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We propose a structure-preserving doubling algorithm for a quadratic eigenvalue problem
arising from the stability analysis of time-delay systems. We are particularly interested
in the eigenvalues on the unit circle, which are difficult to estimate. The convergence and
backward error of the algorithm are analyzed and three numerical examples are presented.
Our experience shows that our algorithm is efficient in comparison to the few existing
approaches for small to medium size problems.
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1. Introduction

In this paper, we consider the numerical solution of the quadratic eigenvalue problem (QEP)

Q (λ)x ≡ (λ2B+ λC + A)x = 0, (1.1a)

where A, B, C ∈ Cn×n satisfy

PBP = εA, PAP = εB, PCP = εC (1.1b)

with ε = ±1, P ∈ Cn×n being an idempotent matrix (i.e., P2 = In), and B denoting the complex conjugate of B. In our
application for the time-delay system (1.3), the matrix P is a real involuntary matrix (more details are given later). The
scalar λ ∈ C and the vector x ∈ Cn \ {0} are the eigenvalue and the associated eigenvector of the quadratic pencil Q (λ), and
the pair (λ, x) is called an eigenpair of Q (λ).
We shall propose a structure-preserving doubling algorithm (SDA; [1–5]) for the solution of (1.1). We define the

conjugate and the reverse of a quadratic pencil, respectively, by

Q (λ) ≡ λ2B+ λC + A, rev(Q (λ)) ≡ λ2A+ λC + B.

It is easy to see that QEP in (1.1) satisfies

Q (λ) = εPrev(Q (λ))P. (1.2)

From (1.2), we see that (λ, x) is an eigenpair of Q (λ) if and only if (1/λ, Px) is also an eigenpair of Q (λ) [6].

∗ Corresponding author. Tel.: +61 412 596430; fax: +61 3 99054403.
E-mail addresses: txli@seu.edu.cn (T.-x. Li), eric.chu@sci.monash.edu.au (E.K.-w. Chu), wwlin@math.nctu.edu.tw (W.-W. Lin).

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.09.010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82640291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:txli@seu.edu.cn
mailto:eric.chu@sci.monash.edu.au
mailto:wwlin@math.nctu.edu.tw
http://dx.doi.org/10.1016/j.cam.2009.09.010


1734 T.-x. Li et al. / Journal of Computational and Applied Mathematics 233 (2010) 1733–1745

As in [7], a quadratic pencil Q (λ) in (1.1a) is said to be palindromic if Q (λ) = rev(Q (λ)). Similar to the terminology of
(?, ε)-palindromic QEPs (? = H or>) in [7], the QEP (1.1) is referred to as

(ε = +1) P-Conjugate-P Palindromic QEP (PCP_PQEP), or
(ε = −1) anti-P-Conjugate-P Palindromic QEP (−PCP_PQEP).

PCP_PQEPs as in (1.1) were first proposed in [8] from the stability analysis of retarded time-delay systems (TDS), and
generalized in [6] themore general neutral TDS (see [9–16] and the references therein). Consider a neutral linear time-delay
system withm constant delays h0 = 0 < h1 < · · · < hm:

m∑
k=0

Dkẋ(t − hk) =
m∑
k=0

Akx(t − hk) (t > 0); x(t) = ϕ(t) (t ∈ [−hm, 0]) (1.3)

with x : [−hm,∞) → RN , ϕ ∈ C1([−hm, 0]), and Ak,Dk ∈ RN×N (k = 1, . . . ,m). When D0 = IN and Dk = 0 (k > 0), we
have the retarded time-delay systems.
The stability of the TDS (1.3) can be determined by its characteristic equation(

s
m∑
k=0

Dke−hks −
m∑
k=0

Ake−hks
)
v = 0 (v 6= 0) (1.4)

with eigenpairs (s, v) from the nonlinear eigenvalue problem.
A TDS is said to be critical if and only if some eigenvalues s is purely imaginary. The set of all points (h1, . . . , hm) in the

delay-parameter space for which the TDS (1.3) is critical are called critical curves (m = 2) or surfaces (m > 2). Under
certain continuity assumptions, the boundary of the stability domain of a TDS is a subset of the critical curves/surfaces.
Consequently, purely imaginary eigenvalues of (1.4) are of great interest. See [8] and the references therein for approaches
to compute critical surfaces. In [6], the following parameterization of critical surfaces gives rise to an associated PCP_PQEP.
Detailed discussion on palindromic linearizations, a Schur-like canonical form and other useful results can also be found
in [6].
For a given eigenpair (s, v) of (1.4) with ‖v‖2 = 1, a point (h1, . . . , hm) in the delay-parameter space is critical if and

only if there exist ϕk ∈ [−π, π] (k = 1, . . . ,m− 1) and ω ∈ R such that

hk =
ϕk + 2pkπ

ω
, pk ∈ Z (k = 1, . . . ,m− 1); hm =

−Arg z + 2pmπ
ω

, pm ∈ Z; (1.5)

giving rise to the QEP

(z2E + zF + G)u = 0, (1.6)

where the unimodular eigenvalue z = e−iωhm , and the corresponding eigenvector u = vec vv∗ = v ⊗ v̄,

