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1. Introcduction

1.1. Origin of the problem. At the end of the survey article [4] there is
a list of open questions concerning the decidability of certain important
elementary theories.

One of these questions asks if the elementary theory of complete
normed rings (i.e. Banach algebras) is decidable. By classical work of
Tarski the rings C and R are decidable [15]. It is easy to extend Tarski’s
results and prove that C and R are decidable normed algebras. From
this we see that the elementary theory of Banach algebras is not essen-
tially undecidable. Moreover, most known decidable rings are elementa-
rily equivalent to .omplete topological rings [1]. Thus, it is reasonable
to hope to obtain positive decidability results for Banach algebras.

However, in this paper we prove rather general undecidability results
for Banach algebras.

1.2. Different formulations. There are various formulations of our prob-
lem, according to the way we construe Banach algebras as structures for
a first-order logic.

The natural way to construe Banach algebras is as algebras (over C or
R) endowed with a norm map to R. In this formulation, to be called
the first formulation, Banach algebras are many-sorted structures for a
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certain many-sorted logic. For many-sorted model-theory, consult [15].
Other formulations are obtaired by forgetting some of the preceding
structure. We get three other formulations in this way.

Second formulation. If we forget the algebra structure, we construe
Banach algebras as rings with norms.

Third formulation. 1f we forget the norm, we construe Banach algebras
as algebras.

Fourth formulation. If we Jorget the algebra structure and the norm,
we construe Banach algebras simply as rings.

1.3. Main results. Clearly a negative answer to the original problem in
the fourth formulation (i.e. a proof that the theory of the underlying
rings of Banach algebras is undecidable) implies a negative answer to the
problem in the other formulations. Similarly, a negative answer in either
of the second or third formulations implies a negative answer in the first
formulation.

Our central result is that the theory of Banach algebras, ccnstrued sim-
ply as rings, is hereditarily undecidable.

We present three proofs of this result, each giving significantly differ-
ent information.

The first proof uses spectral theory, and establishes that if A is a Ba-
nach algebra over C, with unit and with trivial centre, and if 4 is infinite-
dimensional over its radical, then tke ring-theory of A4 is hereditarily un-
decidable. An example of such an A is 2(H, H), the ring of continuous
linear operators on an infinite-dimensional Hilbert space H.

The second proof depends on Ersov’s [3], and establisiies the strong
resuit that the theory of the class of groups of invertible elements of
finite-dimensional semi-simple Banach algebras is hereditarily undecida-
ble.

The third proof uses Grzegorczyk’s theorem [6] on the undecidability
of the algebra of closed subsets of the Euclidean plane, and establishes
that the theory of commutative semi-simple Banach algebras, construed
as rings, is hereditarily undecidable.

En route to the first proof, we prove that if 4 is a Banach algebra in-
finite-dimensional over its radical, and we construe A simply as an alge-
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bra, then Th(A) is hereditarily undecidable. Later we prove the analo-
gous result for normed rings.

2. Preliminaries

2.1. For definitions and basic facts about Banach algebras, see [2, 13].
From now until Section 9, we restrict ourselves to Banach algebras over
C, with unit. In Sections 9 and 10, we combine our main results with the
techniques of complexification and adjoining a unit, to get results about
algebras over R and algebras without unit.

2.2. Wo list the basic ingredients of a Banach algebra 4 over C, with unit.
These ingredients are as follows.

2.2.1. Three sets My, M, M,. M, is the set of elements of the algebra,
M, is the set C of scalars, and M, is the set R.

2.2.2. Individuals a,, ..., a5.a, and a, are respectively the zero and unit
elements of M. a, and a, are respectively the zero and unit elements of
M, . a4 and ag are respectively the zero and unit of M,.

2.2.3. Operations F, ..., Fg.
Fy : M} - M, is addition in M.
F, : M} > M, is addition in M.
F, : M% > M, isaddition in M,.
Fy : M} - M, is multiplication in M.
F, : M} > i, is multiplication in M, .
Fs : M3 - M, is multiplication in A, .
Fg : M, X My - M, is scalar multiplication.
F; : My - M, is the norm map from M, toM,.
Fg : M, > M, is the standard norm: map from C to R.

2.2.4. A binary relation Ry. R is the natural order < on M,.

Thus a Banach zlgebra over C, with unit, is a 3-sorted structure

((Mz-)i<3,(R,-)i<3,(a‘i) (1’i>

<6’

),

i<9
and so has a signature g as in {5]. Now we introduce a first-order finitary
language appropriate to structures of signature o.
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2.3. Let 2, be a first-order finitary language of signature o. The ingre-
dients of £, are as follows.

2.3.1, Infinitely many variables of each of three sorts, corresponding to
My, M|, M,.

2.3.2. Individual constants corresponding to ay, ..., as.

2.3.3. Operation-symbols of appropriate arity, corresponding to
Fy, .., Fg.

2.3.4. A binary relation-symbol corresponding to R.
2.3.5. An eqnality symbol =.

2.3.6. The usual quantifiers and connectives.

2.4. Thus, a banach algebra over C, with unit, is an £, -structure. The
language £, corresponds to the first formulation of 1.2.

Next, we describe sublanguages of £, corresponding to the other
formulations.

£, is got from L2, by forgetting the symbols of .£2; corresponding to
ay,as, F,,F,, Fg, Fg, and the variables of 2, of the sort correspond-
ing to M. Then £, corresponds to the second formulation.

L5 is got from £, by forgetting the symbols of £, corresponding to
ay,as,Fy,Fs,Fy, Fg, Ry and the variables of the sort coiresponding
to M,. Then .25 corresponds to the third forinulation.

£, is got from £, by forgetting the symbols of 2, corresponding to
ay,az,a4,as5,F,Fy, Fy,Fs, Fg, Fq, Fg, Ry and the variables of sorts
corresponding to M, and M,. Then £, corresponds to the fourth for-
mulation. .2, is just the language of ring-theory.

2.5. We define Ban, as the class of .2, -structures which are Banach al-
gebra over C with unit.

For 2 <1< 4, we define Ban; as the class of £;-structures which are
reducts of members of Ban, .

Thus, Ban, is the class of underlying normed rings of Banach algebras
over C with unit. Similarly Ban; is the class of underlying algebras, and
Ban, the class of underlying rings, of Banach algebras over C with unit.
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2.6. Theories. We assume the basic notions and results of model-theory
and recursion-theory. See [4].

If 2 is a first-order language, an 2-theory is a consistent set of £-
sentences closed under deduction. If W is an £-structure than Th(M),
the theory of M, is the set of all L-sentences ® such that W = ®. If k
is a class of L-structurcs then Ti(k), the theory of k, is the set of all .£2-
sentences ® such that W & ® for all M € k.

