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Abstract

We consider the problem of deciding whether an infinite-state system (expressed as aMarkov chain) satis-
fies a correctness property with probability 1. This problem is, of course, undecidable for general infinite-state
systems. We focus our attention on the model of probabilistic lossy channel systems consisting of finite-state
processes that communicate over unbounded lossy FIFO channels. Abdulla and Jonsson have shown that
safety properties are decidable while progress properties are undecidable for non-probabilistic lossy channel
systems. Under assumptions of “sufficiently high” probability of loss, Baier and Engelen have shown how
to check whether a property holds of probabilistic lossy channel system with probability 1. In this paper,
we consider a model of probabilistic lossy channel systems, where messages can be lost only during send
transitions. In contrast to the model of Baier and Engelen, once a message is successfully sent to channel, it
can only be removed through a transition which receives the message. We show that checking whether safety
properties hold with probability 1 is undecidable for this model. Our proof depends upon simulating a perfect
channel, with a high degree of confidence, using lossy channels.
© 2004 Elsevier Inc. All rights reserved.

∗ Corresponding author.
E-mail address: purush@csc.ncsu.edu (S.P. Iyer).

1 This work was supported in part byAROunderGrants DAAG55-98-1-03093 andDAAD-19-01-1-0683, byNSF under
0098037, by European Commission FET project ADVANCE, Contract No. IST-1999-29082, and by STINT.

0890-5401/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2004.12.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82640094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


P. Abdulla et al. / Information and Computation 197 (2005) 22–40 23

1. Introduction

Finite state machines which communicate over unbounded FIFO channels have been used as an
abstract model of computation for reasoning about communication protocols [6], and they form
the backbone of ISO protocol specification languages Estelle and SDL. However, the model is
Turing-powerful which makes most verification problems of interest undecidable. Ever since the
publication of the Alternating bit protocol it has been customary to assume, while modeling a pro-
tocol, that the communication channels between processes are free of errors. Possible errors in the
communication channels are treated separately, or are completely ignored. However, over the past
few years there have been attempts to rectify this situation to allow modeling of imperfections in
the communicationmedium. Abdulla and Jonsson, in [2], considered amodel where messages could
be lost from the queue, while waiting in a queue to be delivered. They showed that the reachability
problem (and consequently, the problem of checking for safety properties) is decidable. However,
in [1], they also showed that checking for progress properties is undecidable—a consequence of
fairness arguments necessary to prove progress properties. Randomization is an oft-used technique
to provide tractable, approximate solutions to intractable problems or to supplant fairness argu-
ments, necessary for showing progress properties, by probabilistic arguments [11]. Given that we
are dealing with imperfections in the communication medium it is then natural to consider models
of communicating processes where the probability of message loss is taken into account. Thus, by
considering a probabilistic model we would be making our model more closer to reality. In [8], Iyer
and Narasimha considered whether a probabilistic lossy channel systems satisfies an LTL formula
with a probability greater than p , with in a tolerance �. In [4] Baier and Engelen considered the
following problem (which is the topic of this paper):

given a probabilistic lossy channel system L and a linear-time temporal logic formula �, does
the set of sequences of L that satisfy � have probability 1.

A partial answer to this question was given by Baier and Engelen who showed that it is decidable
if the probability of message loss is sufficiently high. Here “sufficiently high” was taken to mean
roughly “at least 1

2 .” Under this restriction, it can be shown that (with probability 1) the number of
messages in the channel cannot grow unboundedly, and that the general model checking problem
can be reduced to checking reachability (which is decidable by [2]).
In this paper, we consider a problem related to that left open by Baier and Engelen. We show

that the problem of checking safety properties with probability 1 is undecidable, when we consider
a slightly different semantical model. In contrast to the model of [4], where any message inside a
channel may be chosen and removed (lost) from the channel, we only allow loss of messages during
send transitions. More precisely, each time a message is sent to channel, it is either lost or appended
to the end of the channel. Once the message is added to the channel, it can only be removed through
a transition which receives the message.
Our proof is a construction which shows that a lossy channel system can (with probability 1)

simulate a finite state machine which operates on perfect FIFO channels. The main idea is to let
each message transmission of the perfect channel system be simulated by a number of retrans-
missions of the message in the lossy channel system. If the scheme for retransmissions is chosen
appropriately, the simulation will be faithful in a certain well-defined sense—a fact which allows
us to establish the undecidability result. To our knowledge this is the first undecidability proof
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in reasoning about probabilistic computational models and, thus, the construction should be of
independent interest.
The rest of the paper is organized as follows. In the next two sections, we present the necessary

definitions for probabilistic lossy channel systems and the probabilistic reachability problem. In
Section 4, we provide an overview of our undecidability proof, which we follow in Sections 5–7
with the necessary constructions. These constructions are used in Section 8 to show the correctness
theorem. Finally, we give some conclusions in Section 9.

2. Communicating finite-state machines

In this section, we introduce communicating finite-state machines (CFSMs) and some of their
properties.
For a set M we use M ∗ to denote the set of finite strings of elements in M . For x, y ∈ M ∗ we let

x • y denote the concatenation of x and y . The empty string is denoted by ε. For sets C and M ,
a string vector from C to M is a function in C �→ M ∗. For a string vector w from C to M we use
w[c := x] for the string vector w′ such that w′(c) = x, and w′(d) = w(d), for d /= c. The string vector
which maps all elements in C to the empty string is denoted ε.