ω =

(
−i
w∗w

)
w∗

(
Amz +

m−1∑
k=0

Ake−iϕk
)
v, w =

(
Dmz +

m−1∑
k=0

Dke−iϕk
)
v, (1.7)

and

E =

(
m−1∑
k=0

Dkeiϕk
)
⊗ Am +

(
m−1∑
k=0

Akeiϕk
)
⊗ Dm ∈ CN

2
×N2 ,

F =

(
m−1∑
k=0

Dkeiϕk
)
⊗

(
m−1∑
k=0

Ake−iϕk
)
+

(
m−1∑
k=0

Akeiϕk
)
⊗

(
m−1∑
k=0

Dke−iϕk
)
+ Dm ⊗ Am + Am ⊗ Dm ∈ CN

2
×N2 ,

G = Dm ⊗

(
m−1∑
k=0

Ake−iϕk
)
+ Am ⊗

(
m−1∑
k=0

Dke−iϕk
)
∈ CN

2
×N2 .

Here⊗ denotes the usual Kronecker product. AsM1 ⊗M2 andM2 ⊗M1 both contain products of elements ofM1 andM2 at
different positions, we can find an involuntary matrix P ∈ RN

2
×N2 (P−1 = P> = P) such that M1 ⊗ M2 = P(M2 ⊗ M1)P

[17, Corollary 4.3.10]. Here, P =
∑N
i,j=1 Eij⊗E

>

ij = [E
>

ij ]
N
i,j=1, Eij = ei⊗e

>

j ∈ RN×N and ej is the jth column of IN . Consequently
from the structures in E, F and G, we can easily show that (1.6) is a PCP_PQEP because E = PGP and F = PFP .

Remark 1.1. In [18], it has beenproved that unimodular eigenvalues occur quite often for PCP_PQEPs (andother palindromic
eigenvalue problems with eigenvalue pairs (λ, ε/λ)). These eigenvalues can stay unimodular under perturbation, thus are
numerically stable to compute. Furthermore, the probability of having too many of them is low and multiple unimodular
eigenvalues are rare. This makes our problem of computing the unimodular eigenvalues z of (1.6) well-posed, unlike for
complex-T palindromic eigenvalue problems.
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Before proceeding further, we would like to point out some recent developments in the numerical solution of palin-
dromic eigenvalue problems. The QEP (1.1a) is said to be ?-palindromic if B? = A and C? = C , with ? = > or H . The train
vibration problem and the associated >-palindromic QEP were discussed in [19,20] and structure-preserving palindromic
linearizations for (1.1a) were suggested in [7]. An SDA algorithm [3] and a backward stable generalized (Arnoldi) Patel al-
gorithm [21] were proposed for the>-palindromic QEP, and can be extended to H-palindromic QEPs. For other approaches
for ?-palindromic QEPs, see [22–24]. In [2], the SDA algorithm was generalized for the g-palindromic QEPs, which do not
include the PCP_PQEP. For further information on the numerical solution of palindromic EVPs, see [4]. For general survey of
matrix polynomials, the associated eigenvalue problems and their applications, see [25,26].
Throughout this paper, Cn×m is the set of all n × m complex matrices, Cn = Cn×1, and C = C1; In (or I if there is

no confusion) is the n × n identity matrix; and XH = X
>
denote the Hermitian (conjugate transpose) of X . We shall also

adopt MATLAB-like convention to access the entries of vectors and matrices—X(i, j) is the (i, j)th entry, X(k : `, i : j) the
sub-matrix from rows k : ` and columns i : j, X(:, i : j) from columns i : j and X(k : `, :) from rows k : `.
In Section 2, we develop an SDA algorithm for solving the εPCP_PQEP. Convergence of the SDA is proved in Section 3.

For the PCP_PQEP arisen from the stability analysis of TDSs, we develop a deflation technique for finding all unimodular
eigenvalues in Section 4. A structured backward error analysis for PCP_PQEPs is presented in Section 5. Numerical examples
of PCP_QEPs arising from TDS are given in Section 6. Concluding remarks are given in Section 7.

