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Abstract: Extrapolation of the semi-implicit midpoint rule is an effective way to solve stiff initial value problems for a 
system of ordinary differential equations. The theory of the control of step size and order is advanced by investigating 
questions not taken up before, providing additional justification for some algorithms, and proposing an alternative to 
the information theory approach of Deuflhard. An experimental code SIMP implementing the algorithms proposed is 
shown to be as good as, and in some respects better than, the research code METANl of Bader and Deuflhard. 
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1. Introduction 

Extrapolation of the semi-implicit midpoint rule is an effective way to solve stiff initial value 
problems for a system of ordinary differential equations. Bader and Deuflhard [1,2] provide the 
basic theoretical results. In [5,6] Deuflhard builds upon previous work to develop algorithms for 
the control of step size and order in extrapolation codes. Based on this work, Bader and 
Deuflhard developed a research code METANl which is listed in [7]. 

In this paper we continue the study of the control of step size and order in extrapolation codes 
with particular attention given to software issues. A few basic results are first stated in Section 2. 
It turns out that in practice the order of a formula is somewhat ambiguous. Because we do not 
make the same assumption that Bader and Deuflhard do, this matter calls for a little discussion. 
Extrapolation generates a great many formulas, so theoretical results suggesting that only a few 
need be considered are of great value. The standard argument for considering only ‘subdiagonal’ 
formulas does not settle the matter in this context. An extremely simple and general argument is 
provided. We also provide justification for a further restriction to the formulas of Deuflhard’s 
‘order window’. 

In Section 3 we explain why we do not want to base order and step size selection on 
information theory, and in later sections we develop a more traditional approach as an 
alternative. Current extrapolation codes respond in a surprising way to a step failure. In Section 
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4 we explain why this is appropriate. Extrapolation codes resort to much higher orders than their 
competitors. In Section 5 we provide some insight as to why this is so and use it to justify 
portions of our order selection algorithm. Sections 6 and 7 develop some software devices 
intended to improve the performance of extrapolation codes on difficult problems. The initial 
step size is a troublesome one with any integrator, and this is especially true for extrapolation. 
Section 8 presents one way to handle it. 

Our algorithms have been implemented in an experimental code SIMP. It is compared to 
METANl in Section 9. The results show that our simpler, rather traditional approach to step size 
and order control works at least as well as the one based on information theory realized in 
METANl. For easy problems the codes behave much the same. The devices we propose for 
coping with a number of software issues give SIMP an advantage for difficult problems. 

2. Extrapolation 

Extrapolation of the semi-implicit midpoint 
for a system of ordinary differential equations 

Y’ =f(y). 

rule is way to solve a stiff initial value problem 

(2.1) 

A step of length H from y, A y( x0) is carried out via a sequence of subintegrations with the 
semi-implicit midpoint rule. Details can be found in [1,2]. An approximate Jacobian, J A f,( y,,), 
is formed at each step. For a sequence of integers { ni}, the step sizes hi = H/n; are defined, and 
quantities T.,i are constructed successively by a subintegration from x0 to x0 + H using a 
semi-implicit midpoint rule and step size hi. Cost is measured in units of the cost of evaluating 
the f of (2.1). If cJ is the cost of forming J, then the cost of carrying out the subintegrations with 

n,, n2,..., nj is Aj where 

A,=c,+n,+l, Ak+l=Ak+nk+l, k=l, . . . . 

The sequence studied in this paper is { n,} = { 2, 6, 10, 14, 22, 34, 50). 
With suitable assumptions the error 7],, - y( x0 + H) has an asymptotic expansion in powers 

of H2. High order approximations Tj,k to y(xO + H) are constructed from the c,, by polynomial 

extrapolation. The local error ei,k = r,k - y(x, + H) of each element rJ.,k of the extrapolation 

tableau is asymptotically 

e; k , - Ek(H)H2k/(ni_k+l . ’ * ni)’ (2.2) 

where Ek( H) is O(1). Thus elements in column k of the tableau all represent formulas of order 
2k - 1 in the step size H. The relation (2.2) implies that as H + 0. 

ei+i.k - (ni-k+l/nl+l)2ei,k, 

which we require later. For k < i - 1 the local error can be estimated by 

(2.3) 

e 1-k A q,k - T,k+l = er,k - ei,k+l. (2.4) 

This estimate is justified by the fact that 7j,k+r is of higher order than T,k. 
Odd though it sounds, there is a question as to the order of the formulas used. Bader and 

Deuflhard [2, p. 390 ff.] show that the term Ek( H) in (2.2) can be split into two parts, one of 
which is O(H) and the other, O(1). The latter part is always present, and for a problem of the 



L.F. Shampine / Step size and order in extrapolation codes 5 

form y’ = Jy, is the only part present. Thus as H + 0, it is the case that Ek( H) is O(1). 
Nonetheless, Bader and Deuflhard make the point that for practical step sizes H, the O(H) term 
may dominate the O(1) term in Ek( H), leading to the higher order behavior e, k = 0( H2kt’). 