Definition 1. A communicating finite-State machine (CFSM) C is a tuple 〈S ,C ,M , �, sinit〉, where
• S is a finite set of control states,
• C is a finite set of channels,
• M is a finite set of messages,
• � is a finite set of transitions, each of which is a triple of the form 〈s1, op , s2〉, where s1 and s2 are
control states, and op is either a label of form c!m, c?m, or empty , where c ∈ C and m ∈ M .

• sinit ∈ S is the start state.

Given this finite description of a system, we can now talk about the global state � of C as a pair
〈s,w〉, where s ∈ S and w is a string vector from C to M . The initial global state �init of C is the pair
〈sinit , ε〉. The progression of the system from one global state to another can now be formalized as
a transition relation −→ which is a set of triples of the form 〈�1, t, �2〉, where �1 and �2 are global
states and t ∈ �. The relation �1 = 〈s1,w1〉 t−→ �2 = 〈s2,w2〉 holds iff one of the following conditions
is satisfied.

(1) t = 〈s1, c!m, s2〉 and w2 = w1[c := w1(c) • m] (a send operation).
(2) t = 〈s1, c?m, s2〉 and w1 = w2[c := m • w2(c)] (a receive operation).
(3) t = 〈s1, empty , s2〉 and w2 = w1 (an empty operation).

For a global state � , we define the set en(�) of enabled transitions at � such that t ∈ en(�) iff
�

t−→ � ′ for some � ′. We let −→ =∪t∈�
t−→ and let

∗−→ denote the reflexive transitive closure of
−→. For global states �1 and �2, we say that �2 is reachable from �1 if �1

∗−→ �2. For a global state �
and a control state s, we say that s is reachable from � if there is w such that 〈s,w〉 is reachable
form � .
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A computation � is a sequence (either finite or infinite) of states and transitions: �1 t1�2 t2 �3 · · ·
tn−1�n . . . such that �i

ti−→ �i+1 for each i : 1 � i. We will use �(i) to denote the ith state �i visited in
�. If a computation � is finite we say that � leads from �1 to �n.1

We define the control state reachability problem for CFSMs (Reach-CFSM) as follows

Instance A CFSM C and a control state sF in C.
Question Is sF reachable from �init?

The following result is well-known (e.g. [6]).

Theorem 2. Reach-CFSM is undecidable.

The idea behind the proof is to use one of the channels to simulate the tape of a Turing machine.

Remark. To simplify the undecidability proof, we consider a restricted class of CFSM. Undecid-
ability of Reach-CFSM holds also for the restricted class. Therefore, the restricted class does not
imply loss of generality. We assume that a CFSM satisfies the following four conditions:

• We assume that a CFSM has only one channel. The undecidability proof of Reach-CFSM needs
only one channel which is used to simulate the tape of a Turing machine.

• It will never occur that two copies of the same message m are placed beside each other inside a
channel. In other words, we will never reach a configuration where the content of the channel is of
the formM ∗ • m • m • M ∗. Given a CFSM C, we can derive a new CFSM C′ satisfying this prop-
erty by adding a new symbol # to the alphabet, and splitting each send transition t = 〈s1, c!m, s2〉
into two transitions t1 = 〈s1, c!m, st〉 and t2 = 〈st , c!#, s2〉, where st is a new control state. Fur-
thermore, each receive transition t = 〈s1, c?m, s2〉 is split into two transitions t1 = 〈s1, c?m, st〉 and
t2 = 〈st , c?#, s2〉.

• After each receive operation, there will be at least one message left in the channel. In other words,
no receive operation will make the channel empty. We can derive a CFSM with this property by
first sending two symbols (say #1 and #2) to the channel, and then running the original CFSM.
Each control state is providedwith a loop consisting of four transitions, performing the following
operations: receive #1, send #1, receive #2, send #2. These transitions are used to move back the
symbols #1 and #2 from the head to the end of the channel to enable receive transitions in the
original CFSM.

• No control state is the source of only receive transitions, i.e., there is a send or an empty transi-
tion out of every control state. This restriction is achieved by adding self-loops that are empty
transitions to those control states that are source of only receive transitions.

In the sequel we assume that all CFSMs satisfy the above four properties.

3. Probabilistic lossy channel systems

In this section we consider probabilistic lossy channel systems (PLCSs).

1 Note that � ′ is reachable from � iff there is a computation leading from � to � ′.
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Definition 3.A lossy channel system (LCS).L is of the same formas aCFSMwithmultiple channels.
However, the transition relation −→ is extended such that 〈s1,w〉 t−→ 〈s2,w〉 if t = 〈s1, c!m, s2〉. In
other words, we allow a message sent to the channel to be lost without ever being appended to the
contents of the channel.

It should be noted that an LCS need not satisfy the restrictions described in Section 2. Another
point to note is that the semantics of loss used here is slightly different from the one used in [2,8,4],
where a message can be lost at any time from the queue. In contrast, in the current paper a message
can only be lost when it is being placed in the queue. However, the set of reachable states under
both semantics is the same [2].

Definition 4. A probabilistic lossy channel system (PLCS) is a tuple

〈S ,C ,M , �, sinit ,W, �〉
where 〈S ,C ,M , �, sinit〉 is an LCS, � is real number in the interval [0, 1] representing the probability
of losing messages, and W is a weight function which assigns to each transition t ∈ � a positive real
number W(t).

Given that a PLCS is also an LCS we will lift the transition relation −→, from LCS, to obtain the
transition relation for PLCS by normalizing the weights assigned to transitions. More precisely, for
a global state � and a transition t we define W′(�)(t) to be equal to W(t) if t ∈ en(�) and to be equal
to 0 otherwise. We define P(�1

t−→ �2), where �1 = 〈s1,w1〉 and �2 = 〈s2,w2〉, to be equal to

• (1 − �) · (
W′(�1)(t)/

∑
t′∈� W′(�1)(t′)

)
, if t is of the form 〈s1, c!m, s2〉 and w1 /= w2.