2. SDA algorithm for ε PCP_PQEP

For a given PCP_PQEP (1.1), we define

M =

[
A 0
−C −I

]
, L =

[
D I
B 0

]
. (2.1)

With D = 0 in (2.1), we have[
A 0
−C −I

] [
x1
x2

]
= λ

[
0 I
B 0

] [
x1
x2

]
,

leading to

Ax1 = λx2, (2.2a)
−Cx1 − x2 = λBx1. (2.2b)

Multiplying (2.2b) by λ and substituting (2.2a) into it, we obtain

(λ2B+ λC + A)x1 = 0.

We have shown that the pencilM − λL is a linearization of PCP_PQEP (1.1) with D = 0. Based on the SDA algorithm
proposed in [5], we develop a new SDA for solving the PCP_PQEP.
For the pencilM − λL defined in (2.1), we compute

M∗ =

[
−AK−1 0
BK−1 I

]
, L∗ =

[
I AK−1

0 −BK−1

]
,

where K ≡ C − D is assumed to be invertible. It is easy to check thatM∗L = L∗M. Direct calculation gives rise to

M̂ =M∗M =

[
Â 0
−Ĉ I

]
, L̂ = L∗L =

[
D̂ I
B̂ 0

]
, (2.3)

where

Â ≡ −AK−1A, B̂ ≡ −BK−1B, (2.4a)

Ĉ ≡ C − BK−1A, K̂ ≡ K − (BK−1A+ AK−1B), (2.4b)

and

D̂ = Ĉ − K̂ . (2.4c)

Theorem 2.1. The pencil M̂ − λL̂ has the doubling property, i.e., if

M

[
X1
X2

]
= L

[
X1
X2

]
S,

where X1, X2 ∈ Cn×m and S ∈ Cm×m, then

M̂

[
X1
X2

]
= L̂

[
X1
X2

]
S2.
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Proof. From (2.3) and the relationM∗L = L∗M, we have

M̂

[
X1
X2

]
=M∗M

[
X1
X2

]
=M∗L

[
X1
X2

]
S = L∗M

[
X1
X2

]
S = L∗L

[
X1
X2

]
S2 = L̂

[
X1
X2

]
S2. �

The iteration in (2.4) is structure-preserving for ε PCP_PQEP, as shown in the following theorem:

Theorem 2.2. For a pencilM − λL given in (2.1), suppose that

PAP = εB, PBP = εA, PKP = εK , (2.5)

where K = C − D. Then it holds that

PÂP = ε̂B, PB̂P = ε̂A, PK̂P = εK̂ ,

where Â, B̂, K̂ are defined in (2.4).

Proof. From (2.4b) and (2.5), we have

PK̂P = PKP −
[
PBP(PKP)−1PAP + PAP(PKP)−1PBP

]
= εK − ε3(AK−1B+ BK−1A) = εK̂ .

Similarly, from (2.4a) and (2.5), we have

PÂP = −PAP(PKP)−1PAP = −ε3BK−1B = ε̂B

and then

PB̂P = ε̂A. �

From Theorems 2.1 and 2.2, we restate the SDA for finding a basis for the stable invariant subspace of (M,L).

Algorithm SDA

Input: A, B, C, P ∈ Cn×n with PAP = εB, PBP = εA, PCP = εC, P2 = P ,
τ (a small tolerance);

Output: a basis Xs = [X>s1, X
>

s2]
>
∈ C2n×m with XHs1Xs1 = Im for the stable

invariant subspace of (M,L) in (2.1);
Set k = 0, Ak = A, Bk = B, Ck = C, Kk = C,Dk = 0;
Do until convergence:

Compute
Ak+1 = −AkK−1k Ak
Bk+1 = PAk+1P
Wk = BkK−1k Ak
Kk+1 = Kk − (Wk + PW kP)
Ck+1 = Ck −Wk
(Dk+1 = Ck+1 − Kk+1)
k = k+ 1
If dist(Null(Ak), Null(Ak+1)) < τ , Stop

End
Compute an orthonormal basis Xs1 such that ‖Ak+1Xs1‖ ≤ τ‖Ak+1‖;

set Xs2 = −Ck+1Xs1.

3. Convergence of SDA

Consider the matrix pair (M,L) as in (2.1). In order to ensure that the SDA converges to a basis of the stable invariant
subspace of (M,L), we suppose that all eigenvalues of (M,L) on the unit circle are semisimple (generically, multiple
unimodular eigenvalues are rare; see [18]).
From the Kronecker Canonical form [6,27], there exist nonsingular matrices Q and Z such that

QMZ =
[
J1 0
0 In

]
≡ JM, (3.1a)

QLZ =
[
I 0
0 J2

]
≡ JL, (3.1b)
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where

J1 = Ω1 ⊕ Js, J2 = Ω2 ⊕ εJ s,

Ω1 = diag{eiω1 , . . . , eiω`}, Ω2 = diag{eiω`+1 , . . . , eiω2`},

and Js is the stable Jordan block of size m (i.e., ρ(Js) < 1) with m = n − `. Here ρ denotes the spectral radius and ⊕ the
direct sum of matrices. Since JM and JL commute with each other, it follows from (3.1) that