2.7. Undecidability. We assume a fixed Godel numbering of the languages
L£; (1 <i<4),so we can talk freely about recursive sets of .2;-sentences.
An £;-theory T is decidable if it is a recursive set. An £2;-theory T is here-
ditarily undecidable if all subtheories of 7 are undecidable.

All the languages .2; (1 < i< 4) contain the standard language for
ring theory, and the models in which we are interested are rings, possib-
ly with extra structure. If A € Ban; then 4 contains a subring isomorphic
to Z, namely the subring of all elementsn+e wherens 2 < C,and e is
the unit of A. For convenience we identify this subring with Z. Let N be
the subsemiring of non-negative integers.

Lemma 1. Suppose A € Ban; and N is definable in A by a formula of £;.
Then Th(A) is hereditarily undecidable.
Proof. Standard. See [4].

We refer to [4] for the notion of the interpretability of one theory
in another.

An L-theory T is essentially undecidable if 7', is undecidable for each
L-theory Ty with TC T,.

Lemma 2. If a finitely axiomatizable essentially undecidable theory can

be interpreted in T then T is hereditarily undecidable.
Proof. See [4].

2.&. Informal notation. Suppose A € Ban;. Then 4 is an £, -structure.
(<Mf>x'<3’ (R")i<1 ’ (a")i<6 ’ <Fi)i<9)’
where M, isCand M, ic R.
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£, has formal symbols corresponding to the ingredients of A. Now
we provide familiar notation, in terms of which we will give our defini-
tions.

Suppose x and y are members of M,, A and u are members of C and
r and s are members of R. We put:

0 = 4,

e = a,

O¢c = a,,

lc = a,

OR = as,

IR = as,

x+ty = Fy(x, ),
?\ + M = Fl ()\3 “)’
rts = F,(y9),
xy = F3(x, ),
)\.# = F4 ()\9 “)’
res =  Fs(r,5),
Aex = Fg(\, x),
xk = Fix),
IAl = Fg(\),

and finally

r<s < R, s).

Obviously the graphs of the operations of subtraction in My, M, and
M, are £2,-definable. In fact, subtraction in M, is £24-definable, sub-
traction in M, is £;-definable, and subtraction in M, is £2,-definable.

We will sometimes write

XEA
when we mean

XEM,.
3. Spectra
Suppose 4 € Ban,, and x € A. Sp, (x), the spectrum of x in A4, is the

set
{AeC : x — \+eis nect invertible in 4}.



§3, Spectra 245

3.1. For reasons that will emerge in the next section, we want to know

when A satisfies the following condition: For each non-negative integer
n there exists x, € A such that each of the integers 0, 1, ..., n is a mem-
ber of Sp, (x,,). ‘ *)

Lemma 3. Suppose A € Ban,. Then A satisfies (*) if and only if for each
non-negative n there exists y, € A such that Sp, (v,)) has a least n + 1
members.

Proof. Necessity is trivial.

Sufficiency. Suppose A satisfies the condition in the lemma. Let n be a
non-negative integer. Select y, € 4 such that Sp, (y, ) contains distinct
elements Ay, ..., A, . Using the Lagrange Interpolation Theorem, select

f € Cix] such that f(A,,)=m for 0 < m < n. Letx, = f(y,). Then, by
1.6.10 of [13], Sp,(x,) = {f(A) : A€ Sp,(¥,)},500, 1, ...,n € Sp, (x,).
Since n was arbitrary, A satisfies (*).

3.2. The radical. For the definition and basic properties of the Jacobson
radical of an algebra, see [7, 13].

If A € Ban,, let J(A4) be the radical of 4. J(A) is a closed ideal of 4,
and A/J(A) has a natural structure of Banach aigebra. A is called semi-
simple if J(4) = 0.

Some useful facts about J(A4) are 3.2.1. — 3.2.3. below,

3.2.1. A/y, 4y is semi-simple.
3.2.2.J(A)={y€ A: 1 +tyisinvertible for all t € 4}.

3.2.3.1fn: A~ A/J{A) is the natural projection then
SPA/J(A)(H(X)) =Sp, (x) forallx € A.

For 3.2.1 see [ 13, page 56]. For 3.2.2 see [13, page 55].In 3.2.3
the inclusion Sp, (x) € Sp, Ira )(n(x)) is clear. The reverse inclusion fol-

lows from the observation that an element invertible modulo the radical
is invertible, and this is almost trivial from 3.2.3.

3.3. Lemma 4. Suppose A € Ban,, and dim¢ (A/J(A)) = n < =, Then, if
y € A, Sp, () has at mest n elements,
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Proof. By 3.2.1 and 3.2.3 we may assums A is semi-simple and
dimg(A4) = n.

Let y € A. Then there exists f€ C[x] such that f(y) = 0 and
1 < deg() < n—1.Now by 1.6.10 of [13]

Spa (f(yN={f(A): A€ Sp, (¥)}.
But

Sp, (F(y) = Sp, (0)= {0;.

ZAESp,(¥)—>f(A3=0.

Sp,4 (v) has at most » members.

3.5. Lemma §. Suppose A € Ban; and dim (A4/J(A)) is infinite. Then
there exists x € A such that Sp 4 (x) is infinite.

Froof. By 3.2.1 and 3.2.3 we may assume A is semi-simple. But then the
lemma is a result of Kaplansky [8, Lemma 7].

Lemma 6. Suppose A € Ban,. Then A satisfies (*) if and only if

dimg (A/J(A)) is infinite.

Sufficiency. Suppose dimg (4//(A4)) is infinite. Then by Lemma 3 and 5
A satisfies {*).

4. Constants and the Definition of N

Suppose 4 € Ban,. We define Con as {Ae : A€ C}. Then Con is a
subring of A, isomorphic to C. With the convention of 2.7, N € Con.
The elements of Con are called constants.

We will show that if A satisfies (¥*) then N is definable from Con using
only the notions of elementary ring theory.

4.1. Some definitions. Suppose x, y, z, t, U € A.
4.1.1. xly <« (3z)(y =xz A xz = zX).
4.1.2. D(x, y, z) < (y—x)lz A (y—x) is not invertible.
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4.1.3. ¥(x) <> x€ Con A.

ADEAWD, t, u) A (VWX € Con Ay +#x AD(y, t, u)
->D(y+e t u)l.

4.2. Lemma 7. Suppose A€ Ban; andx € A. Then ¥(x) > x € N.
Proof. Suppose x ¢ N and ¥ (x). Select ¢, u such that D(0, #, u) and

(VWY((yeClonAay#xAD(,t u)
- D(y +e, t, u)).