This corresponds to performing a non-lossy send operation.
• � · (

W′(�1)(t)/
∑

t′∈� W′(�1)(t′)
)
, if t is of the form 〈s1, c!m, s2〉 and w1 = w2.

This corresponds to a lossy send operation.
• (

W′(�1)(t)/
∑

t′∈� W′(�1)(t′)
)
, if t is of the form 〈s1, c?m, s2〉 or of the form 〈s1, empty, s2〉.

Notice that P(�1
t−→ �2) is well-defined only if

∑
t′∈� W′(�1)(t′) /= 0. This can be guaranteed if from

each control state there is at least one transition with a send or an empty operation. The PLCS we
shall describe in the next sections satisfies this property.
For a finite computation � = �1 t1 �2 t2 �3 · · · tn−1 �n, we define

B� = {�′|� is a prefix of �′}
as a basic cylinder set with probability P(B�) = ∏

0<i<n P(�i
ti−→ �i+1). We will assume the standard

measure space based on the Borel field generated from these basic cylinder sets [10] by taking closure
under denumerable unions, denumerable intersection and complementation. For global states �1

and �2, we define P(�1, �2) = P
(⋃

� leads from �1 to �2
B�

)
. For a global state � and a control state

s, we define P(� , s) = P(
⋃

� leads from � to some 〈s,w〉 B�).
The reachability problem for PLCS (Reach-PLCS) is defined as follows:

Instance A PLCS L and control state sF in L.
Question Is P(�init , sF ) = 1 ?
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Note that checking safety properties can be reduced to checking reachability of a bad control
state [2]. Furthermore, checking for liveness properties amounts to checking for repeated reach-
ability of a control state [4]. Consequently, our attention to the probabilistic reachability problem
is appropriate.

4. Overview of our undecidability proof

In this section, we give an overview of the undecidability proof for Reach-PLCS. The undecid-
ability result is achieved through a reduction from Reach-CFSM.
Suppose that we are given an instance of Reach-CFSM, i.e., a CFSM C and a control state sF .

Recall that we assume that C has a single channel, which we will call cM . We shall construct an
equivalent instance of Reach-PLCS, i.e., a PLCSLwhich “simulates” C such that sF is reached with
probability 1 if and only if sF is reachable in C. The PLCSL has a lossy channel2 cM which simulates
the channel in L. In addition, L has two other channels which will be described below. The main
idea of the construction is to implement two protocols which allow L to simulate the computations
of C:

• One of the protocols generates multiple copies of transmitted messages, and guarantees there is
a positive probability of simulating a perfect computation. Consequently, if sF is not reachable
in C then there is a positive probability that it will not be reachable in L.

• The second protocol restarts the system from time to time and guarantees that if sF is reachable
in C then it will be reachable in L with probability one.

Generating multiple copies. Due to the risk of losing messages, each send operation cM !m of C is
simulated by a sequence of retransmissions of the message m in L. This means that each receive
operation must be simulated by a “receive loop” where all copies of a message are received.
Retransmitting a message several times decreases the probability that the message is lost in the

channel (i.e., that all copies of the message are lost), but the probability is still nonzero. We will
therefore construct a scheme inwhich the number of retransmissions of amessage is increased as the
execution proceeds. The rate of the increase is sufficiently large to guarantee a positive probability
that no message is “completely lost” during the simulation. In other words, for each message, at
least some copies3 will be maintained in the channel. The ability to construct a perfect simulation
of a CFSM by a PLCS (with a probability greater than zero) is a central concept in the proof. If sF
is not reachable in C then, with a positive probability, sF will not be reachable in L.

Restarting. The simulation process consists of a number of rounds. Each round consists of “re-
starting” C. We will devise a mechanism whereby the simulation is “restarted” periodically. The
period between two restarts determines the number of steps of C which are simulated during the
particular round. The rounds should be longer and longer so that eventually they are sufficiently

2 Notice that we use cM both for the channel in C and that in L.
3 For technical reasons related to our construction, we need at least two copies of each message to be maintained. See

the description of the recieve operation in Section 5.
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long to simulate an entire computation from �init to sF in C (in case such a computation exists).
Notice that this implies that L should never deadlock, since this would mean that the restarting
procedure cannot be continued.
This protocol ensures that if sF is reachable in C then sF is will be reachable in L with a prob-

ability one: L is restarted infinitely often (we will run infinitely many rounds). When the rounds
get sufficiently long, the state sF will be reached in the current round with a probability which is
bounded from below.
To carry out the two protocols just outlined the PLCS L uses, in addition to cM , two lossy

channels called the retransmission counter cT and the resetting counter cS .

The counter cT . The number of retransmissions (copies) of each message will be controlled by the
counter cT . This counter is implemented by a (lossy) channel with two messages, 0 and 1 (say).
When the simulation of a send operation is about to start, the contents of cT will be either of the
form 0k or of the form 1k . The integer k denotes a counter value k . A transition t corresponding to
sending a message m in C is replaced in L by a sequence of operations. We describe this sequence of
operations when the counter is of the form 0k . We receive all the 0s in cT . We replace each copy of 0
by a number of copies of 1 in cT and m in cM . More precisely, for each 0 received from cT we send r

copies of 1 to cT and send r copies of m to cM (the choice of r is described in Section 7). This means
that while sending the copies of m, the content of the counter will be of the form 0k1 1k2 , where k1 is
the number of times the copying procedure has still to be repeated.4 This operation will continue
until a 1 is received, indicating that all 0s have been received. At this point the content of cT will be
of the form 1". In total, the above procedure sends k · r copies of 1 to cT and k · r copies of m to cM .
The sequence of operations is similar when we start from a configuration where the counter is of

the form 1k . The difference is that we now receive 1s from cT and send 0s.
Observe that the contents of cT is always either of the form 0k1 1k2 in which case we say that the

counter is in mode 0, or of the form 1k10k2 in which case we say that the counter is in mode 1.