MZJL = Q−1JLJM = LZJM. (3.2)

Let {(Mk,Lk)}
∞

k=0 be the sequence with

Mk =

[
Ak 0
−Ck −In

]
, Lk =

[
Dk In
Bk 0

]
, (3.3)

where Ak, Bk, Ck and Dk are generated by the SDA. WithM0 =M andL0 = L, it follows from (3.2) and Theorem 2.1 that

MkZJ2
k

L = LkZJ2
k

M . (3.4)

Theorem 3.1. Let (M,L) be given in (2.1) with all its unimodular eigenvalues being semisimple. Write Z in (3.1) in the form

Z =
[
Z1 Z3
Z2 Z4

]
, Zi ∈ Cn×n, i = 1, . . . , 4. (3.5)

Suppose that the sequence {Ak, Bk, Ck,Dk}∞k=1 generated by the SDA is well defined and {Ak}
∞

k=1 is uniformed bounded on k. If Z1
and Z3 are invertible, we have

(i) AkZ12 = O(ρ(J2
k
s ))→ 0 as k→∞;

(ii) CkZ12 = −Z22 + O(ρ(J2
k
s ))→−Z22 as k→∞;

(iii) DkZ12 = −Z42 + O(ρ(J
2k

s ))→−Z42 as k→∞,

where Z12 = Z1 (:, `+ 1, . . . , n), Z22 = Z2 (:, `+ 1, . . . , n), Z32 = Z3 (:, `+ 1, . . . , n), Z42 = Z4 (:, `+ 1, . . . , n) and ρ(·)
is the spectrum radius.

Proof. Substituting (Mk,Lk) from (3.3), JM and JL in (3.1) as well as Z in (3.5) into (3.4), we have

AkZ1 = (DkZ1 + Z2)(Ω2
k

1 ⊕ J
2k
s ), (3.6a)

AkZ3(Ω2
k

2 ⊕ J
2k

s ) = DkZ3 + Z4, (3.6b)

−(CkZ1 + Z2) = BkZ1(Ω2
k

1 ⊕ J
2k
s ), (3.6c)

−(CkZ3 + Z4)(Ω2
k

2 ⊕ J
2k

s ) = BkZ3. (3.6d)

From (3.6b), it follows that

Dk = −Z4Z−13 + AkZ3(Ω
2k
2 ⊕ J

2k

s )Z
−1
3 . (3.7)

Substituting (3.7) into (3.6a), we get

Ak

[
I − Z3

(
Ω2

k

2 ⊕ J
2k

s

)
Z−13 Z1

(
Ω2

k

1 ⊕ J
2k
s

)
Z−11

]
=
(
−Z4Z−13 Z1 + Z2

) (
Ω2

k

1 ⊕ J
2k
s

)
Z−11 . (3.8)

SinceΩ2
k

1 andΩ
2k
2 are uniformly bounded (independent of k), and ρ(Js) < 1, (3.8) can be rewritten as

Ak
[
I −

(
z3Ω2

k

2 ω
>

3

) (
z1Ω2

k

1 ω
>

1

)
+ O

(
ρ(J2

k

s )
)]
=
(
−Z4Z−13 z1 + z2

)
Ω2

k

1 ω
>

1 + O
(
ρ(J2

k

s )
)
,

where

z1 = Z1(:, 1 : `), z2 = Z2(:, 1 : `), z3 = Z3(:, 1 : `), ω>1 = Z
−1
1 (1 : `, :), ω>3 = Z

−1
3 (1 : `, :).

By the assumption that Ak is uniformly bounded on k, we have

Ak = akω>1 + O(ρ(J
2k
s ))
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for some suitable ak ∈ Cn×` with ‖ak‖ being uniformly bounded on k. Thus we have

AkZ12 = O(ρ(J2
k

s ))→ 0, as k→∞,

where Z12 = Z1(:, `+ 1, . . . , n) being orthogonal to ω1. This proves (i).
Since Bk = PAkP by Theorem 2.2, from (3.6c) we obtain

Ck = −Z2Z−11 + ckω
>

1 + O(ρ(J
2k
s ))

for some suitable ck ∈ Cn×` with ‖ck‖ being uniformly bounded on k.
Thus, we have

CkZ12 = −Z2Z−11 Z12 + ckω
>

1 Z12 + O(ρ(J
2k
s ))

= −Z2

[
0
In−`

]
+ O(ρ(J2

k

s ))→−Z22, as k→∞,

where Z22 = Z2(:, `+ 1, . . . , n). This proves (ii).
Similarly from (3.7), we see that

