?4-theory o f  
C(X). 

Proof. Immediate from Lemmas 20 and 21. 

8.3. Grzegorczyk's Conditions, We say a topological space X satisfies 
Grzegorczyk's conditions if it satisfies (a)-(e) below. 
a) X is metrizable. 
b) X has at least two points. 
c) X is connected. 
d) I fA and B are two closed isolated disjoint sets, and A u B ~ E, and 

E is a connected Open set, then there exist two connected open sets 
C and D such that A ~ C, B c__ D, C u D c__ E, and the closures of C 
and D are disjoint. 

e) I fA and B are two closed isolated disjoint sets, and there exists a 1-1 
mapping of A into B, then there exists a closed set C such that 
A u B ~ C, and every component D of C contains exactly one point 
of the set A and one point of the set B. 

Grzegorczyk [ 6] proved: 
If X satisfies Grzegorczyk's conditions then the theory of the lattice of 
closed subsets of X has a finitely axiomatizable essentially undecidable 
subtheory. 

Remarks. i) Condition (a)is  equivalent to conditions A l-A4 of Grzegor- 
czyk's paper, as he remarks in footnote 7. (d) is his A'6, which implies 
his A6. Although he actually considers the Brouwer algebra of closed 
sets, his results hold for the lattice of closed sets, since his operation _. 
on page 143 of his paper is Obviously definable in terms of the lattice 
operations. 
ii) If X is compact, closed isolated sets are finite, and condition (e) fol- 
lows from the oth,?,r condition (cf. the argument on page 140 of [6] ). 
iii) Examples of spaces satisfying Grzegorczyk's conditions are E n 
(Euclidean n-space) for n >_ 2, and the sphere S 2 . These facts ar~ used in 
[6],  without proof. A fact not used in [6],  but relevant here, is that S n 
satisfies Grzegorczyk's conditions for n -> 2. For all these spaces X, the 
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crucial observation in verifying Grzegorczyk's conditions is: if A is a 
closed isolated subset of X, and E is an open connected subset of X, 
and A ~ E, then there is a closed subspace X 0 of X, such that 
A ~ X 0 ~ E, and X 0 is homeomorphic to either the real line E 1 or the 
unit interval L 

This observation applies also when X =/n ,  for n 2 3. 
Thus we have the following list of compact Hausdorff spaces satisfy- 

ing Grzegorczyk's conditions: 
S n (n >_ 2);/n (n > 3). 

The spaces S 1 , I and 12 do not satisfy GrzegorcTyk's conditions. For 
S l and I this is obvious. For 12, take A = ( (0, 0), ( 1, 1)}, 
B = [(0, 1), (1, 0)), E = 12, and then clearly condition (d) fails. 

8.4. Theorem 7. Suppose X is a compact Hausdorff space satisfying 
Grzegorczyk's conditions. Then the Z? 4-theory o f  C(X) is hereditarily 
undecidable. 

Proof. Since X is compact metrizable, the corollary to Lemma 12 implies 
that the theory of the lattice of closed subsets of X is interpretable in 
the Z? 4-theory of C(X). By Grzegorczyk's theorem and Lemma 2, the 
Z?4-theory of C(X) is hereditarily undecidable. 

Corollary 1. C(S n ); for n >_ 2, and C(I n ), for n >_ 3, are hereditarily un- 
decidable. 

Proof. Immediate. 

Corollary 2. The Z?4-theory o f  commutative semi-simple Banach alge- 
bras over C, with utiit, is hereditarily undecidable. 

Proof. Immediate from Corollary 1, since C(S n) is commutative and 
semi-simple. 

8.5. Although 12 does not satisfy Grzegorczyk's conditions, we can 
show that its lattice of closed subsets has a hereditarily undecidable 
theory. We sketch a proof, which is simply a variant of Grzegorczyk's 
proof of Theorem 5 in [6].  
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12 is a subspace of E2, and has a boundary B in E 2. B i~; a closed sub- 
set o f I  2. It turns out that B is a definable element of the lattice of 
closed subsets o f I  2. Accept this for the moment. Then we can define 
the class of those closed subsets o f I  2 which are subsets of the interior 
o f I  2. The finite subsets of the interior o f l  2 are the closed isolated 
subsets o f I  2 not intersecting B, Now by using just the definitions given 
by Grzegorczyk, one can interpret, in the theory of the lattice of closed 
subsets o f /2  , the arithmetic of the finite subsets of  the interior o f I  2, 
and this of course has a finitely axiomatizable, essentially undecidable 
subtheory, whence the required result. 

Definition of B. Suppose p ~ 12. Then p ~ B if and only if there exist 
q, r, s ~ 12 such that whenever A and B are closed connected subsets of 
12 with {p, q} c_ A and {r, s} ~ B, then A n B ~= 0. From this we get a 
definition of B by replacing points by atoms as in [6]. 