The counter cS . The mechanism for restarting the simulation must be devised so that the system L
is restarted infinitely often, with increasing periods between the restarts. This is controlled by the
counter cS . The counter cS should satisfy two properties:

• Its value should be increasing at successive restarting points. In fact, its value should increase
much more quickly than the value of cT (in a sense made more precise in Section 5).

• Its value should be decreasing between two restarting points.

The two conditions are not contradictory (although they might seem to be). During a simulation,
we continuously decrease the current value of the counter. Just before the next round starts, the
counter is assigned a value which is exponential in the current value of cT .
When a new round is initiated, the contents of cS is either of the form 0k or of the form 1k . The

value k of counter cS represents the number of steps for which the system C is simulated, before
the next restart is performed. Suppose that the content of cS is of the form 0k . When simulating a

4 value(cT = 0k1 1k2 ) = k1 denoting the current value of cT .
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step of C the current value of cS is decreased by receiving a 0. Also, from time to time we send a 1
to cS . This means that, during the simulation procedure, the content of cS will be of the form 0k1 1k2 ,
where k1 is the current value of the counter (the number of steps of C that still have to be simulated
before the current round is terminated and the next round is initiated). In implementing cS , we shall
guarantee that its value will decrease even if the rest of the system has deadlocked. Although C will
never deadlock by assumption, L may deadlock. This can happen, for instance, when cM is empty
and L tries to receive a message.
In a similar manner to the counter cT , the counter cS is either of the form 0k1 1k2 in which case we

say that the counter is in mode 0, or of the form 1k10k2 in which case we say that the counter is in
mode 1.

Channel clean-up. Each time a new round is about to be started we need the channel cM to be
empty, since we are simulating a computation of C which starts from an empty channel. To achieve
that we use a clean-up procedure which removes all messages left inside cM from the previous round.
To implement the clean-up operation, we use two new symbols $0 and $1 not inM as end markers.
The clean-up operation is either inmode 0 in which case the content of cM is of the form $∗

0M
∗$∗

1 , or
in mode 1 in which case the content of cM is of the form $∗

1M
∗$∗

0. In mode 0 (mode 1) the clean-up
operation is performed by receiving messages from cM until we receive a $1 (a $0). This means that
there are no members of M left in cM after the clean-up operation is done.

5. Implementation of operations

In this section, we show in greater detail how to implement L such that its behaviour satisfies the
properties described in Section 4. The control states in L are the following:

• Each control state in C has a copy in L.
• There are two special states: exit from which the restarting procedure is started, and clean from
which the clean-up procedure is started.

• There are a number of “intermediate” states which do not correspond to any state in C, andwhich
are used in the simulations of the operations.

Furthermore, there are three flags fT , fS , and fC . These are Boolean variables representing the
mode of counter cT , the mode of counter cS , and the mode of the clean-up operation. Obviously, the
three flags can be encoded in the control part of L by making eight copies of all control states and

Fig. 1. The clean-up operation. Note. c?M should be read as a set of receive commands, each receiving a member of M .
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letting each copy represent one combination of the values of the three flags. However, for simplicity
of presentation we model the flags as Boolean variables.
In the text below we describe the operations assuming that the flags fT , fS , and fC are all equal

to 0. The behaviour during other modes can be derived by substituting appropriate values for the
three flags.

Clean-up. This operation (Fig. 1) resets the content of cM . Assuming mode 0, the content of cM is
of the form $∗

0M
∗$∗

1 . We start from exit and send messages of form $1 to cM , while simultaneously
receiving messages from cM until we receive a $1. In such a case we know that the content of cM is a
string in $∗

1 . The mode is now changed to 1. The reason why we need two symbols (rather than only
one) is the fact that some end markers may be left inside the channel from the previous clean-up
operation. By alternating the use of endmarkers we can distinguish between the current endmarker
and the previous one.

Initial states. Define �init to be the set of states of form 〈sinit ,w〉 such that w(cM) is a string in either
$∗
0 or $

∗
1 , i.e., cM does not contain any messages fromM . The members of �init are the configurations

from which the different rounds are started.

Restarting. The aim of the restarting procedure (Fig. 2) is to increase the value of the counter cT ,
and also to make the value of cS exponentially larger than the value of cT . First, we send r copies of
1 to cT . Then, we iterate two nested loops: an outer loop (from exit1 through exit2 and exit3 back to
exit1), and an inner loop (from exit4 through exit5 back to exit4). Each time the outer loop is iterated
we increase the value of cT by r while we multiply (through the inner loop) the value of cS by r.

Send. A send transition of the form t = (s, cM !m, s′) in C is simulated in L by the sequence of tran-
sitions depicted in Fig. 3. First, r copies of 1 and r copies of m are generated. Thereafter the loop

Fig. 2. The restarting operation.

