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Abstract

We study the parametrized complexity of the knot (and link) polynomials known as Jones polynomials,
Kauffman polynomials and HOMFLY polynomials. It is known that computing these polynomials is xP
hard in general. We look for parameters of the combinatorial presentation of knots and links which make
the computation of these polynomials to be fixed parameter tractable, i.e., in the complexity class FPT. If
the link is explicitly presented as a closed braid, the number of its strands is known to be such a parameter.
In a generalization thereof, if the link is explicitly presented as a combination of compositions and rotations
of k-tangles the link is called k-algebraic, and its algebraicity k is such a parameter. The previously known
proofs that, for this parameter, the link polynomials are in FPT uses the so called skein modules, and is
algebraic in its nature. Furthermore, it is not clear how to find such an algebraic presentation from a given
link diagram. We look at the treewidth of two combinatorial presentation of links: the crossing diagram
and its shading diagram, a signed graph. We show that the treewidth of these two presentations and the
algebraicity of links are all linearly related to each other. Furthermore, we characterize the k-algebraic links
using the pathwidth of the crossing diagram. Using this, we can apply algorithms for testing fixed treewidth
to find k-algebraic presentations in polynomial time. From this we can conclude that also treewidth and
pathwidth are parameters of link diagrams for which the knot polynomials are FPT. For the Kauffman and
Jones polynomials (but not for the HOMFLY polynomials) we get also a different proof for FPT via the
corresponding result for signed Tutte polynomials.
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1. Introduction

Let mAN: A link L of m components is a subset of R3 consisting of m disjoint piecewise linear
simple closed curves. A knot is a connected link. Two links L1 and L2 are equivalent if there exists

an orientation preserving homeomorphism h :R3-R3 such that hðL1Þ ¼ L2: The unknot is a link

equivalent to S1 on the plane. A projection of a link L on R2 where at most two points of the link
are mapped on the same point and the set of such points is isolated gives as a picture a plane graph
DðLÞ; the crossing diagram. Clearly, many crossing diagrams represent equivalent links. We
denote by DiagðLÞ the set of crossing diagrams for L: The fundamental problem of knot theory
consists of the following:

LINK-EQUI

Input: Two crossing diagrams D1 and D2 with n1 and n2 crossings, respectively.
Problem: Do D1 and D2 represent the same link (knot)?

A simpler problem is

UNKNOT

Input: A crossing diagram D with n crossings.
Problem: Does D represent the unknot?
UNKNOT has recently been shown to be in NP; [HLP99], but it seems to be still open whether

LINK-EQUI is solvable in finitely iterated exponential time.

A link invariant is a link equivalence preserving function. A polynomial link invariant is a

function mapping links into a Laurent polynomial ring R ¼ Z½X71
1 ;y;X71

m � such that equivalent

links are mapped into the same polynomial. The study of link invariants is an important and
beautiful subject of pure but visual mathematics with a rich literature stretching over the last 200
years, cf. among others [BZ85,Lic97,PS97]. For an account of its history, cf. Przytycki’s delightful
[Prz98].

The first polynomial link invariants were studied by Alexander in 1928 and generalized by
Conway in 1970. These Alexander–Conway polynomials do not distinguish even the unknot, but
are still useful, especially as they are computable in time polynomial in n from a given crossing
diagram with n crossings. More powerful polynomial link invariants were introduced by Jones in
1984, followed immediately by generalizations due to a group of authors known under the
acronym HOMFLY–PT,4 and in 1987 due to Kauffman. These polynomial link invariants are
known as Jones polynomial, HOMFLY polynomial, Kauffman bracket, and Kauffman polynomial.
The Jones polynomial can be obtained from both the Kauffman bracket and the HOMFLY
polynomial by simple substitutions. It is known that computing (even evaluating) all these
polynomials is xP hard in general, cf. [Wel93]. These polynomials still do not distinguish
equivalent crossing diagrams, and it is open whether they distinguish the unknot. But they have

4P. Freyd, J. Hoste, W.B.R. Lickorish, K. Millet, A. Ocneanu, D. Yetter [FYH+85] and J. Przytycki, P. Traczyk

[PT87].
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proven extremely useful, e.g., in solving Tait’s conjecture from around 1880 concerning the
minimal crossing number of a link represented by an alternating crossing diagram, [Bol99]. They
also have found important applications in physics, chemistry and biology, cf. [Kau91,Kau95a,-
Kau95b].

