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Abstract

In this work, we use He’s variational iteration method for solving linear and nonlinear Klein–Gordon equations. Also, the results
are compared with those obtained by Adomian’s decomposition method (ADM). The results reveal that the method is very effective
and simple.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nonlinear phenomena occur in a wide variety of scientific applications such as plasma physics, solid state physics,
fluid dynamics and chemical kinetics [1]. Because of the increased interest in the theory of solitary waves, a broad
range of analytical and numerical methods have been used in the analysis of these scientific models.

First, the variational iteration method was proposed by He in 1998 [2–5] and was successfully applied to
autonomous ordinary differential equation [6], to nonlinear partial differential equations with variable coefficients [7],
to Schrödinger–KdV, generalized KdV and shallow water equations [8], to Burgers’ and coupled Burgers’
equations [9], to the linear Helmholtz partial differential equation [10] and recently to nonlinear fractional differential
equations with Caputo differential derivative [11], and other fields [12–14].

The numerical treatment of the Klein–Gordon equation

ut t − uxx = −F(u), (1)

subject to initial conditions

u(x, 0) = f (x), ut (x, 0) = g(x), (2)

has been under consideration, where F(u) is a linear or nonlinear function. The equation has attracted much attention
in studying solitons and condensed matter physics, in investigating the interaction of solitons in collisionless plasma,
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the recurrence of initial states, and in examining the nonlinear wave equations [15]. Some projection methods for
numerical treatment of (1) are given in [16–18].

In this work, a new application of He’s variational iteration method is applied to solve linear and nonlinear
Klein–Gordon equations. This application does not have secular terms and in a special case, ADM is obtained [5].
Kaya [19,20], El-Sayed [21], and Wazwaz [22] have implemented ADM [23–25] to solve the nonlinear Klein–Gordon
equation. Comparisons are made between standard ADM and He’s variational iteration method and between the exact
solution and the proposed method. The results reveal that the proposed method is very effective and simple and can
be applied to other nonlinear problems.

2. He’s variational iteration method

To illustrate the basic concepts of the variational iteration method, we consider the following general nonlinear
system:

Lu(x) + Nu(x) = g(x), (3)

where L is a linear operator part while N is the nonlinear operator part, and g(x) is a known analytic function.
According to the variational iteration method, a correction functional can be constructed as follows:

un+1(x) = un(x) +

∫ x

0
λ {Lun(ξ) + Nũn(ξ) − g(ξ)} dξ, (4)

where λ is a general multiplier [7], which can be identified optimally via the variational theory [7,12], the subscript n
denotes the nth approximation, and ũn is considered as a restricted variation [7], i.e., δũn = 0.

The initial guess can be freely chosen with possible unknown constants; it can also be solved from its corresponding
linear homogeneous equation

Lu0(x) = 0. (5)

The variational iteration method can solve effectively, easily, and accurately a large class of nonlinear problems
with approximations converging rapidly. For linear problems, exact solutions can be obtained in only one iteration step
due to the fact that the Lagrange multiplier can be obtained by just one iteration, because λ can be exactly identified.

3. Applications

To achieve the goal of this work, we first start with the linear Klein–Gordon equation.

Example 1 (El-Sayed [21]). Consider the linear form F(u) = −u in Eq. (1); therefore we set

ut t − uxx = u, (6)

subject to initial conditions

u(x, 0) = 1 + sin(x), ut (x, 0) = 0. (7)

According to Eq. (4), we can construct a correction functional as follows:

un+1(x, t) = un(x, t) +

∫ t

0
λ {unττ (x, τ ) + ũnxx (x, τ ) − un(x, τ )} dτ. (8)

Making the above correction functional stationary, and noting that δũn = 0, we get

δun+1(x, t) = δun(x, t) + δ

∫ t

0
λ {unττ (x, τ ) + ũnxx (x, τ ) − un(x, τ )} dτ, (9)

or

δun+1(x, t) = δun(x, t) − λ′δun(x, τ )
∣∣
τ=t + λδunτ (x, τ )|τ=t +

∫ t

0

(
λ′′

− λ
)

δun(x, τ )dτ | , (10)
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which yields the following stationary conditions:

λ′′
− λ = 0, (11)

1 − λ′
∣∣
τ=t = 0, (12)

λ|τ=t = 0. (13)

The general Lagrange multiplier, therefore, can be identified as

λ (τ) = sinh(τ − t). (14)

As a result, we obtain the following iteration formula:

un+1(x, t) = un(x, t) +

∫ t

0
sinh(τ − t) {unττ (x, τ ) + unxx (x, τ ) − un(x, τ )} dτ. (15)

In the first step, by iteration formula (15) with initial approximation

u0(x, t) = u(x, 0) + tut (x, 0) = 1 + sin x (16)

we have

u1 (x, t) = sin x + cosh t, (17)

which is the general solution of initial value problem (6) and (7). The solution for the variational iteration method in
question was solved via ADM in [21] and the solution was obtained as

u(x, t) = sin x + 1 +
t2

2!
+

t4

4!
+

t6

6!
+

t8

8!
+ · · ·. (18)

This shows that the application of the variational iteration method reduces the computational work considerably.
Now consider the following nonlinear Klein–Gordon equation with nonhomogeneous initial conditions, which was

recently solved by ADM [21].