Fig. 3. Translation of send transition 〈s, cM !m, s′〉. Note: cT !(1 − fT )
r should be read as r commands, each sending a

copy of 1 − fT to cT . For instance, if fT is zero then the above operation corresponds to sending r copies of 1 to cT .
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from from st2 via st3 and st4 generates r times as many copies of 1 as the value of cT (i.e., number
of copies of 0 in cT ) together with an equal number of copies of m. The loop is repeated until we
receive a 1 from cT , indicating that we have consumed all the 0s in cT , whereupon we change mode
of cT and move to state st5. Observe that cT will now contain a string of 1s. At state st5, we receive a
message from cS . If no 0s are left in cS , i.e., if there is a 1 at the head of cS , we change the mode of cS
and move to state exit, thus initiating the restart procedure. Otherwise, we receive a 0 from cS and
proceed to state s′, where we continue with the simulation. The aim of the self-loops from states st2
and st5 is to prevent deadlocks when trying to receive from cT and cS , respectively.

Receive. A receive transition of form t = 〈s, cM ?m, s′〉 is simulated as in Fig. 4. First the self-loop
at s receives copies of $0 that may have been left from the last clean-up operation. Thereafter, we
receive m from cM and move to st1. At st1 there are a number of self-loops. One of these receives
copies of m from cM , until receiving a message which is different from m and moving to st2. By the
assumption that C will never put two successive copies of m into cM , receiving a message different
from m indicates that all copies of m have been consumed, provided that the simulation has been
faithful since the last cleanup operation. From st2, we decrease the value of cS , move to s′, and
continue with the simulation. The two transitions from st1 that receive from cS prevent deadlock in
case no messages different fromm is left in cM . Note that these transitions are enabled even whenm

is present. The aim of the self-loops at states st1 and st2 that transmit 1s to cS is to prevent deadlocks
when trying to receive from cM and cS .
The self-loop labeled with cs?fS from st1 is enabled even in the case where there are available

copies of m in cM . This may cause too many restarts since all copies of cS may be recieved before
all copies of m are consumed. In order to avoid this, we make the value of cS grow more quickly
than that of cT (in a sense which we shall make more precise in Section 7).
Notice that the transition from st1 to st2 removes one copy of the next message to be received.

Therefore, we require the copying protocol to preserve at least two copies of each message (rather
than only one).

Empty transition. The translation for an empty transition is similar to the translation of a send
transition. The only difference is that no messages will be sent to cM . In other words, we merge the
states st1, st4, and st2 and remove the transitions between these two states.

Fig. 4. Translation of receive transition 〈s, cM ?m, s′〉.Note. We use similar notation here as in Fig. 3. By cM ?M − {m} we
mean a set of commands, each receiving a message in the set M − {m}.
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It should be noted that the translation of an empty transition in C can not be an empty transition
in L. This is due to the fact that C can get caught in a self-loop of empty transitions (say) at a state
s, if the only other possible transition from s attempts to receive a message type that is not in front
of the queue cM . While C could be stuck, its simulation L should recover to start a new simulation,
of C, by driving the counter cS to zero.

6. Properties of operations

In this section, we prove properties of the operations which we later use in the correctness proof.
We assume all transitions in L are of equal weight. This is not an essential assumption. In fact

our construction works provided that all weights are positive.
We first state two lemmas describing a number of simple properties about the control flow of the

operations. The lemmas follow by inspecting the operations in Figs. 1–4.

Lemma 5. (Invariants). The following properties are invariants of any computation of L.

• The contents of channel cT is always in (fT )
∗(1 − fT )

∗, where fT is the current mode of cT .
• The contents of channel cS is always in (fS)

∗(1 − fS)
∗, where fS is the current mode of cS.

• If fC is the current mode of the cleanup operation then the contents of channel cM is in $∗
fC

M ∗,
except in control state clean where it is in $∗

fC
M ∗$∗

1−fC
. where

Lemma 6. (Progress). The following progress properties hold for the simulating operations.

• Whenever the clean-up procedure starts in control state clean, with probability 1 it leads to control
state init with the contents of cM in $∗

fC
.

• Whenever the restart procedure is started in control state exit, with probability 1 it leads to control
state clean.

• Whenever a send, receive, or empty operation is started in a control state s of C, with probability 1
it leads either to control state exit or to its final control state s′ of C.

A sequence �i
j of transitions is called a send segment if it is an execution of the translation of

a send transition (from control state s to either exit or s′ as in Fig. 3). We define receive segment,
empty segment, restart segment, and cleanup segment analogously. We say that a send segment �i

j is
faithful if at least two copies of the retransmitted message m are not lost in cM during �i

j .
A round is a sequence of transitions which is a concatenation of form �1 . . . �n�rs�cu, where

• �1 starts in a state in �init

• each �1, . . . ,�n is send, receive, or empty segment,
• �rs is a restart segment, and �cu is a cleanup segment,
• �cu ends in a state in �init .

We use Lemma 5 and Lemma 6 to determine the structure of computations of L.
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Lemma 7.With probability 1, a computation � of L starting from �init is a concatenation

� = �11�
1
2�

1
2 . . . �

1
n1
�1rs�

1
cu �21�

2
2 . . . �

2
n2
�2rs�

2
cu . . . �i

1 . . . �
i
ni
�i
rs�

i
cu . . .

of an infinite sequence of finite rounds.

Proof. The proof follows from the following arguments:

• After any segment of form �i
j with j < ni or of form �i

cu, the PLCS L is in a control state s of
C. By the assumption that no control state s in C is the source of only receive transitions, some
send, receive, or empty segment will be initiated. By Lemma 6, each such segment terminates with
probability 1, either in a control state s′ of C or in the state exit. If it leads to exit, the next segment
is a restart segment which by Lemma 6, with probability 1 leads to clean, followed by a cleanup
segment which with probability 1 leads back to a state in �init .