DkZ32 = −Z4Z−13 Z32 + dkω
>

3 Z32 + O(ρ(J
2k

s ))

→−Z42 → 0, as k→∞,

where Z32 ≡ Z3(:, ` + 1, . . . , n), Z42 ≡ Z4(:, ` + 1, . . . , n) and dk ∈ Cn×` is some suitable matrix which is uniformly
bounded on k. �

4. Application to TDS

We are ready to solve PCP_PQEPs from TDSs. For a given PCP_PQEP or Q (λ) as in (1.1), we are interested in finding all
eigenvalues on the unit circle and the associated eigenvectors. We first run the SDA until

dist(Null(Ak−1), Null(Ak)) < Tolerance.

Then we compute the SVD decomposition of Ak, such that

UHk AkVk =
[
Σk 0
0 Σ ′k

]
, Σk � Σ ′k ≈ O(τ ), (4.1)

where τ is a small tolerance.
Consequently, with ` denoting the number of unimodular eigenvalues, we have[

Ak 0
−Ck −I

] [
Vk2
−CkVk2

]
≈ O(τ ), (4.2)

where Vk2 = Vk(:, `+ 1 : . . . , n). From Theorems 2.1 and 3.1, it follows that

span
{[
X1
X2

]
≡

[
Vk2
−CkVk2

]}
' span

{[
Z12
Z22

]}
. (4.3)

That is,
[
X>1 , X

>

2

]> approximates a basis of the stable invariant subspace of (M,L). From (4.2) and (3.1) we compute an
approximate stable eigenmatrix associated with [X>1 , X

>

2 ]
> for (M,L) by

M

[
X1
X2

]
= L

[
X1
X2

]
S.

This implies that

S = (X>2 X2)
−1X>2 AX1. (4.4)

Let Sξj = λjξj, j = ` + 1, . . . , n. Then {(λj, X1ξj)}nj=`+1 are the computed stable eigenpairs of Q (λ). Furthermore,
{(1/λj, PX1ξ j)}

n
j=`+1 are the computed unstable eigenpairs of Q (λ). Again from (3.1), (4.1)–(4.2) and Theorem 2.2, we have[

Dk I
Bk 0

] [
PV k2
−DkPV k2

]
≈ O(τ ).

Thus, from (4.3),
[
(PX1)>,−(DkPX1)>

]>
forms a basis for the unstable invariant subspace.
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Table 1
Flop counts for the SDA+Newton algorithm.

Task ≈Flops

(a) SDA 80
3 n
3
× 8= 213n3

(b) SVD in (4.1) and (4.4) 160
3 n

3
+ 32n3= 85n3

(c) eig(S) 100n3

(d) Compute (R0, T0) in (4.5) 75n3

(e) Newton’s method in (4.6) 5.3`n3

Compute all eigenvalues (a)–(e) (473+ 5.3`)n3

` unimodular eigenvalues only (a), (b), (d) & (e) (373+ 5.3`)n3

Let Φ1 be an orthonormal basis of
[
X1 PX1
−CkX1 −DkPX1

]
. Then, applying deflation, there are unitary matrices Φ = [Φ1,Φ0]

and Ψ = [Ψ1,Ψ0] such that[
Ψ H1

Ψ H0

]
M[Φ1,Φ0] =

[
R1 R2
0 R0

]
, (4.5a)

[
Ψ H1

Ψ H0

]
L[Φ1,Φ0] =

[
T1 T2
0 T0

]
. (4.5b)

Approximations to the unimodular eigenvalues can be obtained by solving the matrix pair (R0, T0) ≡ (Ψ H0 MΦ0,

Ψ H0 LΦ0) (e.g. using eig in MATLAB). To refine an approximate unimodular eigenvalue λ0 of Q (λ) from (R0, T0), we can
apply Newton’s method proposed by [28]:

λk+1 = λk − 1/x(k)n , k = 0, 1, . . . , (4.6)

where

x(k)n =

[
L−1k Θk

(
dQ
dλ

∣∣∣∣
λ=λk

)
Qk

]
nn

andΘkQ (λk) = LkQk is a QL-factorization with row pivotingΘk.
If the Newton process in (4.6) converges, i.e.,

|λk+1 − λk| < Tol or |[Lk]nn| < Tol,

then we stop (4.6) and set x̂ = Qken (the last column of Qk) to be the associated eigenvector of Q (λ) corresponding to
λ̂ ≡ λk+1.
We now study the total flop counts of the SDA+Newton algorithm as described in (4.1)–(4.6) for computing all

eigenvalues of a PCP_PQEP. Since all computations are in complex arithmetic, the addition and the multiplication of two
complex numbers require 2 flops and 6 flops (4 multiplications and 2 additions), respectively. The flop counts of the
SDA+Newton algorithm are listed in Table 1. From experience, at most eight iterations are required for the SDA to converge
and only one iteration is required for the Newton refinement in (4.6).
We shall compare the SDA+Newton algorithm with the QZ algorithm [29]. In [6], a ‘‘good’’ structured linearization for

