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Abstract-The timedependent spread of contaminants in moving fluids is normally studied by 
computer-intensive discretized procedures which have some disadvantages. Application of the de- 
composition method allows a continuous, convenient, accurate procedure which works and extends 
to nonlinear and stochastic partial differential equations ss well. 

ONE-DIMENSIONAL ADVECTION EQUATION 

The simplest case is modelled by 

du a&L 
~+~=O’ O<t<T, 

u (x70) = f(x), O<a:Il, 

u (G t) = g(t), 0 > 0. 

By decomposition, we have 

d O” 
u=u(x,O)-L;lcY - ( ) 8X c UT%, 

n=O 

where L,' = &, L;l = J; (*)&, u = c,"=,?h, u (x, 0) is identified as 2~g, and f(x) is assumed 
differentiable as necessary. Then, 

un = (-l)n 
( > 

7 f’“‘(z), 

so that 

u = 2 (-1)n ($) f’“‘(z). 
n=O 
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Then, 
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b&+1 = 2 (-v (7) f’“‘W 

n=O 
(1) 

is an (m + 1)-term approximation to u satisfying the equation and condition at t = 0 using the 
t-dimension“partia1 solution” [l]. The z-dimension partial solution is derived by 

a&L du 

dx =-dt’ 

Consequently, 

m-1 

4 m+l = c (-1)n a-n $ g(n)(t). 
n=O ( ) 

Either (1) or (2) represents the solution. 

ADVECTION-DIFFUSION 

Let < (x, y, z, t) represent concentration. Let the fluid velocity be ?i with components u, w, w 
in Rs and assume an incompressible fluid [2,3] 

where D is the diffusion constant (which is a constant for a particular fluid or contaminant, tem- 
perature and pressure), E (x, y, z, 0) is a given initial condition and various boundary conditions 
are possible, e.g., ,$ --+ 0 as x,y, z + 00, or c(t) is specified on a boundary r, or, we have a 
preassigned flux at l?. We have 

!%+!%+z WX 
dY2 

-~_““E____ 
dY 

(3) 

By decomposition [4,5], using L = 8 and L-l = s,’ (.) dt, 

Thus, 
Eo=~(t=O)=f(GY,z), 

< m+l = DL-’ V2 &, - L-%iVJ,,,, 

for m 2 0. Now all components are determined and we can write IN = CzIt cm as an 
approximation to < improving as iV increases. 
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STOCHASTIC CASE 

If we have turbulent motion of the fluid, we can have random fluctuations of the concentration 
and hydrodynamical variables, hence statistical characteristics, would become necessary. #N(<) 
becomes a series of stochastic terms and we form (&(c)) to get the expectation as functions 
of average velocity components. The customary treatments of turbulent motion lead to a lack 
of closure and untenable assumptions which are avoided by using decomposition. Thus, in the 
above method, u, 21, zu, and < are replaced by their corresponding steady states plus quantities 
representing fluctuations from the steady states. Thus, 

t=Y$+Q, u=ii+u’, v=5+v’, w=‘ii?+w’. 

Statistical averaging causes terms such as 

etc. to vanish. We then have 

The last three correlation terms involve correlations of velocities and concentration which are 
unknown. Then the procedure is to let ui for i = 1, 2, 3 denote u, 21, w, and zj for j = 1, 2, 3 
represent x, y, z and write terms as being proportional to a mean gradient of the concentration 
in terms of a “turbulent diffusion tensor” -Kij (zj, t) $$. TO clarify the difficulty, consider 

the operator format Lu + Ru = g or u = L-‘g - L-l Ru. If we average, we have (u) = 
L-l (g) - L-’ (Ru). W e can think of g as an input to a system containing R. The output u 
can be statistically independent of g, but not of R. By decomposition, one writes u = L-‘g - 
L-lR C u, = L-‘g - L-‘R L-lg + L-lR L-‘R L-lg - . . . . Averaging is no problem since g 
is statistically independent of R. 

NONLINEAR TRANSPORT 

Let’s consider the equation Lt + q + NJ = g where 

L = -$ NC = f(5), 

Let t = C,“=, tn and NC = CT=, A,. Then, 

R=;ii.V-DV2. 

J=L,lg-L,lR f&&A,, 
n=O n=O 

where 
Q = L,lg 

&,_i = -L,’ R&,, - L;' A,,,, 

for m 2 0. Then &+I = Cr=, 4 which converges to 5 = C,“=, cm. Further generalizations are 
straightforward. We can, for example, consider Fu = g where 

Fu=Ltu+L,u+Lyu+Lzu+Ru+Nu=g, 
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and solve for Ltu, Lzu, L,u or L,u which would simply treat the other operator terms as the 
remainder operator R and would require the appropriate given boundary conditions [6]. The 
case of stochastic 5 or stochastic processes in the R term leads to a stochastic 4~ which can be 
averaged or from which expectations and covariances can be found. Convergence has been proven 
by Cherruault [7,8]. The solutions are verifiable by checking that the original equation and the 
given conditions are satisfied. 

Since the concern here is solution of physical systems, unbounded or pathological inputs and 
conditions are of no interest. If the model equation and the conditions are physically correct 
and consistent, a solution is obtained which is unique and accurate. If numerical results are 
calculated, one sees the approach to a stable solution for the desired number of decimal places. If 
conditions on one variable are better known than the others, we consider the appropriate operator 
equation which can yield the solution. 
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