They argue that this is likely to happen when the Jacobian f, changes rapidly. It is suggested that 
the higher order assumption might “. . . be significantly preferable in the more difficult 

non-linear problems”. Because their numerical experience was in agreement with this, they 
implemented the higher order assumption in their code METANl. 

We have implemented the lower order assumption in SIMP. It correctly describes the behavior 
for problems of the form y’ = Jy and for any problem when H is sufficiently small. Of course, 
the step size is small enough in any non-stiff portion of the integration. Besides ‘normal’ 
situations like initial transients, this includes severe difficulties such as quasi-discontinuities. 
There is a restriction on H in the theory of [1,2] related to how fast the Jacobian changes; even 
without this, it is plausible that a rapidly changing Jacobian would require a comparatively small 
step size. Our numerical experience has been the opposite of that reported by Bader and 
Deuflhard. This may well be due to other differences in our implementations, but the experi- 
ments reported in Section 9 and others we have performed show that a code based on the lower 
order assumption can be just as effective as METANl in general and in particular for difficult, 
nonlinear problems. 

For each i, k with k < i - 1 we can estimate the error er,k of T,k resulting from a step of 
length H. If a step is a success so that 

]I ei,k 11 G ‘T O-5) 

is satisfied, the largest step size, Hi.k, which would yield an accuracy of 7, -C 7 on the next step is 
found in the usual way to be 

The cost of this formula is i subintegrations, hence Ai evaluations of f. Its efficiency is the 
distance the integration is advanced divided by the cost (in evaluations of f) of taking the step: 

eff(i, k) = 2 & 

I 

(2.7) 

On taking a step of length H with a total of j subintegrations, we are in a position to ascertain 
the most efficient formula for the next step from all the q,k with i <j, k d i - 1. It is of obvious 
value to demonstrate that we can restrict our considerations to only a few of these formulas. 

A method of analysis proposed by Stoer [18] and subsequently refined and applied by 
Deuflhard [5] and Shampine [13] allows one to study the relative efficiency of the formulas in a 
column of the tableau as H -+ 0. For standard choices of the { n, } and the explicit midpoint rule, 
it turns out that in column j - 1, the sub-diagonal element Tj j_l is the most efficient formula, 
and this is true for each j - 1. This behavior is not true of the semi-implicit midpoint rule with 
the sequence we study. (Some details are given in Section 5). There is a simpler and more general 
way to see that the subdiagonal elements are to be preferred as H + 0: In terms of function 
evaluations, all elements q,k in row j of the tableau cost the same. Asymptotically TJ k+, is more 
accurate than 7;,k (by a factor of 0( H2)), hence is more efficient. Thus as ‘H + 0, the 
subdiagonal element Tj,i_l is the most efficient formula in row j, and this is true for each j. 
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(This does not contradict our claim that ?;,j_l need not be the most efficient element in column 
j- 1.) 

The efficiency argument suggests that we restrict our attention to the subdiagonal and 
diagonal elements of the tableau. In this context the stability of the formulas is crucial. 
Kuhlemann [lo] found the linear stability of these formulas to be excellent. Hairer, Bader, and 
Lubich [9] confirm the good stability of part of the tableau with respect to a nonlinear stability 
concept. 

There is another reduction possible in the number of formulas to be considered. It is one 
aspect of what Deuflhard calls the ‘order window’. Suppose that we predict j subintegrations to 
be optimal for the next step. As we take the step, we actually form &r for i = 1,. . . , j. Should 
we test them as in (2.5)? By assumption q,j_l was the most efficient element in the previous step 

so that 

Hj,j_,/A, > Hi,,_,/Ai for I = l,..., j- 1. 

By definition Hi,i_, is predicted to result in an error of TV. We actually take the step with step 
size Hj ,_,, hence we predict that at i subintegrations we shall see an error of 

~,( H,,,_1/Hi,i-1)2’-2 ’ Ta(Aj/Ai)2i-2. 