• Each restart segment terminates with a specific value of cS , and each send, receive, and empty
segment (except possibly �i

ni
) reduces the current value of cS by at least one. Once the current

value of cS becomes zero, the control state exit is entered. Hence there can be only a finite number
of send, receive, and empty segments between two consecutive restart segments. By Lemma 6,
with probability 1 the last cleanup operation leads to a state in �init . As a consequence of Lemma
6, with probability 1 each round terminates in a state in �init . �

It is easy to verify from the construction ofL that if all send segments are faithful, then each control
state of C which is visited by L during � is indeed reachable in C.

7. Properties of counters

In this section, we analyze the behavior of the counters cT and cS .
Recall that � is the probability of losing a message, and that r decides the rate by which cT

increases (and hence the number of copies of each message sent to cM during the simulation of a
send operation). We choose r such that r · (1 − �) > 2.
We recall and prove some properties of stochastic processes.

Branching processes. A branching process X with parameters r and p represents a sequence of gen-
erations as follows. In the 0th generation, there is one individual. For each n � 0, each individual
in the nth generation generates r individuals in the (n + 1)st generation, each of which survives
with probability p : 0 < p < 1 (and dies with probability 1 − p). Thus, each individual in the nth
generation generates a number of surviving individuals in the (n + 1)st generation, according to a
binomial distribution with parameters r and p . For a branching process X , we let Xn be the random
variable which gives the number of individuals in the nth generation. Notice that X0 is one with
probability one, and that X1 has a binomial distribution.
The following lemma is shown in [9] and states that if the expected number of survivors from the

offsprings of an individual is strictly greater than one then there is a positive probability that each
generation will have at least a single survivor.

Lemma 8. Let X be a branching process with parameters r and p. If r · p > 1 then there is a positive
probability that ∀i. Xi > 0.
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From Lemma 8 we get:

Corollary 9. Let X be a branching process with parameters r and p. If r · p > 1 then, for each K > 0,
there is a positive probability that ∀i. (i � K ⇒ Xi � K).

Proof. There is a positive probability that XK � K . Consider the members of the Kth generation.
Each of them can be viewed as the originator of a new branching process. This means that the
members of the next generations (after K) can be viewed as a stochastic variable which is the sum
of at least K stochastic variables each of which is a branching process with parameters r and p . By
Lemma 8 each of these branching processes will survive with a positive probability +. This means
that, with probability at least +K , we have Xi � K for all i � K . �
The following lemma states that if the expected number of survivors from the offsprings of an

individual is strictly greater than two then there is a positive probability that sizes of successive
generations will increase exponentially. The proof of the lemma (which makes use of Chebyshev’s
inequality) is given in the Appendix.

Lemma 10. Let X be a branching process with parameters r and p. If r · p > 2 then there is a positive
+ such that for all i, the probability that Xi � 2i is greater than +.

Negative binomial distribution. Suppose that an infinite sequence of independent experiments is
conducted. The outcome of each experiment is either success, with probability p , or failure, with
probability q = 1 − p . Let X be a random variable denoting the number of failures before obtaining
y successes, with y > 0. Then, X is said to have a negative binomial distribution with parameters y
and p . In the Appendix we show the following.

Lemma 11.Consider p : 0 < p < 1. There is a natural number - and a positive rational + such that the
following holds:Let y > 0 and let X be a stochastic variable which has a negative binomial distribution
with parameters y and p. Then, the probability of X � - · y is greater than +.

Counter cT.We consider the behaviour of counter cT . We observe that the value of cT is changed
only in send, empty, and restart segments. Also, the mode of cT is changed by either by the tran-
sition exit1 to clean in Fig. 2, or the transition from st2 to st5 in Fig. 3 (or the corresponding
transition in an empty segment). Consider counter cT just before a mode-changing (i.e., before
a transition of one of the above three forms is executed). Assuming mode fT , the contents of cT
is then of the form (1 − fT )

k . We observe that k is the new value which will be assigned to cT . Let
k0T k1T k2T . . . be the number of messages (0s or 1s) appended to cT between the successive mode
switches. We observe that we obtain ki+1

T from kiT by sending r · kiT new messages to cT . More
precisely, in Fig. 3, the message removed in the transition from st2 to st3 is replaced by r new mes-
sages in the transition from st3 to st4 . Also, the message removed in the transition from st2 to st5
(or from exit1 to clean) is replaced by r new messages in the transition from s to st1 (or from exit

to exit1). The latter addition of messages is performed next time we enter a send, empty, or restart
segment.5

5 Also, additional messages are added in the self-loops from exit1 and st2 .
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Observe that there is a positive probability that k0T , , k
1
T � 2 since r · (1 − �) > 2 and consequent-

ly r � 2. Furthermore, it is evident from the above discussion that we can view k0T k1T k2T . . . as a
branching process.
From this and Corollary 9 we get the following.

Lemma 12. Let k0T k1T k2T . . . be the successive values of cT between mode switches of cT .

(a) There is a positive probability that ∀i. kiT � 2.
(b) For any positive K , with probability 1 there are infinitely many i such that kiT � K.