A corollary of this is that C(I  2 ~ is undecidable. 

8.6. Open Problems. 1. Is C(/) a d,~cidable ring? 

Rabin [ 12] proved that the lattice of closed subsets o f / i s  decidable, 
so our method breaks down. By Theorem 1, C(/) is an undecidable alge- 
bra. Note that there are undecidable algebra,; over C, whose underlying 
ring is decidable. An example is C o~ See [ 111. 

2. Are there Barrach algebras of analytic functions with undecidable 

Z? 4 -theory'? 

9. Banach algebras owar R 

The reason that we have until now restricted ourselves to algebras 
over C is that the spectral theory is smoother. The reader may have no- 
ticed that the results obtained via the theorems of Ersov and Grzegor- 
czyk remain valid when C is replaced by R. 

We work in the same languages/?i as before. We consider Banach al- 
gebras over R. These are construed as in 2.2, except that now the set 
M1 of scalars is R. As before, we consider only algebras with unit. For 
1 < i ~ 4 let Ban~ R) be the real analogue of Ban/. 
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9.1. Analogue of Section 7.9.1. I. Replace C by R in 7.1, and the next 
theorem is proved. 

Theorem 8. Let I'~ be the class o f  groups o f  invertible elements o f  
finite-dimensional semi-simple Banach algebras over IL with unit. Then 
Th(P R )/s hereditarily undecidable. 

Corollary 1. The Z)s-theory o f  the class or finite-dimensional semi-sim- 
ple Banach algebras over R, with unit, is hereditarily undecidable. 

Corollary 2. Let 1 <_ i <_ 4. The Z?i-theory o f  the class o f  finite-dimen- 
sional semi-simple Banach algebras over R, with unit, is hereditarily un- 
decidable. 

9.1.2. Now we get analogues of  Theorems 5 and 6. 
It is known [ 13, 2.4.4; 7] that ifA ~ Ban~ R) and A is finite-dimen- 

sional, commutative and semi-simple than A is isomorphic as an algebra 
to one of the algebras C m × R n (0 <_ m < ~0, 0 <_ n < co, m + n > 0). 
The next theorem is proved just as Theorem 5. 

Theorem 9. The Z? 4-theory o f  the class o f  finite-dimensional comm~.,ta- 
tive, semi-simple Banach algebras over R, with unit, is decidable. 

Replace C by R in the proof of Theorem 6 to get 

Theorem I0. For i = 1, 2, or, 3 theZ? i-theory o f  the class o f  finite-dimen. 
sional, commutative, semi-simple Banach algebras over R, with unit, is 
hereditarily undecidable. 

9.2. Analogue of Section 8. For a compact Hausdorff space X, let 
C R (X) be the real Banach algebra of real-valued continuous functions 
on ,~. Then one may easily check that all the results of Section 8 remain 
valid. Thus we get: 

Theorem 11. Suppo: : X is a compact Hausdorff space satisfying Grzegor- 
czyk's conditions. T;hen the Z? 4"theory o f  C R (X) is hereditarily undecid- 
able. In particular C R (X) is an undecidable ring. 
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Corollary 1. C R (I  n ), f o r  n > 2, and C R (S  n ), f o r  n > 1, are hereditarily 
undecidable. 

Corollary 2. The Z? 4-theory o f  commuta t i ve  semi-simple Banach alge- 
bras over R, wi th  unit, is hereditarily undecidable. 

Note. As in Section 8, we can show that C R (12) is hereditarily undecid- 
able. 

9.3. Analogue of  Section 4. For  the notion of complexification of a real 
algebra, see [ 13, 1.3]. Le tA ~ Ban(~), le tA c be the complexification 
o fA .  Then A c is A × A, where (x, y)  is to mimic x + iy. Precisely, 
(x, y )  + (u, v)= (x + u, y + v) 

(~ + ila)(x, y )  = (Lx - lay, Xy + p.x), and 
(x, y ) ' ( u ,  v) = (xu - yv ,  x v  + yu) .  

Then deafly the ~o 3-theory o fA  c is interpretable in the Z? 3-theory 
of A. We know by Section 4 that i fA c satisfies (*) then number theory, 
and in particular the finitely axiomzP, zable essentially undecidable sys- 
tem Q of  R.M. Robinson [4, 2.2]~ is ~-~terpretable in the &?3-theory of  
At:.  Thus by [4, 3.4] i f A  c satisfies (*) then the Z?3-theory of  A is here- 
ditarily undecidable. Thus: 

Theorem 12. Suppose  A ~ Ban~ R) , and dim c ( Ac/a,¢Ac)) is infinite. Then 
Th(A ) is hereditarily undecidable. 