The cost coefficients A, increase pretty rapidly with k. For i <j - 1 the factor Aj/A, here is 
large, and we are predicting an error rather bigger than the tolerance 7. If we observe an error 
less than 7, we cannot trust the result because it differs so much from what was predicted. The 
case i =j - 1 is marginal because 7, is substantially smaller than 7 and A,/A,_, is not so large. 
It seems reasonable, then, to restrict our attention to i > j - 1. The first step is a special case we 
take up in Section 8. 

3. Information theory approach 

The standard approach to predicting an optimal step size and order just presented works well, 
but only those orders actually tried in the step can be considered. Key practical questions are 
when to try a higher order and what step size to try then. In [6] Deuflhard attempts to answer 
these questions using information theory. The approach considers the behavior of an ideal 
integrator when applied, for a given tolerance 7, to a large ensemble of sufficiently smooth 

problems. Assuming that 4 + 1 subintegrations is optimal, it is argued that the ‘average’ error 

ei,k satisfies 

avg(e,,k) = 7(A,-A,~,+1)/(A,,,--A,+1). (3.1) 

Obviously there is some difficulty applying this theory because of the assumption that the 
optimal number of subintegrations is known. Leaving this aside, it is still necessary to ask if 

extrapolation behaves enough like an ideal integrator that it can be described by (3.1). Now (3.1) 
implies that 

avg(e;+l,k) = 7(A,+l-A,+A,~,-A,+,~,)/(A,,, -A1+1) avg(e,,,). 
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On the other hand, we already know that (2.3) holds asymptotically for all smooth problems, 
hence for their average: 

In this known relation there is no dependence on the tolerance 7 as there is in the case of an 
ideal integrator. If a wide range of r is considered, there can be a considerable difference in 
behavior. Thus it is far from clear that extrapolation is close enough to an ideal integrator that 
the theory can provide useful predictions. 

Even if the information theory model were applicable, it would not provide what is needed. In 
the integration we deal with a specific problem, and we must answer questions like, should we 
raise the order now? The answers depend on the problem at hand; obviously they cannot be 
provided by a theory which averages out the effect of the problem like (3.1) does. The standard 
prediction (2.6) is based on the observed behavior of the formula applied to the given problem. 
The information theory approach says that for a given tolerance T, the efficiency increases on the 

aoeruge as the order is increased, up to a certain value. (This is the content of (4.8’) of [6], see 
also the discussion of p. 9 of [7].) The distinction is most clearly seen when, as often happens, the 
standard approach says to reduce the order for this particular problem when the information 
theory approach says that a higher order is better for a ‘typical’ problem. Of course, one should 
give preference to the scheme based on the observed behavior in this situation, and METANl 
does. 

The rules for adjustment of order presented in [6] and implemented in METANl are plausible 
enough. It is not clear that extrapolation is modelled well enough by the information theory 
approach to justify these rules and we have noted that the approach does not really answer the 
right questions. For these reasons we tried a more traditional approach to the adjustment of 
order. The numerical results of Section 9 show that it works at least as well as the approach 
based on information theory. 

4. A failed step 

In this section it is supposed that T,*,_, was predicted to have the required accuracy 7, but on 
trying the step, it did not. With a fixed order method, the standard procedure is to reduce the 
step size H and try the step again. With variable order methods like the backward differentiation 
formulas (BDF), the same thing is done except that a lower order might be used. It is remarkable 
that the extrapolation codes try a higher order formula, T,+i , , . If this attempt fails, the step size 
is reduced and the step tried again. This remarkable action on a failed step has not received 
comment that the author has noticed. We shall explain in this section why we believe it to be the 
correct way to proceed. Also, we contribute to understanding a matter that has always puzzled 
the author, namely that the extrapolation codes resort to much higher orders than competitors 
like the BDF codes. 

Recall that T,,,_i results from subintegrations with step sizes h,, . _ . , h,. The formula 7;+,,,_, 
of the same order results from subintegrations with the smaller step sizes h,, . . . , h,,, ,. The errors 
of these two formulas are related asymptotically according to (2.3) as 

e,+l,j-1 L ( n2/nj+l)2e/;i-1- 
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One possibility for dealing with an error eJ,,_i too large is to repeat the step with the formula 

TJ,j-1 and a smaller step size H’. Another is to form 7;+i Pi with the same step size H. The 
observations just made about the formulas and their error: show that the two possibilities are 
very closely related. There are two main differences. The first possibility shortens the interval to 