By induction we get

D(nve t, u)
forall ne N,
But then
ne N>t — n+e not invertible
NS Sp, (1)

But Sp, (¢) is bounded [13, 1.6.4].
This gives a contradiction.

L ¥(x)>x€N.

Lemma 8. Suppose A € Ban,, and n € N. Suppose t € A and
{0,1,...,ny S Spy (). Let u = t<(t—e) ... (t—n-e). Then for X\ € C,

D(Q\ve, t,)— A€ {0, 1,..,n}).

Proof. Case 1. A comimutative and semi-simple.

By Gelfand’s Theorem [13, 3.1.20], A is algebraically isomorphic to an
algebra of continuous functions on a compact Hausdorff space X. The
isomorphism preserves spectra, and the property D of 4.1.2, so we may
assume without loss of generality that 4 is an algebra of continuous
functions on a space X.
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Clearly,if m € {0, 1, ..., n}, t—m-eliu and t—m-+e is not invertible,
so D(m-e, t, u). 4

Conversely, suppose A € C and D(A-e, ¢, u). Then t—\-e is not invert-
ible, so A € Range(¢). Select x € X such that ¢(x) = \. Since
D(A\+e, t, u), we have t—X+el u, so there exists z such that u =
(t=A-€)*z . Now, (t—N-e)(x) =0, sou(x) = 0. .. t(x)(t(x3—1) ...
(t(x)—-n)=0,s0 t(x)=m forsome me {0, 1, ..,n}. But #(x) = A, so
Ae {0,1,...,n}.

This proves the result.

Case 2. A commutative, Letn : A > A/J(A) be the natural projection.
Then {0, 1, ..., n} & SpA/J(A)(t) by 3.2.3. Also n(u) = n(t)(n(t)—e) ...,

(n(#)—n-e). Since A/J(A) is semi-simple, we conclude from the first case
that forA€ C,D(A-e, n(2),+,{u)) <= A€ {0, 1, ..., n}.

Asin Case 1, it is clear thatif me {0, 1, ..., n} then D(m-e, 1, ).
Suppose A € Cand D(A+e, ¢, u). Then t—}.+ el u. By definition of I,
it follows that n(¢) — A+ ell n(«). Similarly, since —\ e is not invertible,

n(t) — A-e is not invertible, by 3.2.3.

L D(ee, n(0), n(w)).
LAE {0, 1, ..., K]

This concludes the proof.

Case 3. A arbitrary. As before, it is clear thatif m € {0, 1, ..., n} then
D(@m-e, t, u).

Conversely, suppose A & C and D(A-e, ¢, u). Then A € Sp 4 (1), and
t—\+ellu. Thus there exists z such that u = (¢—\+e)+z, and (t—A-e)*z =
z+(i—\<e). Then clearly rz = zt. By [13, 1.6.14] there exists a maximal
commutative subalgebra B of A such that € B, z€ B, and e € B. By
[13,1.6.14], Spg(x) =Sp, (x) forx € B. Thus {0, 1, ...,n} € Spg (D).
Also, A € Spg(r). Since t and z are in B, u € B and t—\+2llu in B. Thus
D(A-e, t, u) in B. Since B is commutative, Case 2 implies that
A€ {0, 1, ..., i}, proving the lemma.

Lemma 9. Suppose A € Ban; and A satisfies (*). If x € A, then
x €N~ ¥(x).
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Proof. Suppose x € N. Then x = n+e for some non-negative integer #.
Since A satisfies (*), we may select # € 4 such that {0, 1,...,7n} € Sp, (9.
Letu=t*(t—e)...(t—n-e). By Lemma 8, if A € C then

D(\+e, t, u)«> A€ {0, 1, ...,n}.
Thus D(0, ¢, u) and

VX (yveClonay#xAD(,tuw)
= D(y +e, ¢t u).
L W(x).

4.3. Undecidability of algebras satisfying (*).

Suppose A € Ban; and A/J(A4) is infinite-dimensional. Then 4 satisfies
(*), by Lemma 6. By I.emmas 7 and 9, ¥ defines N in A. So, by Lemma
1, if ¥ is definable in £; then the £;-theory of A4 is hereditarily undecid-
able.

Clearly D(x, y, z) is definable in £2,. Thus ¥ will be .2;-definable pro-
vided Con is £;-definable.

Trivially, Con is £2;-definable, by:

x € Con<> (INE M )x = A-e).
The preceding observations immediately give

Theorem 1. Suppose A € Ban, and A[J(A) is irfinite-dimensional. Then
Th(A) is hereditarily undecidable.

Remark. This implies that all infinite-dimensional semi-simple Banach
algebras, construed simply as algebras, are undecidable. Examples are:
a) C(X), the algebra of continuous complex functions on an infinite
compact Hausdorff space X. Sée [13, Chapter III}.
b) 2(H, H), the algebra of continuous linear operators on an infinite-
dimensional Hilbert space H. See [13, Appendix A.1.1].
We will prove in [10] that all finite-dimensional algebras ov:r C (not
just Banach algebras) are decidable.
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Corollary 1 to Theorem 1. Th(Ban, ) is hereditarily undecidable.

Proof. Let X be the unit interval [0, 1]. Then C(X) € Ban;. By Theorem
1, Th(C (X)) is hereditarily undecidable. Since Th(Ban;) & Th(C(X)),
Th(Ban,) is hereditarily undecidable.

Corollary 2. The theory of commutative Banach algebras, construed
simply as algebras, is hereditarily undecidable.

Proof. Immediate from the procf of Corollary 1, since C(X) is commu-
tative,

5. Defining N in 2,

Since we want undecidability results for Banach algebras as rings, we
want definitions of N in .24, and so we want definitions of Con in £24.

5.1. Suppose we can define in .£2; a subset Con; of Con, such that
N & Con, . Replace Con by Con, in the definition of ¥, to get a new
notion ¥, . The following lamme is proved in the same way as Lemmas
7 and 9.
Lemma 10. Suppose A € Ban,, and A satisfies (*). If x €A, then

x EN ¥, (x).

Thus if A € Ban,, and 4 satisfies (¥), and an appropriate set Con, is
L;-definable, then Th(4) is hereditarily undecidable. In Section 6 we
will apply a variant of this observations when i = 2, to get the analogue
of Theorem 1 for Banach algebras as normed rings.

5.2. The centre. Suppose A € Ban, . We define Cen, the centre of 4, by:
x € Cen <« (Vy)(xy =yx).

Obviously Cen is definable in £2,. Clearly Con & Cen.



§5. Defining N in £, 251

Now let A be £L(H, H), the ring of continuous linear operators on an
infinite-dimensional Hilbert space H. As observed before, A satisfies (*).
But also [13, 2.4.5] the centre of 4 is Con. For this 4, Con is .24-defin-
able. More generally we have:

Theorem 2. Suppose A € Ban,, A/J(A)is infinite-dimensional, and the
centre of A is Con. Then Th(A) is hereditarily undecidable.