(1.1) has been proposed:[
C − B A
A A

]
+ λ

[
B B
B C − A

]
≡ X + λP̃XP̃,

where P̃ =
[
0 P
P 0

]
. Thus, the eigenpairs for (1.1) can then be computed by the QZ algorithm on (X,−P̃XP̃) or (M,L). In

general, the QZ algorithm applied to (M,L) or (X,−P̃XP̃) requires about 960n3 flops for the computation of all eigenvalues
and about 1600n3 flops if, in additional, eigenvectors are needed.
Consequently, computing only unimodular eigenpairs of PCP_PQEPs, the number of flops required by the SDA+Newton

algorithm and the QZ+Newton algorithm are summarized in Table 2 (with the last column containing ratios between
the flop counts of the SDA and the QZ algorithms). For a fairer comparison, Newton refinement is applied at the end of
both algorithms to achieve a similar accuracy. The SDA+Newton algorithm needs about one-half of the flop count of the
QZ+Newton algorithm (441n3:1013n3)when ` = 10. In general, the SDA+Newton algorithm is alwaysmore efficient, even
more so for smaller values of `. Note from [18] that the expected value of ` equals En(`) =

√
10n
4 for random palindromic

eigenvalue problems. We have E1000(`) ≈ 25, E10 000(`) ≈ 79 and E100 000(`) ≈ 250, so even for very large TDSs, `
is manageably small and the SDA+Newton algorithm will always be substantially more efficient that the QZ+Newton
algorithm.
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Table 2
Relative flop counts vs. `.

` SDA+Newton QZ+Newton SDA:QZ

10 428n3 1013n3 0.42
20 481n3 1067n3 0.45
30 535n3 1120n3 0.48
40 588n3 1173n3 0.50
50 641n3 1227n3 0.52
100 908n3 1493n3 0.61
500 3041n3 3627n3 0.84
1000 5708n3 6293n3 0.91

5. A Structured backward error analysis of PCP_PQEP

Let (λ̂, x̂) be an approximate eigenpair of Q (λ) in (1.1). A natural definition of the normwise backward error of (λ̂, x̂) for
(1.1) is

η(λ̂, x̂) = min
{
δ

∣∣∣∣(Q (λ̂)+1Q (λ̂)) x̂ = 0, ‖1B‖2 ≤ δ‖B‖2, ‖1C‖2 ≤ δ‖C‖2, ‖1A‖2 ≤ δ‖A‖2} , (5.1a)

where ‖ · ‖2 is the spectrum norm and

1Q (λ) = λ21B+ λ1C +1A (5.1b)

with1A,1B,1C ∈ Cn×n being the perturbation matrices.
An explicit expression for η(λ̂, x̂)with respect to the residual r = Q (λ̂)x̂ is given by [30]:

Theorem 5.1 (Tisseur). The normwise backward error η(λ̂, x̂) is given by

η(λ̂, x̂) =
‖r‖2
α̂‖x̂‖2

, (5.2)

where r = Q (λ̂)x̂ and α̂ = |λ̂|2‖B‖2 + |λ̂|‖C‖2 + ‖A‖2.

It is of interest to consider a backward error in which the perturbations {1B,1C,1A} preserve the PCP-structure in
{B, C, A}. Therefore, we define the structured backward error of (λ̂, x̂) by

ηS (λ̂, x̂) = min
{
δ

∣∣∣∣(Q (λ̂)+1Q (λ̂)) x̂ = 0, P1BP = 1A, P1CP = 1C, ‖1B‖2 ≤ δ‖B‖2, ‖1C‖2 ≤ δ‖C‖2,
‖1A‖2 ≤ δ‖A‖2

}
.

Note, for convenience, that we only consider the case of ε = 1 in (1.1).
It is clear that ηS (λ̂, x̂) ≥ η(λ̂, x̂). The optimal perturbations in (5.1) do not, in general, have the PCP-Structure. We first

prove the following property.

Theorem 5.2. Let (λ, x) be an eigenpair of Q (λ) in (1.1) with ε = 1. If λ is a simple unimodular eigenvalue, then Px = x.

Proof. From (1.1), we have

(λ2B+ λC + A)x = 0 (by (1.1a))
⇔
[
λ2(PBP)+ λ(PCP)+ PAP

]
Px = 0

⇔ (λ2A+ λC + B)Px = 0 (by (1.1b))
⇔ (λ2B+ λC + A)Px = 0 (by λ = λ−1).