[X0> x0 + H’], and the second continues to work with [x0, x0 + H]. If the problem changes 
character in (x0 + H’, x0 + H], the possibilities behave quite differently. The other main 
difference is that with the standard procedure, one can reduce H as much as is needed, but in 

going to 7;+1,j-1, we have already chosen n,,,, hence the asymptotic reduction of the error. 
We predicted that I( ej,j_l I( would be roughly ra < r. In view of the fact that the observed 

error is greater than r, either the problem has become somewhat harder, or the assumptions 
justifying the prediction have broken down. If the assumptions have some validity, 1;+,,,_, 
should be enough more accurate to yield convergence. Moreover, we expect the higher order 
result T/+ i.j to be even more accurate, and it is available at no extra cost. Thus it is reasonable to 
expect that ?;+i,j will provide a sufficiently accurate solution. In our view, the raise in order is 
largely formal. What is done can be regarded as the functional equivalent of trying again with a 
smaller step size, followed by local extrapolation. 

There are a couple of other reasons for raising the order. As Stoer [18] observed, if we reject 
the step, we must go to all the work of building up to T,,,_, again. It may well be cheaper to 

form T,+i,,. This matter can be quantified, but we do not do so because it is useful to raise the 
order even if it is not a cheaper way to get a successful step. A variable order code must explore 
the possibility that higher orders are more efficient. In METANl and SIMP raising the order in 
this situation is an important way to find the most efficient order. 

If T,+l,j does not result in a successful step, it is clear that the assumptions justifying the 
prediction are not valid. Because we do not then trust the estimates of the local errors, we halve 
the step size in SIMP. In METANl an ‘optimal’ reduction is made, but the step is at least 
halved. Usually the codes behave the same, but it is easy to understand why an ‘optimal’ 
reduction might be very much too small. If the problem changes character in [x0, x0 + H], the 
code might think a very large reduction necessary when all that is needed is a step size H’ small 
enough that the problem is well behaved on [x0, x0 + H’]. To cope with this kind of difficulty 
efficiently, we must do more than just halve the step size, we must limit subsequent step size 
increases. The matter is discussed in Section 7. This is one situation handled much more 
efficiently by SIMP than by METANl. 

5. Raising the order 

After a step is taken successfully, we have the information available to select the most efficient 
among orders up to the highest tried. Crucial questions are when to try a still higher order and 
what step size to try then. We have already argued that if we are not successful at the order 
expected, we should try the next higher order. This is an important way to explore higher orders, 
but it does not suffice. Unfortunately there is a way by which we actually lose information. In 
connection with our discussion of the ‘order window’ in Section 2, we observed that we might 
obtain a sufficiently accurate approximation with one fewer subintegrations than predicted. 
Accepting this result reduces the orders we can consider for the next step. We have experimented 
with a version of SIMP which does not allow this loss of information, but using a cheaper, lower 
order when possible helps the overall efficiency too much to exclude accepting early convergence. 
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We must be careful about our assumptions when discussing the most efficient order in a 
variable order code. This is because as H + 0, a higher order formula eventually is more efficient 
regardless of how much more it costs. Experience with extrapolation codes suggests that they 
must resort to rather high orders to be competitive. This is not just a consequence of the 
information theory approach for not all codes use it, and experiments with many different 
algorithms in the investigation reported here support the belief. Exercising due care about our 
assumptions, we use asymptotic arguments in this section to conclude that high orders are often 
efficient when extrapolating the semi-implicit midpoint rule. This is the basis of the algorithm we 
then detail. 

Following the method of [13] we compare the efficiency of TJ+i,+, to TJ,j_,. We suppose that 
we have taken a step of length H with T/,j_l. The expression (2.6) with (i, k) = (j, j - 1) 

provides an estimate of the largest step size, Hj,,_l, which will achieve an accuracy of TV. The 

same argument with the formula 7;+i,,_i, the definition of efficiency, and the asymptotic 

relation (2.3) lead to 

eff(j+ 1, j- 1) . Aj n,+l 
=-- 

l i 

*'('-l) 

eff(j, j- 1) Aj+1 n2 ’ 

(5.1) 

Here we assume only that H is small enough that the leading terms dominate in the asymptotic 
expansions. This is a fundamental practical assumption for the adjustment of the step size in the 
code. 

The costs A, depend on the cost cJ of forming a Jacobian. For the procedure studied in this 
paper, it is now easy to evaluate (5.1) numerically to learn that T,+l,j_, is more efficient than 
7;,j_1 for j = 2,. . . ,6 for all c, >, 8. 

The error in 7;,jpi is estimated by comparison to l;,j, so another fundamental practical 
assumption is that ]I e,,, (1 is less than I] e,,]_, ]I, say, 

II e,,, II = P II e,,,-1 II 3 P < 1. 