Proof. Con = Cen, so Con is .2, -definable. Since A/J(A4) is infinite-dimen-
sional, ¥ defines N. Thus N is 2, -definable. The result follows by Lem-
ma 1.

Corollary. Th(Ban,) is hereditarily undecidable.

Proof. Let A be L(H, H) as above. Then Th(Ban, ) & Th(4). By Theo-
rem 2, Th(A) is hereditarily undecidable, whence the result.

Remark. We do not know any commutative A4 satisfying (*) for which
Con, or an appropriate Con, , is £2,-definable. At the same time we do
not know any such A for which no Con, is definable, and in the light of
Kaplansky’s [8] it will te difficult to prove undefinability results.

6. Interpreting Number Theory in 2,

The main technical result o1 this section is that if A € Ban; then we
can define in £2,, the language for normed rings, a set Kon & A such that

NCKonC {Ae+j:AeCnje](Cen).

Then, if A satisfies (*), we can extend the techniques of Section 4 to
get an interpretation of number theory in the £2,-theory of 4, whence
the 2,-theory of A is hereditarily undecidable.

6.1. Sgectral Radius. Suppose A € Ban; and x € A. Then lim Ix7 | lin
exists, and v(x), the spectral radius of x is defined as this e
limit. In fact,

v(x)= sup IAl. See[13, 1.4.1].
KESPA(X)
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Neither of the above characterizations of spectral radius is in the
form of an £2,-definition.

Definition 6.1.1.Cen; = {y € Cen: (y =0) v
(y is invertible A Ily-1I = [yl-1}.

Definition 6.1.2. Sp} (x) = {y € Cen, : x—y is not invertible}.
Lemma 10. If y € Sp¥ (x) then Iyl < v(x)-

Proof. Suppose y € Sp% (x). Then y € Cen, . If y = 0 then Iyl = 0 < p(x).
Suppose y # 0. Then y is invertible, and Iy 11 = Iyl-1. Suppose
Iyt > v(x). Then, by [13, page 10],
vey=1) S w(x) v(y—1)
< p(x) Iyt
= p(x) lyl-1
< 1.
Then by [13, page 18], e—xy ! is invertible, and since x—y = y(xy~1 —e)
it follows that x—y is invertible.
.y € Spj ().
We conclude that Iyl < v(x).

Corollary 1. v(x) = sup iyl
yeSp} (%)
Proof. By the lemma,

su Iyl < v(x).
yeSpj (x)

But there exists A € C such that A € Sp, (x) and v(x) = IAl, since Sp, (x)
is compact. Let y = A-e. Then y € Sp¥ (x), and Iyl = Al =v(x).
Svx)< sup iyl

yeSpj (x)

Lv(x)= su iyl
yeSpg(x)

Corollary 2. v is £,-definable.

Proof. Clearly Cen; and Sp¥ are .2,-definable. The result follows.
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6.2. Definition 6.2.1.
M(x) <> x € Cen A (Vy € Cen)(v(xy) =vix)v(y) A
v((x—e)y) =v(x—e)v(y)).
Clearly the predicate M is £2,-definable.

Lemma 11. Suppose A € Ban,, and x € A. Suppose M(x). Then there
exists N\ € C such that Sp4 (x) © {\, A}

Proof. Firstly, we show that the proof rzduces to the case when A4 is
commutative and semi-simple. Cen is a ¢iosed subalgebra of 4, and
claerly if M(x) then x € Cen and M(x) in Cen. Further, Sp, (x) = Spge, ().
Thus the proof certainly reduces to the case when 4 is commutative.
The general commutative case reduces to the semi-simple case, by the -
usual device of factoring out the radical. We now assume 4 is commuta-
tive and semi-simple. A

Consider the Gelfand isomorphism “: A > A. See [13, Chapter IlI]
for details. For each y in 4, v(J) = v(y}, so M(x) in A. If we have the
lemma for A, we can conclude that there exists A € C such that
Sp; (%) & {\, A}. But Spj (%) = Sp,4 (x), whence the resuit.

Thus our proof is finally reduced to the case where A4 is a closed sub-
algebra of C(X) with the sup norm, where X is a compact Hausdorff
space. Let A be the Silov Boundary of 4. See [13, 3,3].

Suppose M(x). Fory€ 4,v(y) = lyl, by I'13, 1.4.2]. Thus
Ixyll = lixtelyl, and 1(x- 2)+yl = lx—ell- Ivi.

We claim that if « € 64 then Ix(a)l = Ixl, and Ix(a) — 11 = ix—ell.

By {13, Theorem 3.3.6],

inf Ix(a)!=inf xyl

acoA YeA Hy I

= lixfl, since M(x).
But ix(a)! < Ixl foralla € X.
Lx(a)l=lxlt fora € 0A4.
Similarly, Ix(a) — 11=lx—ell fora € 2A4.
Thus, fore € 94,

x(@)e (A€ C:IN=1xl} 0 {A€C: I\ - 1I=lx—el},
and this intersection is clearly of the form {A, A} for some A € C. (The
intersection is not empty, since x (a) is a member, fora € 34).
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Thus x(a) is A or  for each a€JA. Lety = (_x—?\-e)(x—_i-e)). Then
ifa€dA, y(@)=0..y=0.. Range (x) < {A AL e
SpA (x) g {h’ R},

Lemma 12. Suppose A € Ban,, and x € A. Suppose x € Cen and there
exists N € Csuch that Sp, (x) S {\, \\. Then M(x).

Proof. Just as in Lemma 11, we need only consider the case where 4 is
a closed subalgebra of C(X) with the sup norm, where X is a compact
Hausdorff space.

Since v(y) = Iyl for y € A, we want to establish that lxyll = txllipl
and l(ce—e) -yl = l(x—e)+yl, forally € A.

Since Spy (x) S {A, A1},
Range (x) € {A\, A}, so
Ix(a)l=lxl foralla € X.
Thus lxyll = sug ey W a)i= suE Ix(a)*y(a)l

[« 15 (o1

= el | F=lxle [ l
s 131/ @1 = Il b )
= s pll.
Similarly, Sp, (x—€) € {A—1,A—11}, so I(x—e)*yl = lix—el - Iyl
S M(x).

Corollary. M(x) if and only if x € Cen and there exists \ € C such that
SpA (x) g {)‘1 x}'

Proof. Immediate from Lemmas 11 and 12.