We study the parametrized complexity of these polynomials in the sense of [DF99]. We look for
parameters of the combinatorial presentation of knots and links which make the computation of

these polynomials to be fixed parameter tractable (FPT), i.e., computable in time cknd ; where d
does not depend on n nor on k; k is the parameter and n is the size of the input. Typically, k will be
the treewidth of some link diagram of size n:

Our motivation stems from a result due to Mighton [Mig99]. He considered a different
graphical presentation of a link L as a signed graph SðLÞ; and showed that if S is alternating and
of treewidth at most 2, then the Jones polynomial can be computed from S in polynomial time. In
[Mak01], this was extended to (non-necessarily alternating) signed presentations SðLÞ of treewidth
at most k: Consider the problem:

STW-KAUF

Input: A signed diagram SðLÞ of a link L with n crossings.
Parameter: k; the treewidth of S:
Problem: Compute the Kauffman bracket of L using SðLÞ:

Theorem 1 (Makowsky). STW-KAUF is in FPT.

The proof in [Mak01] uses a corresponding result for the Tutte polynomial for signed graphs
introduced by Kauffman [Kau89] from which the Kauffman bracket and the Jones polynomial
can be easily computed. The result for the Tutte polynomials then uses a blend of techniques from
logic and dynamic programming as previously developed in [CMR01,MM00,MM02].

Naturally, one would ask, whether the treewidth of SðLÞ has a natural interpretations in the
language of knot theory. Our results show that this is indeed the case.

There is a natural bijection s : DiagðLÞ-SignðLÞ between crossing diagrams D of L and the
signed graph sðDÞ ¼ S representing L:

In Section 2, we show

Theorem 2. The treewidth of DADiagðLÞ and S ¼ sðDÞASignðLÞ are both linearly related to each

other.

It is rather straightforward that for links in braid presentation with at most k strands, i.e., as
k-braids, the corresponding crossing diagram has treewidth (even pathwidth) at most k þ 1; as
they are subgraphs of ðn; kÞ-grids. Morton [MS90] has shown how to compute the Jones
polynomials for links in k-braid presentation in polynomial time using heavy algebraic machinery
such as Hecke algebras and the Ocneanu trace.

However, there are crossing diagrams of treewidth 2 which come from braids over arbitrary
number of strands. A generalization of k-braids are the k-algebraic links introduced by Przytycki

J.A. Makowsky, J.P. Mari *no / Journal of Computer and System Sciences 67 (2003) 742–756744



[Prz]. We shall give the precise definition in Section 3. Using a modified definition of pathwidth
with two parameters, we can characterize the k-algebraic links as follows.

Theorem 3. The k-algebraic links are exactly those links which have a crossing diagrams of
pathwidth at most ð2k þ 1; kÞ:

Hence, we get for the following problem:

ALG-KAUF

Input: A k-algebraic expression TðLÞ of a link L with n operations.
Parameter: k:
Problem: Compute the Kauffman bracket of L using TðLÞ:

Corollary 1. ALG-KAUF is in FPT.

For the problem

ALG-HOMFLY

Input: A k-algebraic expression TðLÞ of a link L with n operations.
Parameter: k:
Problem: Compute the HOMFLY polynomial of L using TðLÞ:
Przytycki [Prz] has announced the corresponding result, cf. Theorem 10. This seemed open

when we first obtained our results.5

The paper is now organized as follows. In Section 2, we discuss the treewidth of link diagrams
and prove the basic properties. In Section 3, we recall basic facts on braids and discuss k-algebraic
links and prove Theorem 3. In Section 4, we discuss the advantages and disadvantages of the
various parameters for which the computation of the various polynomial link invariants are
in FPT.