Asymptotically p is 0( H2), but with practical step sizes H it need not be particularly small. The 
asymptotic relation (2.3) implies that approximately 

II ej+l,j II L P(~~/nz)* II ej+l,,-1 II = tP II e,+l,j-1 II. 

This argument supports our claim that I;+l,j is normally rather more accurate than I;+i,,;_i. We 
conclude that if it is more accurate at all, then for all cJ 2 8, T,,, ; is more efficient than 7; j_1. 
If it were just 10% more efficient, it would be better to raise the order for all cJ 3 3. ’ 

The asymptotic analysis presented is based on assumptions reasonable for describing comput- 
ing practice. We shall not push it far, merely use it to justify an aggressive approach to trying 
higher orders. Now we shall describe and explain this approach as implemented in SIMP, except 
in the case of the first step which is taken up in Section 8. 

In some circumstances we cannot, or should not, consider a raise of order. If we are already 
doing the maximum number of subintegrations allowed (7), we obviously cannot raise the order. 
In Section 7 several reasons for restricting the step size are given. If they cause the step size to be 
limited, raising the order is not efficient because a higher order will be a more expensive way to 
take the same step. On taking a step, we can consider a number of orders for their efficiency. If 
the highest order tried is not the most efficient, we would normally lower the order for the next 
step. It hardly seems reasonable to consider an increase of order then, and we do not. 
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We have argued that if certain assumptions hold, it is likely to be efficient to raise the order. 
There is, of course, the possibility that the assumptions do not hold. Part of the algorithm in 
METANl can be thought of as a way of recognizing when the hypotheses are not valid. We do 
something similar, though much simpler. The idea is that unexpected behavior indicates a 
possible breakdown in the assumptions so that one should be cautious about raising the order. In 
SIMP a step failure for any reason prevents a raise in order for two successful steps. (Recall that 
the order might be raised anyway in an attempt to get a successful step.) If there is a loss of order 
because of convergence one subintegration earlier than predicted, a raise in order is considered 
immediately (subject to the basic qualifications about the last step and the step size restrictions). 
The much more elaborate algorithm in METANl keeps track of the order at which failures occur 
and how often. Though plausible, the complication did not seem justified in our experiments. 

Having decided to try a higher order, we must select a corresponding step size. As an 
alternative to the information theory model, we take the simple approach of hypothesizing that 
T J+l,, will be a little more efficient than q,j_,. Experiments showed that 10% is a suitable value 
for SIMP. Thus we use 

reduced if necessary to satisfy the various restrictions imposed on the step size in general as 
described in Section 7. In the code we do not reset the variable which contains the predicted 
‘optimal’ order. In effect we say that j is the best number of subintegrations, but that we are 
very aggressive in the selection of H, hence expect to have to resort to j + 1 subintegrations to 
get convergence. Indeed, in this situation only, we allow j + 2 subintegrations before declaring a 
step unsuccessful. 

6. Consistency checks 

For reasons of efficiency an extrapolation code must allow large increases in the step size. 
Unfortunately this may result in a step size so out of scale that basic assumptions fail. The 
situation may be recognized by the local error estimates and corrected by a reduced step size. 
Here is a situation in which an ‘optimal’ step size reduction deduced from the asymptotic 
behavior of the error estimates is certainly not justified and may be far from a suitable value. 
Besides the difficulty of the local error estimates being of, at best, marginal value, they are 
formed only after quite a bit of computation. In [15] a consistency check is proposed which can 
be performed early in the computation. It is based on the fact that two results of the same order 
are formed at the end of each subintegration - the basic result of the semi-implicit midpoint 
rule, q,, and the smoothed result, S,,. It is reasonable to insist that these results be consistent. In 
SIMP we require that 

II ?1, - Xl II G 0.75 

where the 0.75 is an experimentally determined quantity. This relies on the fact that the error 
control in SIMP is a relative one which we describe fully below. If the results are not consistent, 
the step is rejected and tried again with half the step size. This check is performed at the end of 
the first subintegration, hence early in the computation. Experiments showed that it was worth 
the trouble to apply the same consistency check to the second subintegration, too. 
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One of the examples we take up in Section 9 is a relaxation oscillation described by Van der 
Pol’s equation. The oscillation has long stretches of slow change followed by very large changes 
taking place in very short times. The role of the consistency checks is easy to understand here. 
While the solution is changing slowly the code will take large steps and possibly resort to high 
orders. Eventually the code steps past the sharp change. The step is then completely out of scale, 
which can be recognized cheaply by the consistency checks. Attempting to use an error estimate 
to reduce the step size ‘optimally’ is likely to result in a tiny step size which falls far short of the 
trouble spot and so is equally inappropriate. Very sharp changes in the solution is one situation 
leading to a failure of consistency. A less dramatic, but much more common, situation is the 
solution of problems to nominal accuracy. In this accuracy range it is always difficult to obtain 
reliable results. The consistency checks are a big help then. 