6.3. Definition 6.3.1. x € Kon «— (Vy)(M(y) - M(xy)). Clearly Kon is
£,-definable. g

Lemma 13. Suppose A € Ban,. Then
i)Kons {Ace+j: A€ CAjeJ(Cen)};
ii) if A€ Cand X is real then \+-e € Kon.

Proof. i) First we observe that we need only consider the case when 4 is
commutative. For if x € Kon then M (x), since M(e). Thus x € Cen.
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Meoreover, x € Kon in Cen. So if we have the result for Cen then we get
it for A.

So, assume A4 is commutative and x € Kon. Then M(x). Let i be a
square root of —1 in C. Then Sp, (i*¢) = {i}, so M(i-e) by corollary to
Lemma 12. Since » € Kon, M (x*(i*e)), so M(i-x). Now, since M (x),
there exists A € C such that Sp, (x) & {, A}, by the corollary to Lemma
12. Similarly, there exists u € C such that Sp, (ix) € {u, u}. But
Spq(i*x) S {iN, iIA}. If X # 0, IA# i\. We cou:clude that Sp,(x)isa
singleton, and without loss of generality Sp, (x) = {A}. Therefore
Sp4 (x—A\+e) = {0}. Since 4 is commutative, [13, 2.4.6]1 implies that
x—A*e €J(A)=J(Cen). Thus x = h+e +j, where j € J(Cen), as required.

ii) Suppose A € C and A is real. Suppose M (y). Then by the corollary
to Lemma 12, there exists u € C such that Sp, () C {u, n}. Thus
Spq (A*e) S { Ay, Au}, since A = A. By the corollary to Lemma 12,
M((Ae)*y). We conclude that A-e € Kon.

6.4. Definition 6.4.1. Kony =Konn {A*e+j: A€ N A j€ J(Cen)}.

Our objective is to show that Kony is .2,-definable, provided 4 sat-
isfies (*). This involves modifying the technique of Section 4.

Definition 6.4.2. Wy (x) < x € Kon A (31)(3u){D(0, ¢, u) A
(YY)((y € Kon A y~x ¢ J{(Cen) A D(y, t, u))
> (3z2)D@, t, u) Az - (y +e)e J(Cen)))].

Lemma 14. Suppose A € Ban; and x € A. Then Vg (x) > x € Kony,.

Proof. Suppose x ¢ Kony and ¥, (x). Select ¢, u such that D(0, ¢, u) and
YWI(y€Konay -x&J(Cen) AD(y, t, u))

~»(32)D(z, t, u) A z—(y + e) € J(Cen))].
Since ¥ (x), x € Kon, so x = A+e +j, where A'€ C and j € J(Cen). If
y=n-e+], where n € N and ! € J(Cen), then y—x € J(Cen), since
A ¢ N. It follows by induction that for each n € N there exists
I, =J(Cen) such that D(n-e +1,, ¢, u). In particular, t—(n-e + l,) is not
invertible, Now, /,, € Cen. Let B be a maximal commutative subalgebra
of A, containing ¢. Since [, € J(Cen), Spce, (/,) = {0}, so by [13, 1.6.14)}
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Spp(,) = {0},s0l, € J(B), by [13, 2.4.6]. Therefore, by 3.2.3
Spp(?) =Spg (t —1,)
= SpA (f - ln )'
Since n € Spy (¢t —1,,), n€ Spg ().
.. N € Spg(#), a contradiction, since Spg (#) is bounded.
L We(x) > x € Kony.

Lemma 15. Suppose A € Ban, and A satisfies (*). Let x € A. Then
x € Kony = ¥g (x).

Proof. Suppose x € Kony . Then there exists n € N and j € J(Cen) such
that x =n+e +j, and x € Kon. Since A satisfies (*) we can pick t € 4
such that {0, ...,n} € Sp, ?). Letu = t(t—e) ... (t—n+e). Then, by Lem-
ma8,if A€ C,D(Ave, t,u) <= AE {u, 1, ...,n}.

In particular, D (0, ¢, u).

Suppose y € Kon, and y — x ¢ J(Czn}, and D(y, ¢, u). By Lemma 13,
there exists A € C and € J(Cen) sucli that y = A+e + 1. Since D (), ¢, u),
(t—yp)liu, so there exists v such that u = ({~y)*v=v+(¢-y). Let Bbe a
maximal commutative subalgebra of 4 containing e, ¢, and v. Then
Cen € B. Thus y € B and (t—y)llu in 3. Since D(y, t, w), t—y is not in-
vertible, so it follows that D(y, ¢, u) :n B. Also, !/ € J(Cen), s Spce, () =
{0}, so Spg () = {0}, sol € J(B) since B is commutative. Let
n: B - B/J(B) be the natural projection. Just as in the proof of Lemma
8, D(n(»), n(?), n(u)), so D(\-e + n(1), n(2), n(u)), so
D(\-e, n(t), n(u)). Therefore, by Lemma 8, A € {0, 1, ..., n}. But
y—x ¢ J(Cen),so A€ {0, 1, .., n—1}. Letz=(A+ 1):e. Then
z—(y+e)=1eJ(Cen),and D(z, ¢, u) by Lemma 8.

We conclude that ¥z (x).

Corollary. Kony, is .2,-definable, if A satisfies (*).
Proof. ¥y is clearly .2,-definable.

6.5. Suppose 4 € Ban,; and A satisfies (*). Then Kony, is 2,-definable.

Definition 6.5.1.
x € P (y)(y € Kony A y—x € J(Cen)).
Then P is .2,-definable, because J is .2,-definable via 3.2.2.
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Note. P = Kony, but there is no need to prove this. Trivially, Kony cP

Lemma 16. i) P is closed under + and -
ii) Let = be congruence modulo J(Cen). Then
(P, +, }[= = (N,+, %)

Proof. Trivial.

Thus we have proved that if 4 € Ban, and 4 satisfies (*) then num-
ber theory is interpretable in Th(A4). Thus Th(4) is hereditarily undecid-
able.

Theorem 3. Suppose A € Ban,, and A/J(A) is infinite-dimensional. Then
Th(A) is hereditarily undecidable.

Proof. Done.

Corollary 1. Th(Ban,) is undecidable.

Proof. Let A = C({). Then Th(A) is hereditarily undecidable, and
Th(Ban,) & Th(4).

Corollary 2. The .2,-theory of commutative Banach algebras is undecid-
able.

Proof. See Corollary 1.

Remark. Con is not in general definable in £2,. Take 4 = C?, with
I(x, I = max (Ixl, I1y1). Define o: A= A by 6({x, y)) =(x, ¥).

Then o is a ring isomorphism of 4, and ¢ is an isometry. But Con is
not closed under o, for (i, i) € Con but o((i, i)) = (i, —i) ¢ Con. By
Padoa’s test, Con is not .2,-definable.