2. Link diagrams and their treewidth

In this section, we give some necessary background from knot theory. But we assume that the
reader is familiar with rudimentary basics of knot theory such as Reidemeister moves and crossing
diagrams. If not, it is advisable to consult a textbook. In many recent graph theory books, such as

5When we showed our results to Przytycki in January 2001, he has informed me [Prz] that this, and also Corollary 1,

can be proved with an algebraic approach extending the use of Hecke algebras and Ocneanu traces in a formalism of

skein modules. But the exact proof has not yet been written. In any case, our proof of Corollary 1 is combinatorial and

more elementary.
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[Bol99,GR01], the reader will find more than needed. For modern accounts of knot theory proper,
the reader may consult [Lic97,Mur96,PS97,Sos99].

2.1. Graphs from links

An excellent discussion of various ways of coding a knot as a graph may be found in the books
[Bol99,GR01]. Let L be a link and DiagðLÞ be the set of crossing diagrams of L: DADiagðLÞ is a
plane graph of degree 4 with vertex labels + and � according to its crossing. The crossings are
classified by starting with an oriented projection of a link and noting that there are only two types
of crossings, as indicated in Fig. 1.

As D is a regular plane graph of degree 4, we can color its faces with two colors, black and
white, such that no neighboring faces have the same color and such that the outer face is
white. This coloring is unique. Given D with such a face-coloring we define a graph sðDÞ as
follows: The vertices of sðDÞ are the black faces and two faces are connected by an edge signed +
ð�Þ if they share a + ð�Þ crossing. We put SignðLÞ ¼ fsðDÞ : DADiagðLÞg: SignðLÞ is called the
set of signed graphs of L. Note that both graph classes DiagðLÞ and SignðLÞ consist of plane
graphs. The underlying graph of SASignðLÞ is the abstract graph of S without the edges signed. In
the other direction, we have a map r : SignðLÞ-DiagðLÞ defined by putting a signed crossing
on each edge and by connecting neighboring edges correspondingly. The following is easy to
verify, cf. [Sos99].

Proposition 1. (i) s is a bijection between DiagðLÞ and SignðLÞ with r ¼ s�1:
(ii) Given a crossing diagram DADiagðLÞ one can compute sðDÞASignðLÞ in polynomial time.
(iii) Given a shading diagram SASignðLÞ one can compute rðDÞADiagðLÞ in polynomial time.

2.2. Treewidth and pathwidth of diagrams

There are various equivalent definitions of the treewidth of a graph, as partial k-trees, as having
k-tree decompositions, or as inductively defined classes of k-vertex-colored graphs. We need for
our proofs the equivalence of two of these definitions. General background on treewidth may be
found in [Die96].

2.2.1. Tree decompositions

Definition 1. An ðm; kÞ-tree decomposition of G is given as follows:

(i) We have a rooted tree T ¼ /T ; fS; where T is a set and f is a function mapping nodes onto
their father.

  
    

    
  

+ _

Fig. 1. Types of crossings.
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(ii) The vertex set VðGÞ of the graph is covered by sets Vt; with tAT and jVtjpm:
(iii) For every t; t0AT ; the intersection Vt-Vt0 has size at most k:
(iv) For every edge e ¼ ðx; yÞAEðGÞ; there is a tAT such that both x; yAAt:
(v) For each xAV ; the set TðxÞ ¼ ftAT : xAAtg is a (connected) subtree of T:

A k-tree decomposition is an ðm; kÞ-tree decomposition with m ¼ k þ 1: We denote tree
decompositions of G ¼ /V ;ES by /T;VtS:

Remark 1. Under conditions (i)–(iii), (v) is equivalent to: For every connected subgraph H of G;
the set ftAT : VðHÞ-Ata|g is a connected subtree of T:

Definition 2. G of treewidth at most ðm; kÞ; if there exists an ðm; kÞ-tree decomposition of G: If

m ¼ k þ 1 we speak of treewidth at most k: Such graphs are also called partial k-trees. If the tree
does not branch, we speak of ðm; kÞ-path decompositions and pathwidth.