Examples. i) C R (X), where X is an infinite compact Hausdorff  space. 
ii) The algebra of  continuous linear operators on an infinite-dimen- 

sional real Hilbert space. 

Corollary 1. Th(Ban~ R)) is hereditarily undecidable. 

Corollary 2. The theory  o f  commuta t i ve  Banach algebras over R, cons- 
trued s imply  as algebras, is undecidable. 

9.4. Analogue of Section 6. Suppose A ~ Ban 1 . In [ 13, 1.3] it is shown 
that A c has a norm II • it under which it is a Banach algebra over C, and 
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x -~ (x, 0) is an isometry. Actually [ 23, 1.3] produces many norms, 
corresponding to normed real representations o fA .  For  definiteness we 
take the left regular representation in Theorem (1,3.2) of  [ 13, 1.3]. 
Unfortunately, we do not  see how to interpret witilin the Z?2-theory of  
A the ~2- theory o fA c.  The snag occurs in Theorem (1.3.1) o f  [ 13, 1.3]. 
We define first 
I(x, y)l  = Ilxll + Ilyll, and then 
U(x, y)U = 1/x/~- - suple io .(x, y)l. 

. 0 . .  
If we have a defimtlon of  Cong,  the constants of  A, then we may define 

su I(u, u).(x,  )1 [[(X, y)[]  = 1/x/~ u,velcPon Y " 

t~2+ V 2 =]~ 

Then i t tu rns  out (we omit the details) that if Con R is ~2-definable 
then we can interpret within the Z?2-theory of A the Z?2-theory o fA  c .  
But without  a definition of  Con R we do not see what to do. 

When is Con R Z?2"definable? We content  ourselves with a sufficient 
condition. Suppose the centre o fA  c is semi-simple. Then by Lemma 13 
we can define the real constants o fA c in Z? 2, whence we can define 
Con R in Z? 2. 

These remarks and Theorem give: 

A C Theorem 13. Suppose A E Ban~ R), dim c ( /j(Ac )) is infinite, and the 

centre o f  A c is semi-simple. Then Th(A) is hereditarily undecidable. 

10. Algebras without unit 

Since many important  Banach algebras do not  have a unit, it seems 
worthwhile to consider briefly such algebras. Most of  our techniques 
break down. Certainly our approaches via the theorems of  Er3ov and 
Grzegorczyk yield nothing. There is, however, an analogue of  Theorem 
1. 

10.1. We formulate the elementary theories of  algebras without  unit  in 
languages A?/1 (1 <_ i <_ 4) obtained from the languages ~?i by dropping 
the constant corresponding to the unit. 

We will consider only algebras over C. To get results about algebras 
over R, combine the methods of  Sections 9 and 10. 

We will use the standard device of  adjoining a unit. I fA has no unit,. 
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we define A e as A X C with operations as follows: 
(x, a )  + (y, = (x + y,  + 

(x, a)" (y, [3) = (ay + ~x + xy, a[3) 
II(x, a)ll = Ilxll + It~t. 

Then A e is a Banach algebra with unit (0,1), and the map x -~ (x, 0) is 
an isometric isomorphism of  A onto  a maximal ideal o f A  e. It follows 
that J ( a  e) = J ( a  ). 

In Z? 1 and Z?~ we have a separate sort of variable for the scalars C. 
It then follows from the definition o f A  e that for i = 1 or 3 the ~o i- 
theory o f A  e is interpretable in the ~/l- theory o fA .  This gives: 

Theorem 14. Suppose A is a Banach algebra over C without  unit, such 

that dirn c (A /J(A ) ) is infinite. Then the ~o ~ .theory o f  A is hereditarily 
tlndecidable. 

10.2. We do not see how to interpret within the Z?) -theory of A, for 

i = 2 or 4, the Z?i-theory o f A  e. 
However, we do have: 

Theorem 15. Let  1 < i <_ 4. Let  A be a Bant,ch algebra over C wi thout  

unit. f f  the ~li-theory o f  A is decidable then the ~°i-theory o f  A e is de- 
cidable. 

We will prove this for i = 4 in much great~,,r generality in [ 10]. The 
other cases are proved similarly. 

10.3. Having given considerable at tention to semi-simple algebras, we 
now raise the question of  the decidability of radical algebras, i.e. alge- 
bras A for which J ( A )  = A .  Such algebras have of  course no unit. 

We have found no undecidability results for such algebras. 

Problem. Is the theory of  radical Banach algebras decidable? 

We conjecture not. A candidate for a hereditarily undecidable radical 
Banach algebra is L (0, 1) under addition and convolution [ 13, Appen- 
dix A.2.i  11. 
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