However, in this example, Kon= {A-e : A€ R}, so we can deﬁne in
£, asubset Con; of Con with N < Con,.

We know of no A for which no such subset Con; is 2,-definable.
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7. Finite-dimensional semi-simple Banach algebras

Suppose i = 2 or 3, and 4 € Ban;. We known that if 4 is infinite-dimen-
sional and semi-simple then Th(A4) is hereditarily undecidable.

Now we look at finite-dimensional semi-simple algebras. By [10] each
such algebra has decidable £;3-theory. We do not know any such algebra
with undecidable .2,-theory, but we conjecture that such algebras exist.

7.1. The group of invertible elements. Let 4 € Ban, . The set of inverti-
ble elements of 4 forms a group Gp(4) under .. The elementary theory
of Gp(A4) is formalized in a sublanguage .25 of £,. The orly non- ogical
cymbols of £5 are the constant corresponding to e, and the operation
symbol corresponding to *. £ is just the usual language for group the-
ory.

Let n be an integer 2> 1. C has a natural structure of n-dimensional
Hilbert space cver C. Consider £(C”, C"\ the Banach algebra of contin-
uous linear operators on C”. The underlying ring of .£(C", C") is just
M, (C), the ring of n X n matrices over C. Let 4 =.2(C", C"). Then
Gp(4) = GL,,(C), the group of n X # invertible metrices over C.

For any field K, define M(K) = {GL,(K) : 1 € n < w}. Ersov [3]
proved that Th(M(K)) is hereditarily undecidable.

From this we deduce:

Theorem 4. Let I be the class of groups of invertible elements of finite-
dimensional semi-simple Barnach algebras. Then Th(T') is hereditarily
undecidable.

Proof. M(C) € T', since M, (C) is semi-simple for each n. The result fol-
lows immediately from Ersov’s result.

Corollary 1. The L£4-theory of the class of finite-dimensional semi-simple
Banach algebras is hereditarily undecidable.

Proof. Immediate from Theorem 4, and the observation that Th(I') is
interpretable in the .£5-theory of the class of finite-dimensional semni-
simple Banach algebras.
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Corollary 2. Let 1 <i<4. The L-theory of the class of finite-dimen-
sional semi-simple Banach algebras is aerediturily undecidable.

Proof. Immediate from Corollary 1, since £; is a sublanguage of .C;.

Remarks. 1. Ersov’s result, with K = R, estal¥ishes the hereditary unde-
cidability of the class of finite-dimensional semi-simple real Banach al-
gebras.

With K = Qp, the field of p-adic numbers, we get a corresponding
result for normed algebras over Qp.

2. We do not know any 4 € Ban; for which Gp(A) is undecidable.

3. The additive group of a Banach algebra is a torsion-free divisible
abelian group, and so is decidable [4]. Also by completeness [4] of the
theory of non-trivial torsion-free divisible abelian groups, the theory of
the class of additive groups of Banach algebras is decidable.

7.2. The commutat:, ~ case, It is known [13, 2.4] thatif 4 € Ban; and
A is finite-dimensional, commutative and semi-sitaple then 4 is isomor-
phic as an algebra to one ot the algebras C" (1 < n < w).

Theorem 5. The £2,-theory of the class of finite-dimersional, commuta-
tive, semi-simple Banach algebras over C, with unit, is decidable.

Proof. By the remark above, it saffices to prove that the theory of the
class of rings {C": 1 < n < w} is decidable. But C is a decidable ring,

by Tarski’s theorem [15], so by a result of Feferman-Vaught {4] the

class {€": 1 € n < w} is decicable.

One might hope to extend :he above theorem from £, to £25. How-
ever, this cannot be done.

Theorem 6. Fori = 1, 2 or 3 the Cytheory of the class of finite-dimen-
sional, commutative, semi-simple Banach algebras over C, with unit, is

hereditarily undecidable.

Proof. (In outline). It suffices to consider the casesi == 2 or 3.
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i=3.In [10] it is proved that the theory of the class of algebras
{C": n < w} is hereditarily undecidable. (The proof is a variant of those
in Section 4). The result fcllows.

i=2.Suppose A =C",n > 1. A minor extension of the proof of Lem-
ma i3 shows that Kon is the set of real constants. Forn = 1, Kon = Con.
Now, our proof in [ 10] shows that {C": 2 < n < w} is a hereditarily
undecidable class of algebras over R. But R is uniformly definable in
£,, for these algebras. It follows that the .2,-theory of the class

{Cn: 2 < n < w} is hereditarily undecidable, whence the result.

8. Commutative Banach algebras with undecidable .2,-theory
So far we have not found any undecidable commutative ring which
is the underlying ring of a Banach algebra. There are in fact many such
rings, as we now prove by a new technique. However, our resuits do not

have the generality of those in Sections S and 6.

8.1. We will consider only the case where 4 = C(X), and X is a compact
Hausdorff space.

Lemma 17. The maximal ideals of C(X) are precisely the sets of the
form {fe C(X): f(a) = 0}, wherea € X.

Proof. See [13, 3,1].
Definition 8.1.1. Suppose f€ C(X). Then Z(f) = {a € X: f(a) = 0}.
Clearly Z(;) is closed if f€ C(X).

Definition 8.1.2. Zer(X) is the partially ordered set consisting of the
ats Z(f), where f € C(X), under €.

Lemma 18. Suppose f, g€ C(X). Then Z(f) N Z(g) # 0.
— (Vr, s € C(X)Wrf +5sg # e).
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Proof. Necessity. Suppose Z(f) N Z(g) # §. Then f(¢) = g(a) = 0, for
some a € X. Then clearly rf +sg # e, for allr, s € C(Y).

Sufficiency. Suspose rf +sg # e, for all r, s € C(X). Then f and g gene-
rate a proper ideal, which extends to a maximal ideal. By Lemma 17, it
follows that there exists a € X such that f(e) = g(a) = 0. Thus

ZHNZ@E#0.

Lemma 19. Suppose f, g € C(X). Then
Z()S Z(g)— (Vhe CN [ZNHNZR)# 0 > Z(g N Z(h) + D].

Proof. Necessity is irivial.
Sufficiency. Suppose Z(f) ¢z (2). Select @ € X such that f(«) = 0 and
g(a) # 0. Consider the disjoint closed sets {a} and Z(g). Since X is
compact, X is normal [9], so there exists # € C(X) such that h(@)=0
andh(@)=1ifpe Z(g).
Then Z(f)N Z(h) # @, but

Z(g)NZ(=9.
This nroves the result.

Lemma 20. The theory of Zex(X) can bz interpreted in the £ ,-theory
of C(X).