For fixed k; checking whether G has treewidth at most k (and if yes, finding a witnessing tree
decomposition) can be done in polynomial time, cf. [ACP87,BK96,Bod96,Bod97].

Proposition 2. For fixed k and m; checking whether G has treewidth ( path-width) at most ðm; kÞ can

be done in polynomial ðlinearÞ time.

Proof (Sketch). The class of graphs TWðm; kÞ which have a ðm; kÞ-tree decompositions, is easily
seen to be closed under minors, cf. [Die96, Proposition 12.4.2]. From [Die96, Theorem 12.5.2], the
Minor Theorem of Robertson and Seymour, it follows that TWðm; kÞ can be characterized by a
finite set of forbidden minors, hence, by the results of [RS95], it is recognizable in polynomial
time.

It is likely that one can construct also an ðm; kÞ-tree decomposition in linear time, provided
one exists. One would have to proceed very much like in [BK96, Section 6]. But we have not
verified the details. However, for our applications, this is not needed, as one can always
construct an ðm;m � 1Þ-tree decomposition (which is an m-tree decomposition) in liner
time using [BK96,Bod96, Section 6]. Getting a proper ðm; kÞ-tree decomposition would
only improve the constants, but, using current proof techniques, they are bad anyhow,
cf. [Bod97].

If we add unary predicates (labels) to G; the notion of treewidth does not change. Therefore,
the treewidth of a crossing diagram is just the treewidth of its underlying graph. Also
the treewidth of an edge-colored graph is, by definition, the same as its treewidth without the
coloring.

Definition 3. The class TWðm; kÞ: A k-graph Ĝ ¼ ðV ;E; cÞ is an abstract graph G ¼ ðV ;EÞ
together with a mapping c : V-C ¼ f1;y; kg such that c�1ðiÞ-c�1ð jÞ ¼ | for iaj:

For iajAC and a k-graph Ĝ we define ri-jðĜÞ ¼ ðV ;E; c0Þ; where c0ðiÞ ¼ | and c0ð jÞ ¼
cðiÞ,cð jÞ: ri-j stands for recolor the vertices colored i by the color j: FuseiðĜÞ is the k-graph
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obtained from Ĝ by identifying (fusing) all vertices with color i such that the fused vertex inherits
the color and the edges.

The class of k-graphs TWðm; kÞ is now defined inductively by

* All k-graphs with at most m vertices are in TWðm; kÞ:
* If G1 and G2 are in TWðm; kÞ so is their disjoint union G10G2:
* If GATWðm; kÞ so is ri-jðGÞ:
* If GATWðm; kÞ so is FuseiðGÞ:

The following is widely used in Courcelle’s papers, cf. [Cou90,Cou97,CER93,CM02].

Lemma 1 (Courcelle). A graph G ¼ ðV ;EÞ is a reduct of a k-graph Ĝ ¼ ðV ;E; cÞATWðm; kÞ iff G

has an ðm; kÞ-tree decomposition.

Hence, the set of graphs of treewidth at most k can be defined inductively as the graphs G

obtained from k-graphs Ĝ in TWðk þ 1; kÞ by forgetting the coloring.
For a link L a link diagram DADiagðLÞ or SASignðLÞ has treewidth (pathwidth) at most ðm; kÞ

if its underlying graph has treewidth (pathwidth) at most ðm; kÞ:

2.3. Treewidth of D and sðDÞ

To study the impact of the assumption that a link has a diagram presentation of treewidth at
most k; we compare the treewidth of DADiagðLÞ and its associated sðDÞASignðLÞ:

Now the following observation is easy:

Proposition 3. If DADiagðLÞ has treewidth ( pathwidth) at most k; then sðDÞ has treewidth

( pathwidth) at most 2k þ 1:

Proof. Let fVD
t : tATg be a k-tree decomposition of D: For each crossing vAD there are two

black faces which are connected by an edge ev ¼ ðuv;wvÞ in sðDÞ: We define

VC
t ¼ fuv : vAVD

t g,fwv : vAVD
t g

and show that this is indeed a 2k þ 1 tree (path) decomposition of sðDÞ: For this we only need

that, as each VD
t has at most k þ 1 vertices, VC

t has at most 2ðk þ 1Þ vertices. &

Our results in the other direction are:

Lemma 2. Let C be a signed graph of degree at most d and tree ( path) width at most k: Then s�1ðCÞ
has tree ( path) width at most dðk þ 1Þ � 1:

Proof. We start with a k-tree decomposition of the underlying graph of C: We define a tree

decomposition of the underlying graph of s�1ðCÞ: The tree of the decomposition is the same, but
Vt is replaced by Wt which contains, for each vAVt the d medians sitting on the d edges leaving v:
We have to show that this is a ðdðk þ 1Þ � 1Þ-tree decomposition.
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Each Vt has at most k þ 1 vertices, which are replaced by d vertices each. Hence, we have at
most dðk þ 1Þ vertices in each Wt; and hence treewidth at most dðk þ 1Þ � 1: Now assume, for
some edge e ¼ ðv1; v2ÞAEðCÞ both v1; v2AVt: Then all the medians on edges leaving v1 or v2 are in

Wt and all the new edges in Eðs�1ðCÞÞ connected to the median on e have end points in Wt:

Finally, let wAVðs�1ðCÞÞ and let WðwÞ ¼ ft : wAWtg: We have to show that this is a subtree of
T : w is the median on an edge ðv1; v2Þ of C: So, WðwÞ ¼ Vðv1Þ-Vðv2Þ with VðviÞ ¼ ft : viAVtg
and i ¼ 1; 2: &

The next two lemmas are about plane graphs, and collect some useful facts.

Lemma 3. Let G be a plane graph of treewidth at most k: Then G has a plane triangulation
TriangðGÞ of treewidth at most k:

Proof. Let /T;VtS be a k-tree decomposition of G: We have to show that every face which is not
a triangle, has a chord with end points in some Vt:

Let f be such a face. Assume v is a vertex on the boundary of f ; and u1; u2 are its immediate
neighbors on the boundary of f : If u1 and u2 are in the same Vt; we are done. Otherwise, one
shows by induction over the length of the path between u1 and u2 along the boundary of f not
passing through v; that there is a u4 on this path, and a t0 such that both v and u4 are in Vt0 : For
this we use the connectivity condition of k-tree decompositions. &

TriangðGÞ is chordal (by definition). For plane chordal graphs C; we define HexðGÞ to be the
graph obtained from G by adding on each edge two vertices and in each triangular face three
edges, such as to inscribe a hexagon using the new vertices on the sides of the face.

Lemma 4. If G is a plane chordal graph of treewidth at most k; the treewidth of HexðGÞ is at most

7k � 6:

Proof. Let /T;VtS be a k-tree decomposition of G: Each Vt contains at most 3ðk þ 1Þ � 6 ¼
3ðk � 1Þ edges, as G is planar, cf. [Die96, Proposition 4.4.1]. We add for each edge in Vt the two
new vertices to Vt: Hence, Vt contains at most 7k � 5 vertices. The vertices of each triangle occur
together in at least one Vt: So we can add the new edges in the corresponding Vt: This gives us a
ð7k � 6Þ-tree decomposition of HexðGÞ with the same underlying tree T: &

Lemma 5. Let DADiagðLÞ with n crossings and the treewidth of sðDÞ ¼ kX2: Then there is

D%ADiagðLÞ such that

(i) D% has at most 3n crossings, and
(ii) sðD%Þ is of degree at most 3.
(iii) The treewidths of sðD%Þ is at most 7k � 6:

←→  

Fig. 2. Reidemeister II move.
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Proof. Look at the coloring of the faces of D: If a black face f has mX4 black neighboring faces,
we can perform a Reidemeister move of type II, cf. Fig. 2 i.e., pulling the rope overneath (or
underneath) another part of the rope, such that f is cut into three faces f1; f2 and f3; all colored
black, and such that f1 and f3 have both om neighboring black faces, and f2 is has only f1 and f3
as black neighboring faces (see Fig. 2). Let D0 be the resulting crossing diagram. Repeating this

trick we get the result D%:

To see that D% has treewidth at most 7k we use Lemma 4. We first note that D% is a minor of
HexðTriangðDÞÞ; hence, cf. [Die96, Proposition 12.4.2], has at most the treewidth of
HexðTriangðDÞÞ; which is bounded by 7k � 6: &

Theorem 4. Let DADiagðLÞ with n crossings and such that sðDÞ has treewidth at most k: Then there
is D0ADiagðLÞ such that

(i) D0 has at most 3n crossings, and
(ii) the treewidth of D0 is at most 21k � 16:

Proof. We apply Lemma 2 with d ¼ 3 and Lemma 5. &

We suspect the constant in Theorem 4 is not optimal.

Problem 1. Let C be a signed graph of treewidth at most k: What is the treewidth of s�1ðCÞ?

2.4. Link polynomials on diagrams of fixed treewidth

In the introduction we have defined the parametrized problem STW-KAUF and seen,
Theorem 1, that it is in FPT. We now look at

DTW-KAUF

Input: A crossing diagram DðLÞ of a link L with n crossings.
Parameter: k; the treewidth of D:
Problem: Compute the Kauffman bracket of L using DðLÞ:
and see, using Theorems 1 and 4:

Theorem 5. DTW-KAUF is in FPT.

For the corresponding problems STW-HOMFLY and DTW-HOMFLY

DTW-HOMFLY (STW-HOMFLY)

Input: A crossing (signed) diagram DðLÞ ðSðLÞÞ of a link L with n crossings.
Parameter: k; the treewidth of D ðSÞ:
Problem: Compute the HOMFLY polynomial of L using DðLÞ ðSðLÞÞ:
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the techniques of the proof of Theorem 1 do not apply. We shall see in the next section, that their
analogues for pathwidth are also in FPT. For the treewidth case this remains open.

2.5. Treewidth and pathwidth of a link

We have used the treewidth as a parameter of diagrams representing knots and links. We can
define the treewidth (pathwidth) of a link L as the minimal treewidth (pathwidth) among all
crossing diagrams CADiagðLÞ: Analoguously, there is also a corresponding notion of s-treewidth
and s-pathwidth via shading diagrams.

But the pathwidth of a knot or link has its own interest, as it asks what is the narrowest carpet 6

which can be made out of the given link. Very little is known about how to find crossing or
shading diagrams of a given link which are of minimal treewidth or pathwidth. It is not even clear
whether there are links of arbitrarily large treewidth or pathwidth.

Recall that the crossing number of a link L as the the minimal number of vertices among all
crossing diagrams CADiagðLÞ: It is not even clear whether the treewidth of a link is realized in a
diagram of minimal crossing number.

In short, studying the treewidth of links may still prove to be an interesting challenge.

3. Braids and k-algebraic links

3.1. Braid presentation of links

Here we follow liberally [PS97]. A braid in n strands, or an n-braid, in R3 is defined as a set of
pairwise non-intersecting ascending polygonal lines (the strands) joining the points A1;y;An to
the points B1;y;Bn (in any order). The closure of a braid b is defined as the link bðbÞ obtained by
joining Ai to Bi for each ipn: The question arises which links are closures of braids. The answer is
the classical theorem of Alexander (1923):

Theorem 6 (Alexander’s Braiding Theorem). The closure map b is surjective, i.e., any link
(in particular every knot) is the closure of some braid.

Vogel [Vog90] turned this into a feasible algorithm. With each oriented crossing diagram D one
can associate a new diagram D0 by ‘‘undoing the crossings’’ while preserving the orientation. D0

consists of circles in the plane, the Seifert circles, and their number is easily computed from the
diagram D0 and also D: Hence, the number of Seifert circles of a crossing diagram can be
computed in polynomial time.