In an earlier version [l] of METANI, Bader and Deuflhard monitored the growth of the 
approximate solutions in the subintegrations. This played the role of the consistency checks we 
have described. Later they abandoned this device in favor of the same kind of consistency checks 
we propose; but executed in a much more elaborate manner. The scheme we propose seems to 
work at least as well as previous attempts to cope with step out of scale, and has the virtue of 
simplicity. 

7. Limits on the step size 

There are a number of reasons for altering an ‘optimal’ step size selected by the code. One is 
to accommodate output. It is not our purpose to compare extrapolation codes to a competitor 
like the backward differentiation formula (BDF) codes, but they differ so dramatically in this 
matter that some comment is necessary. A step with an extrapolation code is very expensive 
compared to a step with a BDF code, so to be competitive, an extrapolation code must take 
much longer steps. This means that fewer answers are produced by an extrapolation code. By 
limiting the step size to a maximum value specified by the user, more answers can be obtained. 
Although this increases the cost, variation of order ameliorates the effect. A BDF code not only 
produces many more answers directly, it can even interpolate between steps. A carefully written 
code is, then, weakly affected by the number and placement of points where an answer is desired. 
Some work [16] has been done on interpolation for extrapolation codes, but there is still much to 
be done. Like METANl, SIMP integrates to a specified output point with the option of 
returning results at each step. A maximum step size provides a way to get more frequent output. 
Extrapolation codes in general, and METANl and SIMP in particular, are very inefficient if a 
lot of output is requested at specific points. To reduce this inefficiency, the technique of 
‘stretching’ [17] is used in both codes. Specifically, in SIMP a step size can be increased by up to 
10% so as to reach an output point. 

The fact that an extrapolation code takes much longer steps than a BDF code does not matter 
as long as appropriate step sizes vary slowly. Extrapolation is at a disadvantage when a large 
increase of step size is needed. A BDF code can accumulate such a large change over a number 
of steps. To be competitive, an extrapolation code must accomplish the increase in a very few 
steps. METANl allows an increase by a factor of 100 in a single step. BDF codes do not permit 
such a large increase because it cannot be justified by asymptotic arguments. Nevertheless, we 
are convinced that this must be done for reasons of efficiency in an extrapolation code and that 
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it is possible. The distinction between the methods is that computation of a step by extrapolation 
is independent of the results of earlier steps. In taking a step, increasingly high orders are tried, 
and each order is very much more accurate than the preceding one. For these reasons even 
extremely poor step size predictions can be handled. Experiments we have made confirm that 
permitting large increases of step size are necessary to an efficient extrapolation code. On the 
other hand, this can also cause trouble in a way that we now take up. 

In Section 4 we emphasized that proceeding as we do, a failed step is likely to be due to a 
breakdown of basic assumptions. Suppose the problem abruptly changes character somewhere in 

1x0, x0 + H]. In the absence of other information it is appropriate to halve H when the step 
fails. After possibly repeated halving, we are able to take a successful step from x0 to x0 + H’. It 
may well be that the problem is perfectly regular on [x0, x0 + H’] with the consequence that a 
very large increase of step size is indicated. Allowing this increase is likely to get us back into 
trouble immediately. Simply preventing an increase on the first step after a failure helps the 
efficiency a great deal. In SIMP we even restrict the rate of increase for several steps. 
Specifically, we limit the increase at each step to a factor of SAFE. The factor is initialized to 
100. On a step failure it is set to 1. On subsequent steps SAFE is multiplied by 3, but its value is 
limited to 100. METANl permits an increase by a factor of 100 after any step. This small 
algorithmic difference in SIMP makes it more efficient when dealing with difficult problems. 

8. Initial step size 

The first step is special because we have no assurance that the step size provided is at all 
appropriate. In variable order codes based on the backward differentiation formulas, the first 
step is taken at the lowest order, and the step size and order are built up gradually. We have tried 
this plan with extrapolation, and found it to be ineffective because very few steps are taken in 
the whole integration. Although the procedure we present here for handling the first step 
performs adequately, we think this matter needs more investigation. 