Proot. By Lemma 18, the relation Z(f) N Z(g) # 9 is L4-definable.
Then by Lemma 19 the relation o (f) € Z(g) is £,-definable. Then
clearly Z(f) = Z(g) is £,-definable, since
ZNH=Z@)—=ZNSZERNZ(® S Z).

Define f= g by Z(y) = Z(8).

On C(X);- define < by:

Then (C(X)y.-, <) = Zer(X), and so Zer(X) is interpretable in the 2,-
theory of C(X).

8.2. Lemma 21. Suppose X is compact and metrizable. Then every clos-
ed subset of X is of the form Z(f), for some f € C(X).

Proof. Let d be the metric on X. Let M be a closed subset of X. Define
fe CX) by fla) = in{{ d(e, ).
Then M = Z(f). "¢
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Corollary. Suppose X is compact and metrizable. Then the theory of
the lattice of closed subsets of X is interpretable in the £4-theory of
C(X).

Proof. Immediate from Lemmas 20 and 21.

8.3. Grzegorczyk’s Conditions, We say a topological space X satisfies

Grzegorczyk’s conditions if it satisfies (a)-(e) below.

a) X is metrizable.

b) X has at least two points.

¢) X is connected.

d) If A and B are two closed isolated disjoint sets, and A U B € E, and
E is a connected open set, then there exist two connected open sets
Cand DsuchthatA S C, BS D, Cu D € E, and the closures of C
and D are disjoint,

e) If A and B are two closed isolated disjoint sets, and there exists a 1-1
mapping of 4 into B, then there exists a closed set C such that
A U B S C, and every component D of C contains exactly one point
of the set A and one point of the set B.

Grzegorczyk [6] proved:

If X satisfies Grzegorczyk’s conditions then the theory of the lattice of

closed subsets of X has a finitely axiomatizable essentially undecidable

subtheory.

Remarks. i) Condition (a) is equivalent to conditions A1-A4 of Grzegor-
czyk’s paper, as he remarks in footnote 7. (d) is his A'6, which implies
his A6. Although he actually considers the Brouwer algebra of closed
sets, his results hold for the lattice of closed sets, since his operation =+
on page 143 of his paper is obviously definable in terms of the lattice
operations.

i) If X is compact, closed isolated sets are finite, and condition (e) fol-
lows from the othor condition (cf. the argument on page 140 of {6]).
iii) Examples of spaces satisfying Grzegorczyk’s conditions are E,,
(Euclidean n-space) for n 2 2, and the sphere S,. These facts are used in
(6], without proof. A fact not used in [6], but relevant here, is that S,
satisfies Grzegorczyk’s conditions for n 2 2. For all these spaces X, the
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crucial observation in verifying Grzegorczyk’s conditions is: if 4 is a
closed isolated subset of X, and £ is an open connected subset of X,
and 4 & E, then there is a closed subspace X, of X, such that
A S Xy € E, and Xy is homeomorphic to either the real line £, or the
unit interval 7.

This observation applies also when X =", forn = 3,

Thus we have the following list of compact Hauvsdorff spaces satisfy-
ing Grzegorczyk’s conditions:
S, n22);I" (n23).

The spaces S, I and 2 do not satisfy Grzegorczyk’s conditions. For
S, and I this is obvious. For 12, take A = {(0, 0), (1, 1)},
B= {0, D, (1, 0)}, E =12, and then clearly condition (4d) fails.

8.4. Theorem 7. Suppose X is a compact Hausdorff space satisfying
Grzegorczyk’s conditions. Then the £ ,-theory of C(X) is hereditarily
undecidable.

Proof. Since X is compact metrizable, the corollary to Lemma 12 implies
that the theory of the lattice of closed subsets of X is interpretable in
the £24-theory of C(X). By Grzegorczyk’s theorem and Lemma 2, the
L£,4-theory of C(X) is hereditarily undscidable.

Corollary 1. C(S,,), for n 2 2,and C(I"), for n 2 3, are hereditarily un-
decidable.

Proof, Immediate.

Corollary 2. The £,-theory of commutative semi-simple Banach alge-
bras over C, with uriit, is hereditarily undecidable.

Procf. Iminediate from Corollary 1, since C(S,,) is commutative and
semi-simple.

8.5. Although 2 does not satisfy Grzegorczyk’s conditions, we can
show that its lattice of closed subsets has a hereditarily undecidable
theory. We sketch a proof, which is simply a variant of Grzegorczyk’s
proof of Theorem 5 in [6].
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I? js a subspace of E,, and has a boundary B in E,. B is a closed sub-
set of 2. It turns out that B is a definable element of the lattice of
closed subsets of 12, Accept this for the moment. Then we can define
the class of those closed subsets of 72 which are subsets of the interior
of 12. The finite subsets of the interior of 72 are the closed isolated
subsets of /2 not intersecting B, Now by using just the definitions given
by Grzegorczyk, one can interpret, in the thecry of the lattice of closed
subsets of /2, the arithmetic of the finite subsets of the interior of 72,
and this of course has a finitely axiomatizable, essentially undecidable
subtheory, whence the required result.

Definition of B. Suppose p € I2. Then p € B if and only if there exist
q, r, s € I'? such that whenever 4 and B are closed connected subsets of
I? with {p, q} © A and {r, s} € B, then A N B # P. From this we get a
definition of B by replacing points by atoms as in [6].

A corollary of this is that C(/2) is undecidable.

8.6. Open Problems. 1. Is C(J) a dzcidable ring?

Rabin [12] proved that the lattice of closed subsets of [ is decidable,
so our method breaks down. By Theorem 1, C(J) is an undecidable alge-
bra. Note that there are undecidable algebras over C, whose underlying
ring is decidable. An example is C» See [11].

2. Are there Banach algebras of analytic functions with undecidable
£,-theory?

9. Banach algebras over R

The reason that we have until now restricted ourselves to algebras
over C is that the spectral theory is smoother. The reader may have no-
ticed that the results obtained via the theorems of Ersov and Grzegor-
czyk remain valid when C is replaced by R.

We work in the same languages .2; as before. We consider Banach al-
gebras over R. These are construed as in 2.2, except that now the set
M, of scalars is R. As before, we consider only algebras with unit. For
1 <i < 4let Ban{® be the real analogue of Ban,.



§9. Banach algebras over R ' 265

9.1. Analogue of Section 7. 9.1.1. Replace C by R in 7.1, and the next
theorem is proved.

Theorem 8. Let I'y be the class of groups of invertiblz elements of
finite-dimensional semi-simple Banach algebras over R, with unit. Then
Th(T'y ) is hereditarily undecidable.

Corollary 1. The L25-theory of the class of finite-dimensional semi-sim-
ple Banach algebras over R, with unit, is hereditarily undecidable.