Example 2 (El-Sayed [21]). We consider now a nonlinear example, i.e., F(u) = u2, with nonhomogeneous initial
conditions [22], namely

ut t − uxx = −u2, (19)

u(x, 0) = 1 + sin x, ut (x, 0) = 0. (20)

To solve Eq. (19) by means of the variational iteration method, we construct a correction functional which reads

un+1(x, t) = un(x, t) +

∫ t

0
λ{unττ (x, τ ) − ũnxx (x, τ ) + ũ2

n(x, τ )}dτ, (21)

where δũn is considered as a restricted variation. Its stationary conditions can be obtained as follows:

λ′′
= 0, (22)

1 − λ′
∣∣
τ=t = 0, (23)

λ|τ=t = 0. (24)

This in turn gives

λ (τ) = τ − t. (25)

Substituting this value of the Lagrangian multiplier into functional (21) gives the iteration formula

un+1(x, t) = un(x, t) +

∫ t

0
(τ − t) {unττ (x, τ ) − unxx (x, τ ) + u2

n(x, τ )}dτ. (26)

As stated before, we can use any selective function for u0 (x, t); preferentially we use the initial condition (20), i.e.



672 E. Yusufoğlu / Applied Mathematics Letters 21 (2008) 669–674

Table 1
Comparison between the value u for the solution of the Klein–Gordon equation for He’s variational iteration method (VIM) and ADM in Ref. [21]
at various values of (x, t)

x t = 0.1 t = 0.2 t = 0.3
ADM VIM ADM VIM ADM VIM

0.0 0.9949999861 0.9950000249 0.9799991162 0.9800015775 0.9549900052 0.9550176534
0.1 1.093291132 1.093291179 1.073723730 1.073726319 1.073723730 1.073726319
0.2 1.190502988 1.190503087 1.166134875 1.166138050 1.125945576 1.125974851
0.3 1.285668610 1.285668848 1.256326130 1.256331032 1.208114007 1.208147932
0.4 1.377844211 1.377844710 1.343423788 1.343432104 1.287043874 1.287088824
0.5 1.466118315 1.466119219 1.426594492 1.426608263 1.362025218 1.362089477
0.6 1.549620480 1.549621939 1.505052082 1.505073495 1.432404521 1.432497282
0.7 1.627529538 1.627531694 1.578063673 1.578094808 1.497587424 1.497717706
0.8 1.699081273 1.699084244 1.644954933 1.644997540 1.557040327 1.557215916
0.9 1.763575490 1.763579356 1.705114628 1.705169916 1.610291023 1.610517519
1.0 1.820382425 1.820387216 1.757998450 1.758066925 1.656928567 1.657208637

u0(x, t) = u(x, 0) + tut (x, 0) = 1 + sin x . (27)

Consequently, on using (26), the following successive approximations are obtained:

u1(x, t) = 1 + sin x −
t2

2!

(
1 + 3 sin x + sin2 x

)
, (28)

u2(x, t) = 1 + sin x −
t2

2!

(
1 + 3 sin x + sin2 x

)
+

t4

4!

(
11 + 12 sin x + 2 sin2 x

)
sin x + · · ·, (29)

u3(x, t) = 1 + sin x −
t2

2!

(
1 + 3 sin x + sin2 x

)
+

t4

4!

(
11 + 12 sin x + 2 sin2 x

)
sin x

+
t6

6!

(
18 − 57 sin x − 160 sin2 x − 82 sin3 x − 10 sin 4x

)
+ · · ·, (30)

u4(x, t) = 1 + sin x −
t2

2!

(
1 + 3 sin x + sin2 x

)
+

t4

4!

(
11 + 12 sin x + 2 sin2 x

)
sin x

+
t6

6!

(
18 − 57 sin x − 160 sin2 x − 82 sin3 x − 10 sin 4x

)
+

t8

8!

(
−356 − 27 sin x + 2304 sin2 x + 2692 sin3 x + 884 sin4 x + 80 sin5 x

)
+ · · · . (31)

It is clear that this approximation can be used for numerical purposes only because a closed form solution is not
obtainable. To illustrate the above results, we present a numerical experiment to compare our approximate solution
and the results obtained by using ADM in [21]. The comparison between the fourth-iteration solution of the variational
iteration method and five terms of ADM are given in Table 1.