Theorem 7 (Vogel). Let DðLÞ be a crossing diagram of a link L with n Seifert circles. Then one can
construct in polynomial time a braid b such that bðbÞ ¼ DðLÞ:

6We think here of a carpet as an embedding of the crossing diagram in a rectangular grid. In contrast to a braid, in a

carpet the threads may go back and forth.
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For a link L the smallest k such that L is the closure of a k-braid is called the braid index of L. It
is open how difficult it is to determine the braid index of L:

If the link is explicitly presented as a closed k-braid, where k is the number of its strands, all the
above polynomials can be computed from the braid presentation in time polynomial in the
number of crossings in the braid. In other words, define

BRAID-HOMFLY (BRAID-KAUF)

Input: A crossing diagram DðLÞ of a link L with n crossings.
Parameter: k; the number of Seifert circles of DðLÞ:
Problem: Compute the HOMFLY polynomial (Kauffman bracket) of L using DðLÞ:
For the HOMFLY polynomial the following is due to Morton and Short [MS90].

Theorem 8 (Morton and Short). BRAID-HOMFLY is in FPT.

Their method is algebraic and involved, and the constants depend exponentially on the number
of strands. They conjecture in [MS90], and seem to confirm it in [MT90,MW], that the same
method also works for Kauffman brackets.

Theorem 9 (Morton et al.). BRAID-KAUF is in FPT.

But here is a proof for BRAID-KAUF using treewidth. From the definition of tree
decompositions one sees easily the following lemma.

Lemma 6. A crossing diagram D which is the closure of k-braid has a 2k-tree decomposition, and
therefore treewidth at most 2k:

Hence, we get Theorem 9 using Theorem 1.

3.2. Algebraic presentation of links

A generalization of braids are tangles. We follow [MT90,PT01] or [Mur96]. On the sphere S2

place 2n points. An ðn; nÞ-tangle (n-tangle for short) T is formed by attaching n curves to these
points, none of which should intersect each other. We think of n-tangles also in their projection

onto R2; hence as a crossing diagram. A simple k-tangle is a k-tangle with at most one crossing
and the end points of the strands numbered cyclically f1;y; k; k þ 1;y; 2kg: k-tangles are
obtained from simple k-tangles by juxtaposition of two k-tangles or rotation of the numbering
of the end points. This gives an algebraic presentation of a link L as a term TðLÞ over
simple k-tangles with juxtaposition and rotation as operators. TðLÞ is called a k-algebraic
expression for L:

We denote by AlgkðLÞ the set of k-algebraic presentations of L: If such a TAAlgkðLÞ exists, L is
called k-algebraic. Clearly, k-braids are k-algebraic. Conway showed how to prove that not every
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link is 2-algebraic, cf. [Con69]. But it is still open whether every link is 3-algebraic. The experts
conjecture that the answer is negative.

Next we define:

ALG-POL

Input: A k-algebraic expression TðLÞ of a link L with n operations.
Parameter: k:
Problem: Compute the Jones polynomial, Kauffman bracket, Kauffman polynomial or

HOMFLY polynomial of L using TðLÞ:
Przytycki [Prz] has announced that

Theorem 10. ALG-POL is in FPT.

The proof for this uses the so-called skein modules, and is algebraic in its nature. It generalizes the
proof in [MS90]. Similar ideas may be found in [MW,MT90] based on an invariant introduced by
Kauffman [Kau90].

For a link L; the smallest k such that L has a k-algebraic presentation is called the algebraic
index (or its algebraicity) of L: It is open how difficult it is to determine the algebraic index of L: It
is even open whether there are links of algebraic index strictly greater than 3: Note that it is not at
all obvious how to find an algebraic presentation TAAlgkðLÞ from a given crossing diagram
DADiagðLÞ which is better, in as much as k is smaller than the number of strands in a braid
presentation derived from D: We shall see below how the pathwidth of D will give rise to a
k-algebraic presentation.