The consistency checks described in Section 6 are important to recognizing and coping 
efficiently with an initial step size much too large. Let us suppose in the rest of this section that 
the step size H being attempted passes these checks. 

We need to explore the higher orders, but we do not want to waste a lot of effort by going to a 
high order only to reject the step. On the first step it is natural to test convergence at each order, 
and this is done in both METANl and SIMP. The information theory model is employed in 
METANl by assuming that the optimal number of subintegrations is the maximum (for the 
tolerance specified) and raising the order until convergence is obtained, or the maximum order is 
reached, or the error observed is not consistent with the prediction of the model. The model is 
certainly not justified in these circumstances because we do not know the optimal order. The 
scheme is properly viewed as a heuristic one that expects a certain accuracy at each order and if 
it is not found, the step is rejected. We do this too, but in a simpler way. After j subintegrations, 
we have an estimate of 11 ej j_1 11. If we do not have convergence, we ask if an order of 
magnitude improvement at each subintegration would yield convergence by the time we reach 
the maximum number of subintegrations; specifically, is 

1O-(7-j) 11 ej,j-l 11 < r? 

If so, we try another subintegration. Otherwise we reject the step. 
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When the step is rejected, the optimal order (and step size) is determined. In SIMP we at least 
halve the step size, but do not allow a reduction of more than two orders of magnitude. 
METANl proceeds in a similar way. Normally we do not trust the error estimates on a failed 
step, so we do not make an ‘optimal’ reduction. We do not trust them on the first step either; this 
is just a reasonable way to reduce the step size faster than halving in circumstances when this 
might be desirable. 

9. Experimental results 

In this section we present some numerical results comparing METAN to SIMP. The rather 
traditional approach to step size and order control realized in SIMP performs at least as well as 
the information theory approach realized in METANl. For easy problems the codes behave 
much the same. In this paper we have raised a number of software issues and proposed ways of 
coping with them which give SIMP an advantage for difficult problems. 

It is relatively easy to compare METANl [7] and SIMP because they are so closely related. 
The error control implemented in METANl, like all controls for stiff problems, presents 
difficulties for certain problems. This is the only thing we altered in METANl, except for those 
changes necessary to run in single precision on CDC and Cray computers with a unit roundoff u 
of about 7.1 x 10-15. Roughly speaking, METANl controls the error in a component relative to 
the largest value of the solution seen so far in the integration. This may not be sufficiently 
stringent when a component has a peak, a difficulty that occurs in one of the examples. An RMS 
norm is used which this author feels is not sufficiently stringent. We accepted these difficulties, 
but we could not accept the initialization of the error control when a solution component has 
initial value zero. Thus we have altered METANl so that the error in a component is taken 
relative to the larger of 10~ and the largest magnitude of the component seen so far in the 
integration, including the tentative result of the step. This is a minor modification which leads to 
a much more stringent control on components with initial value zero, which is common with the 
test problems. 

For a test set we have basically chosen to work with the ten problems Chm 1,. _ . , Chm 10 of 
Enright and Hull [8]. Like Curtis [4] we describe this as a set of small but realistic problems. Also 
like Curtis [4, p.791, we corrected an error in the sign of a coefficient of Chm 4. We changed Chm 
6 back to its original form [ll, p.1971 posed on the interval [0, lOOO] with initial step size 
7.55 X lO_“. We added the kidney model problem with parameter 0.99 considered by Bader and 
Deuflhard [2, p.3941, which has interesting features they discuss. Van der Pol’s equation in 
relaxation oscillation as stated in [12, p.4111 with initial step size 3.33 x 10v4 is an additional, 
demanding problem. 

One of the difficult aspects of comparing codes is to treat fairly the accuracy they achieve. 
SIMP and METANl usually get about the same accuracy when given the same tolerance, so for 
the limited objective of this section, we ignore this point and just compare the cost of solution. 
Conventional tolerances with stiff problems are 10-2, 10p4, 10p6. Some of the problems are so 
difficult that the results with tolerance 1O-2 are not consistent. Indeed, in the tests of Bader and 
Deuflhard [2] for the kidney model problem, they report consistent results only for tolerances 
lop6 and smaller. In the present tests the harder problems are solved with tolerances 10-4, 10e6, 
lop8 and consistent results are obtained with one exception. As we alluded to earlier and Curtis 
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[3] discusses at some length, the error control implemented is quite inappropriate for Chm 9 with 
the consequence that the end point errors are not consistent. Because we believe that the codes 
are producing comparable accuracy, we did not give this problem special treatment. 