Corollary 2. Let 1 < i < 4. The .2 theory of the class of finite-dimen-
sional semi-simple Banach algebras over R, with unit, is hereditarily un-
decidable.

9.1.2. Now we get analogues of Theorems 5 and 6.

It is known [13, 2.4.4; 7] that if 4 € Ban{® and 4 is finite-dimen-
sional, commutative and semi-simple than A is isomorphic as an algebra
to one of the algebrasC” X R* (0<m< w,0<n< w,m+n> 0).
The next theorem is proved just as Theorem 5.

Theorem 9. The 2 4-theory of the class of finite-dimensional comn:::ta-
tive, semi-simple Banach algebras over R, with unit, is decidable.

Replace C by R in the proof of Theorem 6 to get

Theorem 10. For i =1, 2, or, 3 the 2 ;-theory of the class of finite-dimen-
sional, commutative, semi-simple Banach algebras over R, with unit, is
hereditarily undecidable.

9.2. Analogue of Section 8. For a compact Hausdorff space X, let

CR (X) be the real Banach algebra of real-valued continuous functions
on X. Then one may easily check that all the results of Section 8 remain
valid. Thus we get:

Theorem 11. Suppo:« X is a compact Hausdorff space satisfying Grzegor-
czyk’s conditions. Then the £ 4-theory of Cg (X) is hereditarily undecid-
able. In particular Cg (X) is an undecidable ring.
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Corollary 1. Cx (I"), for n > 2, and Cx (S,,), for n > 1, are hereditarily
undecidable.

Corollary 2. The £4-theory of commutative semi-simple Banach aige-
bras over R, with unit, is hereditarily undecidable.

Note. As in Section 8, we can show that Cg (/ 2) is hereditarily undecid-
able.

9.3. Analogue of Section 4. For the notion of complexification of a real
algebra, see [13, 1.3]. Let 4 € Ban(]), let A be the complexification
of A. Then A¢ is A X A, where (x, p) is to mimic x + iy. Precisely,
)+ v)=x+uy+v)

A +iu)(x, y) = (Ax — uy, Ay + ux), and

Ce, ¥)o(u, v) = (xu — yv, xv + yu).

Then clearly the £2;-theory of A is interpretable in the £4-theory
of A. We know by Section 4 that if A satisfies (*) then number theory,
and in particular the finitely axiomaztizable essentially undecidable sys-
tem Q) of R.M. Robinson [4, 2.2], is innterpretable in the 2;-theory of
Ac- Thus by [4, 3.4] if A satisfies (*) then the £25-theory of A4 is here-
ditarily undecidable. Thus:

Theorem 12. Suppose A € Ban{R), and dim¢ ey i Ac)) is infinite. Then
Th(A) is hereditarily undecidable.

Examples. i) Cy (X), where X is an infinite compact Hausdorff space.
ii) The algebra of continuous linear operators on an infinite-dimen-
sional real Hilbert space.

Corollary 1. Th(Ban{P) is hereditarily undecidable.

Corollary 2. The theory of commutative Banach algebras over R, cons-
trued simply as algebras, is undecidable.

9.4. Analogue of Section 6. Suppose A € Ban,. In [13, 1.3] it is shown
that A has a norm I+ il under which it is 2 Banach algebra over C, and
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x - (x, 0) is an isometry. Actually {13, 1.3] produces many norms,
corresponding to normed real representations of 4. For definiteness we
take the left regular representation in Theorem (1.3.2) of [13, 1.3].
Unfortunately, we do not see how to interpret witain the .2,-theory of
A the £2,-theory of A¢. The snag occurs in Theorem (1.3.1) of [13, 1.3].
We define first

I(x, y)I=1IxI+ liyl, and then

ICe, )1 =1/ /5 suple 0 «(x, y)I.

If we have a defifition of Cong, the constants of 4, then we may define
i, = 1/ﬁ su I(u, v)*(x, y)I.

Uu,ve onR

u’+v%=1

Then it turns out (we omit the details) that if Cong is 2,-definable
then we can interpret within the £,-theory of 4 the £,-theory of A¢.
But without a definition of Cong we do not see what to do.

When is Cong £2,-definable? We content ourselves with a sufficient
condition. Suppose the centre of A is semi-simple. Then by Lemma 13
we can define the real constants of 4¢ in 2,, whence we can define
Cong in £2,.

These remarks and Theorem give:

Theorem 13. Suppose A € Ban$®, dim¢ (AC/J( a)) is infinite, and the

centre of Ac is semi-simple. Then Th(A4) is hereditarily undecidable.

10. Algebras without unit

Since many important Banach algebras do not have a unit, it seems
worthwhile to consider briefly such algebras. Most of our techniques
break down. Certainly our approaches via the theorems of Ersov and
Grzegorczyk yield nothing. There is, however, an analogue of Theorem
1.

10.1. We formulate the elementary theories of algebras without unit in
languages B} (1 £i < 4) obtained from the languages £; by dropping
the constant corresponding to the unit.

We will consider only algebras over C. To get resulis about algebras
over R, combine the methods of Sections 9 and 19.

We will use the standard device of adjoining a unit. If 4 has no unit,.
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we define 4, as A X C with operations as follows:
x,a)+(y,f)=(x+y,at+pf)
(x, @)+, B) =(ay +fx +xy, af)
I(x, a)l = lxl + lal.
Then A, is a Banach algebra with unit (0,1), and the map x - (x, 0) is
an isometric isomorphism of 4 onto a maximal ideal of 4,. It follows
that J(4,) =J(A).

In £1 and 2} we have a separate sort of variable for the scalars C.
It then follows from the definition of 4, that fori =1 or 3 the 2
theory of A, is interpretable in the .Qil -theory of A. This gives:

Theorem 14. Suppose A is a Banach algebra over C without unit, such
that dimg (4/J(A)) is infinite. Then the £}-theory of A is hereditarily
undecidable.

10.2. We do not see how to interpret within the £} -theory of 4, for
i =2 or4, the £;-theory of 4,.
However, we do have:

Theorem 15. Let 1 < i< 4. Let A be a Bancch algebra over C without
unit. If the B} -theory of A is decidable thei1 the £Lytheory of A, is de-
cidable.

We will prove this for i = 4 in much greater generality in [10]. The
other cases are proved similarly.

10.3. Having given considerable attention to sem:i-simple algebras, we
now raise the question of the decidability of radical algebras, i.e. alge-
bras A for which J(4) = A. Such algebras have of course no unit.

We have found no undecidability results for such algebras.

Problen. Is the theory of radical Banach algebras decidable?

We conjecture not. A candidate for a hereditarily undecidable radicai
Banach algebra is L (0, 1) under addition and convolution [13, Appen-
dix A.2.11}.
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