Since λ is simple, it follows that Px = x. �

Based on the assertion of Theorem 5.2, the next theorem shows that requiring the perturbations to possess the PCP-
structure has no effect on the backward error, provided that λ̂ is on the unit circle and x̂ satisfies Px̂ = x̂.

Theorem 5.3. Let (λ̂, x̂) be an approximate eigenpair of Q (λ) as in (1.1) with λ̂ = eiθ and Px̂ = x̂. Then

ηS (λ̂, x̂) = η(λ̂, x̂).
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Proof. Let r = Q (λ̂)x̂ be the residual of the pair (λ̂, x̂). We first show that e−iθ x̂Hr is real. Since Px̂ = x̂ and λ̂ = eiθ , we have

e−iθ x̂Hr = e−iθ x̂HQ (λ̂)x̂
= e−iθ

(
e2iθ x̂HBx̂+ eiθ x̂HCx̂+ x̂HAx̂

)
= eiθ x̂

H
Ax̂+ x̂HCx̂+ e−iθ x̂HAx̂ ∈ R (by (1.1b)).

Therefore, there is a Householder transform G of the form G = I − 2uuH such that

G
x̂
‖x̂‖2

= −e−iθ
r
‖r‖2

, (5.3a)

where u = û/‖û‖2 with

û =


0, if two vectors in (5.3a) are equal,
x̂
‖x̂‖2
+ e−iθ

r
‖r‖2

, otherwise. (5.3b)

We take S = (‖r‖2/‖x̂‖2)G. Then we arrive at

Sx̂ = −e−iθ r. (5.4)

Again from (1.1b) and Px̂ = x̂, it follows that

r = Q (λ̂)x̂ = Q (λ̂)Px̂ = P(PQ (λ̂)P)x̂ = Pe2iθQ (λ̂)x̂ = e2iθPr. (5.5)

From (5.5) and (5.3b), we have

Pû =
x̂
‖x̂‖2
+ eiθ

r
‖r‖2

= û.

Thus, G and then S satisfies PSP = S. We now define

1B =
1
α̂
e−iθ‖B‖2S, (5.6a)

1C =
1
α̂
‖C‖S, (5.6b)

1A =
1
α̂
eiθ‖A‖2S, (5.6c)

where α̂ = ‖B‖2 + ‖C‖2 + ‖A‖2. From PSP = S it is easy to see that

P1BP = 1A, P1CP = 1C .

From (5.4), we have

Q (λ̂)x̂+1Q (λ̂)x̂ = r + (λ̂21B+ λ̂1C +1A)x̂

= r −
1
α̂

(
e2iθe−iθ‖B‖2 + eiθ‖C‖2 + eiθ‖A‖2

)
e−iθ r

= 0.

Using (5.2), we obtain

‖S‖2 =
‖r‖2
‖x̂‖2

= η(λ̂, x̂)α̂,

and then from (5.6), we prove that ηS (λ̂, x̂) = η(λ̂, x̂). �

In what follows we shall focus on estimating or bounding ‖Q (λ̂)x̂1‖, where (λ̂, (x̂>1 , x̂
>

2 )
>) is an approximate eigenpair

of (M,L).

Theorem 5.4. Let (λ̂, ẑ) be an approximate eigenpair of (M,L) as in (2.1) with D = 0, where ‖ẑ‖2 = 1. Let r = (M − λ̂L)ẑ
be the associated residual. Set

x̂1 = ẑ(1 : n), x̂2 = ẑ(n+ 1 : 2n), r1 = r(1 : n), r2 = r(n+ 1 : 2n).



1742 T.-x. Li et al. / Journal of Computational and Applied Mathematics 233 (2010) 1733–1745

Fig. 6.1. Backward errors of approximate unimodular eigenpairs for Example 6.1.

Then

‖Q (λ̂)x̂1‖2 ≤ ‖r1‖2 + |λ̂|‖r2‖2. (5.7)

Proof. For (M − λ̂L)ẑ = r , we have

r1 = Ax̂1 − λ̂x̂2, r2 = −Cx̂1 − x̂2 − λ̂Bx̂1.

So, λ̂x̂2 = Ax̂1 − r1. Therefore,

−λ̂r2 = λ̂2Bx̂1 + λ̂Cx̂1 + λ̂x̂2
= λ̂2Bx̂1 + λ̂Cx̂1 + Ax̂1 − r1.

Thus, Q (λ̂)x̂1 = r1 − λ̂r2, which leads to (5.7). �

Remark 5.1. From Theorem 5.3, we see that the residual of (λ̂, x̂1) for Q (λ) only depends on the associated residual
r = (M − λ̂L)ẑ which is independent of ‖B‖2, ‖C‖2 and ‖A‖2.