The Van der Pol equation problem is so much harder than the rest that results for it are 
presented separately. Chm 6 in its original form, Chm 9, and the kidney model problem are 
aggregated as the ‘hard’ problems. The remaining problems, Chm l-5, 7, 8, 10, are aggregated as 
the ‘moderately hard’ problems. All problems are written in autonomous form and all are 
nonlinear. 

The test set [8] specifies an initial step size h,, and we computed one in a similar way for the 
problems we added or changed. To reduce the effect of the given initial step size, we solved each 
problem with h,, lOho, and 10-‘h, and averaged the results. 

There are a number of the usual annoyances arising in numerical testing. One is that 
METANl would not solve Chm 6 in its original form for initial step size lo-‘h, at all the 
tolerances. We simply dropped this step size in the comparison for the ‘hard’ problems. 

Neither code can solve the Van der Pol equation problem posed in a straightforward way 
because of overflow (even with the very large exponent range we had available). We modified the 
definition of the equation so that whenever a solution component becomes larger in magnitude 
than 105, the derivative of the component is defined to be zero. The true solution of the problem 
posed has components rather smaller in magnitude than 105, so this device amounts to redefining 
the problem well outside a region containing the desired solution. The codes do try to leave this 
region at which time the lack of smoothness of the derivatives then causes the codes to realize 
that the step size is out of scale. 

Tables l-3 present a comparison of SIMP and METANl with respect to the major measures 
of work, viz. NJAC - the number of approximate Jacobians formed, NDEC - the number of 
times a matrix was decomposed into triangular factors, NFCN - the number of evaluations of 
the f of (2.1), NSOL - the number of times a linear system with factored matrix was solved. 
Both codes form approximate Jacobians by differences. Because the test set involves only small 
problems, we preferred to count NJAC rather than to include the cost of forming the Jacobian in 
NFCN. It is hoped that a better guide to costs-for larger problems is thereby provided. It must 
be recognized that the basic algorithms take cJ into account. Here it is set equal to the number of 
equations. 

The codes di,ffer in certain respects that we do not think affects the results. Specifically, they 
do not use the same subroutines for the solutions of linear systems nor for the approximation of 

Jacobians. 
The codes behave much the same for the eight moderately hard problems of Table 1, although 

SIMP does seem more efficient at the crudest tolerance. This supports our claim that a rather 

Table 1 
Cost of solution of 8 moderately hard, nonlinear problems. Results are averaged over 3 initial step sizes 

TOL SIMP METANl 

NJAC NDEC NFCN NSOL NJAC NDEC NFCN NSOL 

10-l 66 143 698 115 76 174 872 970 
10-4 87 248 1554 1715 87 263 1669 1845 
10-6 104 392 3192 3480 101 391 3237 3527 
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Table 2 
C,ost of solution of 3 hard, nonlinear problems. Results are averaged over 2 initial step sizes 

TOL 

1O-4 
1O-6 
1o-8 

SIMP METANl 

NJAC NDEC NFCN NSOL NJAC NDEC NFCN NSOL 

99 387 2654 2942 133 459 2778 3104 
108 488 4354 4734 144 591 4645 5092 
128 642 6862 7376 162 786 7836 8460 

Table 3 
Cost of solution of a relaxation oscillation described by the nonlinear Van der Pol equation. Results are averaged over 
3 initial step sizes 

TOL 

1o-4 
lo+ 
lo-* 

SIMP METANl 

NJAC NDEC NFCN NSOL NJAC NDEC NFCN NSOL 

77 386 2636 2945 133 466 2743 3076 
87 497 4438 4848 177 731 5120 5674 

132 831 8833 9532 224 1000 8707 9483 

traditional approach to step size and order selection can work as well as one based on 
information theory. The additional software devices of SIMP come into play on the three harder 
problems of Table 2 and especially on the difficult problem of Table 3. Considering that the 
underlying method is the same for both codes, the differences seen in these two tables are 
notable. The performance of SIMP on the problems of Table 2 supports our statement in Section 
2 that a code based on the lower order assumption can perform as well as one based on the 
higher order assumption when solving difficult problems. We have already explained how 
integration of the relaxation oscillation of Table 3 benefits from software devices in SIMP. The 
improvement with respect to NJAC and NDEC is dramatic. 

Even with the difficult problems, there is not a large number of successful steps so that the 
initial step size has a much greater effect than with, say, a BDF code. Nevertheless the relative 
behavior of the two codes for each initial step size is the same as the average behavior displayed. 
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