Proof.As described above, we can view k0T k1T k2T . . . as a branching process. Consequently, claim (a)
follows immediately fromCorollary 9 and the fact that there is a positive probability that k0T , k

1
T > 0.

To prove claim (b), we observe that, if kiT = 0 then a new branching process is initiated. This
is achieved by the transition exit to exit1 in Fig. 2, or the transition from s to st2 in Fig. 3 (or the
corresponding transition in an empty segment). Since each of these branching processes survives
with a probability which bounded from below, one of themwill survive with probability one. Claim
(b) follows immediately. �
Since the number of copies of sent messages is equal to the number of copies sent to cT (Figs. 2 and
3), we can state a similar lemma about the number of copies of messages transmitted to cM .

Lemma 13. There is a positive probability that all send segments are faithful.

The following lemma defines an upper bound on the growth of cT .

Lemma 14.For each n there are positive + and -, such that the following holds.Consider a computation
� of the form

�rs�cu�1�2 . . . �n,

where �1, . . . ,�n are send, empty, or receive segments. Suppose that kT is the value of cT when � is
started. Then, with probability at least + the value of cT never exceeds kT · (r + -)n+1 + r during �.

Proof. In �rs we first send r new massages to cT (the transition from exit to exit1). Then, each time
we remove a copy of fT in � we send r copies of (1 − fT ) to cT (see the discussion before Lemma
12). Also, we send a number of copies of (1 − fT ) to cT in the self-loops from exit1 in Fig. 2 and
st2 in Fig. 3. We estimate the number of copies of (1 − fT ) that can be sent in these self-loops as
follows. We observe that the number of messages sent in each self-loop is determined by a sequence
of independent experiments that are performed, which with probability 0.5 result6 in a self-loop
transmitting (1 − fT ) and with probability 0.5 result in receiving fT . Let k ′

T be the value of cT when
a (send, empty, or restart) segment is started. The number of copies of (1 − fT ) transmitted in the
corresponding self-loop is then the number of self-loop outcomes that occur before k ′

T reception
outcomes. By Lemma 11, there are positive +1 and -, which are independent of k ′

T , such that, with
probability at least +1, this number is at most - · k ′

T . Define + = +n+1
1 . �

6 We get probability 0.5 since all transitions are assumed to have equal weights. See Section 6.



36 P. Abdulla et al. / Information and Computation 197 (2005) 22–40

Counter cS.We consider counter cS . We show that it grows exponentially more quickly than cT .

Lemma 15. There is a positive +, such that whenever a restart segment is started in control state exit
with the value of cT being kT , then with probability at least + the restart segment leads to state clean
where the value of cS is at least 2kT − 1.

Proof.During the restart procedure, each time we remove a copy of fT , we eventually move to exit4
and perform a number of iterations of the inner loop. In a similar manner to the analysis of the
behaviour of cT , we can view the behaviour of cS during these iterations as a branching process.
We observe that the number of iterations is equal to kT and that the last time the transition from
exit4 to exit1 is performed the value of cS is decreased by one. By Lemma 10 it follows that there
is a positive probability + that the value of cS is at least 2kT − 1 when the restarting procedure is
concluded (and we enter control state clean). �
We finally need to state a lemma about how a receive segment affects counter cS . Potentially, a

receive segment can decrease the current value of cS very much before consuming all copies of m.
This may cause cS to become 0 and drive L into the exit state, starting the restart procedure before
a desired number of steps of C have been simulated. We therefore need to prove a bound on the
speed at which cS is decreased, in relation to the number of copies of m in cM .

Lemma 16. Suppose that, upon starting a receive segment sequence at control state s, the number of
copies of the message m in cM is kM and the value of cS is kS , with kS > kM . Also, suppose that the
sequence of copies of m is followed by a least one member of M − {m} available in cM . Then with
probability 0.5, the segment enters state s′ with the value of cS being at least kS − kM .

Proof. A receive operation will either lead to s′ because it successfully simulates a receive tran-
sition, or lead to exit. The simulation can enter exit because either (i) there is no member of
M − {m} which follows the copies of m (and therefore the transition from st1 to st2 is not en-
abled); or (ii) the current value of cS will be reduced to 0. In case a member of M − {m} is
present, the choice between a successful simulation or entering exit depends on the sequence
of independent choices at state st1 between the self-loop that receives fS from cS and the self-
loop that receives m from cM . As long as both these transitions are enabled, this choice gives
equal probability to the two outcomes. Notice that we can view this as a stochastic variable
with negative binomial distribution. Here, receiving a message from cM is considered to be a suc-
cess, while receiving a copy of fS from cS is a failure. Since, during each experiment, both out-
comes have probability 0.5, it follows that, with probability 0.5, the operation will consume all
kM copies of m and one copy of a member of M − {m} before consuming kM messages from cS .
Hence with probability at least 0.5 the operation will lead to state s′ with the value of cS at least
kS − kM . �

8. Correctness

We are now ready to state and prove the main theorem.

Theorem 17. A control state sF is reachable in C iff sF is visited with probability one in L.
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Proof. ⇐ direction: Assume that a control state is not reachable in C. By Lemma 13, there is a
positive probability that all simulations of send operations are faithful for the entire computation.
It is clear that all rounds of such a computation correspond to computations in C. This implies
that the corresponding control state is not visited by L with a positive probability. This proves the
theorem in this direction.

⇒ direction: Suppose that sF is reachable in C by a computation / of length n from the initial state.
By Lemma 7 we know that, with probability one, a computation of L is of the form

�11�
1
2�

1
2 . . . �

1
n1
�1rs�

1
cu �21�

2
2 . . . �

2
n2
�2rs�

2
cu . . . �i

1 . . . �
i
ni
�i
rs�

i
cu . . .