3.3. The pathwidth of k-algebraic links

Our first results is the following theorem.

Theorem 11. Let TAAlgkðLÞ be a k-algebraic expression of a link L: Then one can find in

polynomial time in the size of T a crossing diagram CADiagðLÞ of pathwidth (and hence treewidth)
ð2k þ 1; kÞ:

Proof. We show how to build a crossing diagram CADiagðLÞ which is in TWðk þ 1Þ: The
simple k-tangles are made into a graph consisting of k þ 1 edges on 2k þ 1 vertices, including
the only crossing vertex. We color the 2k vertices from the end points with 2k colors, leaving
one color as a spare color for recoloring. For juxtaposition of two k-tangles we use a
disjoint union and appropriate Fusei operations. For rotation of the labels of the end points
we use recolorings making use of the spare color. This shows that we have treewidth at most
2k þ 1:

To see that we can also get pathwidth 2k þ 1 we observe that we use always disjoint unions of
two graphs coming from k-tangles which act like concatenation.

The complexity is easily checked. &
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Theorem 12. Let CADiagðLÞ be a crossing diagram of L of pathwidth ð2k þ 1; kÞ: Then one
can find in polynomial time in the size of C a k-algebraic expression TAAlgkðLÞ which

represents L:

Proof. Using the path decomposition of C; we construct TAAlgkðLÞ inductively. For a path
decomposition of length 1 we have 2k þ 1 vertices which form a crossing diagram. Without loss of
generality we can assume that it has no loops, so it can be presented, using Theorem 7, as a k-
braid, which is k-algebraic.

Assume we have a path decomposition of length nX2: Then we can cut it into two pieces P1 and
P2 where an even number mpk of vertices are identified between the two parts. We obtain from
P1 and P2 two crossing diagrams C1ADiagðL1Þ and C2ADiagðL2Þ by choosing in each of them a
closure along those m points. By the induction hypothesis there are k-tangles T1 and T2 such that
their closures (at the given m end points, and whatever remains) are in AlgkðL1Þ (respectively
AlgkðL2Þ). By joining T1 and T2 at those m end points appropriately, we get T ; such that its
closure is in AlgkðLÞ:

Again, the complexity is easily checked. &

Now consider the parametrized problems

PW-POL

Input: A crossing diagram CðLÞ of a link L of pathwidth ð2k þ 1; kÞ:
Parameter: k:
Problem: Compute the Jones, Kauffman bracket or HOMFLY polynomial of L using TðLÞ:
The last two theorems give us an interesting new corollary.

Corollary 2. All the problems, PW-POL, DTW-KAUF and STW-KAUF are in FPT.

For the Kauffman brackets this follows also from Theorems 1 and 2. For the problems DTW-
HOMFLY and STW-HOMFLY this remains open.

4. Conclusion

We have discussed the parametrized complexity of the link polynomials known as HOMFLY
polynomials and Kauffman brackets (and their specialization, the Jones polynomial).

We considered the computation of these polynomials from three presentations of links: as
crossing diagrams, as shading diagrams of crossing diagrams, and as algebraic terms representing
compositions of k-tangles. We have shown that the pathwidth of both presentations and the
algebraicity are linearly related, and conversion can be computed in polynomial time.

The following remain open:

* Given a link L; what is the complexity of deciding whether it has crossing (shading) diagram
CADiagðLÞ (CASignðLÞ) of treewidth (pathwidth) at most k?
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* How is the treewidth (pathwidth) of a link related to its crossing number? Is the minimal width
achieved with the smallest crossing number?

* Are there arbitrarily large k such that there are links of treewidth at most k which are not of
treewidth at most k � 1?

* Are there arbitrarily large k such that there are links of treewidth at most k which are not
k-algebraic?

* Given a link L; what is the complexity of deciding whether it is k-algebraic?
* Are there arbitrarily large k such that there are k-algebraic links which are not ðk � 1Þ-

algebraic?
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