Example 3. We finally close our analysis by studying the Klein–Gordon equation

ut t − uxx +
3
4

u −
3
2

u3
= 0, (32)

with initial conditions

u (x, 0) = −sech x, ut (x, 0) =
1
2

sech (x) tanh(x). (33)

The exact solution of Eq. (32) is (see Ref. [26])

u (x, t) = −sech
(

x +
1
2

t

)
. (34)
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Table 2
The absolute error for different values of (x, t)

x t = 0.1 t = 0.3 t = 0.5
VIM ADM VIM ADM VIM ADM

1.0 4.809 × 10−12 5.201 × 10−11 3.177 × 10−8 4.427 × 10−8 1.904 × 10−6 2.325 × 10−5

2.0 2.607 × 10−13 3.362 × 10−11 1.651 × 10−9 6.142 × 10−9 9.522 × 10−8 7.570 × 10−6

3.0 4.985 × 10−14 2.379 × 10−11 3.211 × 10−10 3.528 × 10−10 1.877 × 10−8 4.958 × 10−7

4.0 2.774 × 10−15 1.509 × 10−11 1.788 × 10−11 2.774 × 10−11 1.046 × 10−9 1.545 × 10−8

5.0 1.292 × 10−16 1.496 × 10−11 8.318 × 10−13 8.682 × 10−12 4.862 × 10−11 3.039 × 10−9

6.0 2.315 × 10−18 2.471 × 10−12 1.741 × 10−14 1.430 × 10−13 8.485 × 10−13 1.554 × 10−9

7.0 1.403 × 10−18 2.250 × 10−12 9.126 × 10−15 5.498 × 10−13 5.383 × 10−13 5.924 × 10−10

8.0 6.288 × 10−19 1.613 × 10−13 4.081 × 10−15 1.514 × 10−13 2.404 × 10−13 2.194 × 10−10

9.0 2.369 × 10−19 1.541 × 10−13 1.537 × 10−15 4.975 × 10−14 9.055 × 10−14 8.073 × 10−11

10.0 8.743 × 10−20 1.108 × 10−14 5.674 × 10−16 4.353 × 10−14 3.341 × 10−14 2.968 × 10−11

According to He’s method the following variational iteration formula in the t-direction can be obtained:

u0(x, t) = u(x, 0) + tut (x, 0) = −sech x +
1
2

tsech (x) tanh(x), (35)

un+1 (x, t) = un (x, t) +

∫ t

0
(τ − t)

{
unττ (x, τ ) − unxx (x, τ ) +

3
4

un (x, τ ) −
3
2

u3
n(x, τ )

}
dτ. (36)

Using the above iteration formula (36), we can directly obtain the other components as follows:

u1(x, t) = −sech x +
1
2

tsech (x) tanh(x) −
t2

8

(
sech (x) − 2sech 3(x)

)
+

t3

48
sech (x) tanh(x)

(
1 − 6sech 2(x)

)
+ · · ·, (37)

u2(x, t) = −sech x +
1
2

tsech (x) tanh(x) −
t2

8

(
sech (x) − 2sech 3(x)

)
+

t3

48
sech (x) tanh(x)

(
1 − 6sech 2(x)

)
−

t4

384
sech x

(
1 − 20sech 2 (x) + 24sech 4(x)

)
+

t5

3840
sech (x) tanh(x)

(
1 − 60sech 2(x) + 120sech 4(x)

)
+ · · ·, (38)

u3(x, t) = −sech x +
1
2

tsech (x) tanh(x) −
t2

8

(
sech (x) − 2sech 3(x)

)
+

t3

48
sech (x) tanh(x)

(
1 − 6sech 2(x)

)
−

t4

384
sech x

(
1 − 20sech 2(x) + 24sech 4(x)

)
+

t5

3840
sech (x) tanh(x)

(
1 − 60sech 2(x) + 120sech 4(x)

)
−

t6

46 080
sech (x)

(
1 − 182sech 2(x) + 840sech 4(x) − 720sech 6(x)

)
+

t7

645 120
sech (x) tanh(x)

(
1 − 546sech 2(x) + 4200sech 4(x) − 5040sech 6(x)

)
+ · · ·, (39)

and so on. The rest of the components of the iteration formula (36) can be obtained in a similar way. The nth
approximation converges to the exact solution, which has been obtained by using the hyperbolic function method
by Zhao et al. [26]. In order to verify the efficiency of the proposed method in comparison with the exact solution and
Adomian decomposition method [23], we report the absolute errors for different values of x and t.

The differences between the third-iteration solution of the variational iteration method and four terms of the
Adomian decomposition method with the exact solution are shown in Table 2.

A very good agreement between the results from the variational iteration method and the exact solution was
observed, which confirms the validity of He’s variational iteration method. In comparison with the results of ADM,
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one can see that third iteration of the variational iteration method is more effective than four terms of ADM. The
present method overcomes the difficulty arising in calculating Adomian polynomials and further the computation
time is effectively reduced.

4. Conclusion

The Klein–Gordon equations have been analyzed using the variational iteration method. All the examples show
that the variational iteration method is a powerful mathematical tool for solving Klein–Gordon equation. It is also
a promising method for solving other nonlinear equations. This method solves the problem without any need for
discretization of the variables; therefore, it is not affected by computation round off errors and one does not face the
need for large computer memory and time. In our work, we made use of the Maple package to calculate the series
obtained from the variational iteration method.
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