Let K be any natural number such that

2K
′ − 1 > n ·

(
K ′ · (r + -)n+1 + r

)

for each K ′ � K , where - is defined as in Lemma 14. Obviously, such a K exists.
Let kiT be the value of cT when entering �i

rs, and let k
i
S be the value of cS upon termination of the

restart segment �i
rs.

By Lemma 12 (b), with probability one, there is an infinite sequence i0i1i2, . . . such that k
ij
T � K

for each j � 0.
By Lemma 15 it follows that there is a positive +1 such that, with probability +1, we have k

ij
S �

2k
ij
T − 1. Since k

ij
T � K it follows that k

ij
S > n ·

(
k
ij
T · (r + -)n+1 + r

)
. Consider the behaviour of L in

the next round i + 1. By Lemma 14 the value of cT will not exceed k
ij
T · (r + -)n+1 + r during the next

n segments. By Lemma 16 and simple observations about the send, empty, and receive segments, the
next n segments will lead to sF with a probability which is bounded from below. The result follows
immediately. �
From Theorems 2 and 17 we get the following.

Theorem 18. The problem Reach-PLCS is undecidable.

9. Conclusion

We have considered a model of probabilistic lossy channel systems (PLCSs) where each message
my be lost during a send operation with a predefined probability. We show undecidability of the
reachability problem for such a model.
On the other hand, [4] considers a slight different model; namely during the execution of the

PLCS, there is a predefined probability by which the next step is a loss. The paper shows decidabil-
ity assuming that the probability of losses is at least 0.5. The problem of whether the decidability
result of [4] extends to the case where the probability of losses is less than 0.5 is still open.
The papers [3,5] consider yet a different model of PLCS, where each message inside a channel

may be lost during each step of the PLCS. The papers show decidability of reachability regardless
of the given probability of message losses.
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Appendix—Proof of Lemmas

Proof of Lemma 10

Statement of the Lemma: Let X be a branching process with parameters r and p . If r · p > 2 then
there is a positive + such that for all i, the probability that Xi � 2i is greater than +.

Proof. It is a simple property of binomial distributions that

E(X1) = r · p Var(X1) = r · p · (1 − p).

By results from the theory of branching processes [9] the expected value and variance of Xn are
given by:

E(Xn) = (E(X1))
n = (r · p)n,

Var(Xn) = Var(X1) · E(X1)n−1 · E(X1)
n−1

E(X1)−1 .

We use Chebyshevs’ inequality, which states that for any random variable Y and positive real K , we
have

P(|Y − E(Y)| � K) �
Var(Y)

K2

which implies that

P(Y � E(Y) − K) � 1 − Var(Y)

K2 .

We know that E(Xn) > 2n. Take K = E(Xn) − 2n. It follows that:

P(Xn � 2n) � 1 − Var(Xn)

(E(Xn) − 2n)2
= 1 − Var(Xn)

E(Xn)2 + 22n − E(Xn) · 2n+1 .

Substituting the value of E(Xn) and Var(Xn) we get

P(Xn � 2n) � 1 − Var(X1) · E(X1)n−1 · (E(X1)n − 1)
(E(X1) − 1) · (E(X1)2n + 22n − E(X1)n · 2n+1)

= 1 − Var(X1)

(E(X1) − 1)E(X1)
E(X1)

2n−1 − E(X1)
n−1

(E(X1)2n−1 + 22n
E(X1)

− E(X1)n−12n+1)
.
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We observe that

lim
n→∞

E(X1)
2n−1 − E(X1)

n−1

(E(X1)2n−1 + 22n
E(X1)

− E(X1)n−12n+1)
= 1.

This means that for any � > 0 there is an N such that for each n � N we have

E(X1)
2n−1 − E(X1)

n−1

(E(X1)2n−1 + 22n
E(X1)

− E(X1)n−12n+1)
� 1 + �.

From the fact that r · p > 2 and 1 − p < 1, we can in particular choose � such that

� <
r · p − 1
1 − p

− 1.

This implies that there is an N such that for each n � N we have

P(Xn � 2n) � 1 − Var(X1)

(E(X1) − 1) · E(X1) · (1 + �) = 1 − (1 − p) · E(X1)
(E(X1) − 1) · E(X1) · (1 + �)

= 1 − 1 − p

r · p − 1
· (1 + �) > 0.

Let +i = P(Xi � 2i). Since r · p > 2 (and consequently r > 2) it follows that +i > 0 for each i � 0.
Define

+ = min
(
+0, +1, . . . , +N−1, 1 − 1 − p

r · p − 1
· (1 + �)

)
. �

Proof of Lemma 11

Statement of the Lemma: Consider p : 0 < p < 1. There is a natural number - and a positive
rational + such that the following holds: Let y > 0 and let X be a stochastic variable which has
a negative binomial distribution with parameters y and p . Then, the probability of X � - · y is
greater than +.

Proof. We define - � q+1
p and + = 1 − q. We show that - and + satisfy the property stated in the

Lemma. Let y > 0 and let X be a stochastic variable which has a negative binomial distribution
with parameters y and p .
In [7] it is shown that

E(X) = y · q
p

Var(X) = y · q
p2

.

By Chebyshev’s inequality we know that for any positive real K :

P(|X − E(X)| � K) �
Var(X)

K2
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which implies

P(X � E(X) + K) � 1 − Var(X)

K2 .

In particular if we take K = y
p then

P(X � E(X) + y

p
) � 1 − p2 · Var(X)

y2
.

Substituting the values of E(X) and Var(X) we get

P(X � y · q + 1
p

) � 1 − p2 · y · q
y2 · p2 = 1 − q

y
� 1 − q.

The result follows from the definitions of - and +. �
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