6. Numerical examples

Weperformall computation inMATLABR2007awith eps ≈ 2.22×10−16. Note, fromRemark 1.1 and [18], that computing
unimodular eigenvalues for PCP_PQEPs is awell-posed problem, as unimodular eigenvalues can stay on the unit circle under
perturbation. In addition, ` (the number of unimodular eigenvalues) is small which makes the refinement of unimodular
eigenvalues inexpensive. From Table 2, the SDA+Newton algorithm ismuchmore efficient than the QZ+Newton algorithm.

Example 6.1. We consider a neutral TDS (1.3), with corresponding characteristic equation (1.4):

Q (λ) = λ2E + λF + G, G = PEP, F = PFP.

We are interested in the computation of all unimodular eigenpairs.

Now, we takem = 2, n = 10, Ak and Dk are randomly generated with entries being normally distributed in [−100, 100]
for k = 0, 1, 2, ϕ0 = 0 and ϕ1 = −π : 0.1 : π .
In Fig. 6.1, we show the average of backward errors of approximate unimodular eigenpairs for Q (λ) computed by the

SDA+Newton algorithm, as well as, by applying the QZ+Newton algorithm to (M,L) and to (X,−P̃XP̃) [6], respectively.
The number of iterations for the SDA is about eight. For each unimodular eigenvalue only one refinement Newton step is
needed. In Fig. 6.1, we see that the SDA+Newton algorithm as well as those by the QZ+Newton algorithm for (X,−P̃XP̃)
and (M,L), lead to almost the same accuracy. However, the computational cost of the QZ+Newton algorithm is about twice
of that of the SDA+Newton algorithm as shown in Section 4.
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Fig. 6.2. Backward errors of approximate eigenpairs for Example 6.2.

Fig. 6.3. Reciprocity of eigenvalues for Example 6.2.

Example 6.2. We generate random A, B, C ∈ C100×100 with PAP = B, PCP = C and satisfying

min {|µ| − 1 : µ ∈ spectrum of Q (λ)} = 1.18× 10−6.

In Figs. 6.2 and 6.3, we show the backward errors of all eigenpairs of Q (λ) and the reciprocity property of approximate
λ and 1/λ (i.e. |λiλ2n+1−i| = 1), respectively. We see that the SDA and QZ_(X,−P̃XP̃) perform better than QZ_(M,L), and
the SDA has better reciprocity property than that of QZ_(X,−P̃XP̃) and QZ_(M,L).

Example 6.3. Consider the delay-free-feedback version of the example in [15],

ẋ(t)+ D1ẋ(t − h1)+ D2ẋ(t − h2) = A0x(t),

where

D1 = −

[ 0 0.2 −0.4
−0.5 0.3 0
0.2 0.7 0

]
, D2 = −

[
−0.3 −0.1 0
0 0.2 0
0.1 0 0.4

]
,
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Fig. 6.4. Distribution of eigenvalues for Example 6.3 with different scales.
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Fig. 6.5. Critical curves for Example 6.3.

A0 =

[
−4.8 4.7 3
0.1 1.4 −0.4
0.7 3.1 −1.5

]
+ BK>,

B =
[
0.3 0.7 0.1

]>
, K =

[
−2.593 1.284 1.826

]>
.

With the parameterization of the critical surface (m > 2) and critical curve (m = 2) from [6] as described in the
Introduction, critical points (h1, . . . , hm) are calculated from (1.5)–(1.7). With ϕ being 2π-periodic, we let ϕ run through
[−π, π].
We take ϕ = −π : 0.01 : π and compute 11322 eigenpairs by the SDA+Newton algorithm. We plot the distribution of

eigenvalues inside and on the unit circle in Fig. 6.4 with different scales. In Fig. 6.5 we plot the critical curves of unimodular
eigenvalues against h1 and h2.

7. Conclusions

We have proposed a structure-preserving doubling algorithm to compute all the eigenvalues of a PCP_PQEP. When only
the unimodular eigenvalues are required, as in the stability analysis of time-delay systems, Newton refinement is applied
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after doubling. The algorithm is efficient for small tomedium size examples, as illustrated by numerical simulation. For large
and structured problems, modifications to the SDA+Newton algorithm or new algorithms may have to be devised.
For time-delay systems, a smaller nonlinear eigenvalue problem can be solved instead [8]. It is nontrivial to compare

numerical techniques for such nonlinear eigenvalue problems with our algorithm. The nonlinear eigenvalue problems are
smaller butmore complicated but our PCP_PQEPs are larger butmore structured. Detailed comparison, especially withmore
properties from the actual time-delay system, will be interesting.
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