
Journal of Computational and Applied Mathematics 18 (1987) 3-16
North-Holland

3

Control of step size and order
in extrapolation codes *

L.F. SHAMPINE
Numerical Mathematics Diuision, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.

Received 25 June 1985
Revised 1 March 1986

Abstract: Extrapolation of the semi-implicit midpoint rule is an effective way to solve stiff initial value problems for a
system of ordinary differential equations. The theory of the control of step size and order is advanced by investigating
questions not taken up before, providing additional justification for some algorithms, and proposing an alternative to
the information theory approach of Deuflhard. An experimental code SIMP implementing the algorithms proposed is
shown to be as good as, and in some respects better than, the research code METANl of Bader and Deuflhard.

Keywords: Stiffness, ODE codes, extrapolation.

1. Introduction

Extrapolation of the semi-implicit midpoint rule is an effective way to solve stiff initial value
problems for a system of ordinary differential equations. Bader and Deuflhard [1,2] provide the
basic theoretical results. In [5,6] Deuflhard builds upon previous work to develop algorithms for
the control of step size and order in extrapolation codes. Based on this work, Bader and
Deuflhard developed a research code METANl which is listed in [7].

In this paper we continue the study of the control of step size and order in extrapolation codes
with particular attention given to software issues. A few basic results are first stated in Section 2.
It turns out that in practice the order of a formula is somewhat ambiguous. Because we do not
make the same assumption that Bader and Deuflhard do, this matter calls for a little discussion.
Extrapolation generates a great many formulas, so theoretical results suggesting that only a few
need be considered are of great value. The standard argument for considering only ‘subdiagonal’
formulas does not settle the matter in this context. An extremely simple and general argument is
provided. We also provide justification for a further restriction to the formulas of Deuflhard’s
‘order window’.

In Section 3 we explain why we do not want to base order and step size selection on
information theory, and in later sections we develop a more traditional approach as an
alternative. Current extrapolation codes respond in a surprising way to a step failure. In Section

* This work performed at Sandia National Laboratories supported by the U.S. Dept. of Energy under contract no.
DE-AC04-76DP0078.

0377-0427/87/$3.50 0 1987, Elsevier Science Publishers B.V. (North-Holland)

4 L. F. Shampine / Step size and order in extrapolation codes

4 we explain why this is appropriate. Extrapolation codes resort to much higher orders than their
competitors. In Section 5 we provide some insight as to why this is so and use it to justify
portions of our order selection algorithm. Sections 6 and 7 develop some software devices
intended to improve the performance of extrapolation codes on difficult problems. The initial
step size is a troublesome one with any integrator, and this is especially true for extrapolation.
Section 8 presents one way to handle it.

Our algorithms have been implemented in an experimental code SIMP. It is compared to
METANl in Section 9. The results show that our simpler, rather traditional approach to step size
and order control works at least as well as the one based on information theory realized in
METANl. For easy problems the codes behave much the same. The devices we propose for
coping with a number of software issues give SIMP an advantage for difficult problems.

2. Extrapolation

Extrapolation of the semi-implicit midpoint
for a system of ordinary differential equations

Y’ =f(y).

rule is way to solve a stiff initial value problem

(2.1)

A step of length H from y, A y(x0) is carried out via a sequence of subintegrations with the
semi-implicit midpoint rule. Details can be found in [1,2]. An approximate Jacobian, J A f,(y,,),
is formed at each step. For a sequence of integers { ni}, the step sizes hi = H/n; are defined, and
quantities T.,i are constructed successively by a subintegration from x0 to x0 + H using a
semi-implicit midpoint rule and step size hi. Cost is measured in units of the cost of evaluating
the f of (2.1). If cJ is the cost of forming J, then the cost of carrying out the subintegrations with

n,, n2,..., nj is Aj where

A,=c,+n,+l, Ak+l=Ak+nk+l, k=l,

The sequence studied in this paper is { n,} = { 2, 6, 10, 14, 22, 34, 50).
With suitable assumptions the error 7],, - y(x0 + H) has an asymptotic expansion in powers

of H2. High order approximations Tj,k to y(xO + H) are constructed from the c,, by polynomial

extrapolation. The local error ei,k = r,k - y(x, + H) of each element rJ.,k of the extrapolation

tableau is asymptotically

e; k , - Ek(H)H2k/(ni_k+l . ’ * ni)’ (2.2)

where Ek(H) is O(1). Thus elements in column k of the tableau all represent formulas of order
2k - 1 in the step size H. The relation (2.2) implies that as H + 0.

ei+i.k - (ni-k+l/nl+l)2ei,k,

which we require later. For k < i - 1 the local error can be estimated by

(2.3)

e 1-k A q,k - T,k+l = er,k - ei,k+l. (2.4)

This estimate is justified by the fact that 7j,k+r is of higher order than T,k.
Odd though it sounds, there is a question as to the order of the formulas used. Bader and

Deuflhard [2, p. 390 ff.] show that the term Ek(H) in (2.2) can be split into two parts, one of
which is O(H) and the other, O(1). The latter part is always present, and for a problem of the

L.F. Shampine / Step size and order in extrapolation codes 5

form y’ = Jy, is the only part present. Thus as H + 0, it is the case that Ek(H) is O(1).
Nonetheless, Bader and Deuflhard make the point that for practical step sizes H, the O(H) term
may dominate the O(1) term in Ek(H), leading to the higher order behavior e, k = 0(H2kt’).

They argue that this is likely to happen when the Jacobian f, changes rapidly. It is suggested that
the higher order assumption might “. . . be significantly preferable in the more difficult

non-linear problems”. Because their numerical experience was in agreement with this, they
implemented the higher order assumption in their code METANl.

We have implemented the lower order assumption in SIMP. It correctly describes the behavior
for problems of the form y’ = Jy and for any problem when H is sufficiently small. Of course,
the step size is small enough in any non-stiff portion of the integration. Besides ‘normal’
situations like initial transients, this includes severe difficulties such as quasi-discontinuities.
There is a restriction on H in the theory of [1,2] related to how fast the Jacobian changes; even
without this, it is plausible that a rapidly changing Jacobian would require a comparatively small
step size. Our numerical experience has been the opposite of that reported by Bader and
Deuflhard. This may well be due to other differences in our implementations, but the experi-
ments reported in Section 9 and others we have performed show that a code based on the lower
order assumption can be just as effective as METANl in general and in particular for difficult,
nonlinear problems.

For each i, k with k < i - 1 we can estimate the error er,k of T,k resulting from a step of
length H. If a step is a success so that

]I ei,k 11 G ‘T O-5)

is satisfied, the largest step size, Hi.k, which would yield an accuracy of 7, -C 7 on the next step is
found in the usual way to be

The cost of this formula is i subintegrations, hence Ai evaluations of f. Its efficiency is the
distance the integration is advanced divided by the cost (in evaluations of f) of taking the step:

eff(i, k) = 2 &

I

(2.7)

On taking a step of length H with a total of j subintegrations, we are in a position to ascertain
the most efficient formula for the next step from all the q,k with i <j, k d i - 1. It is of obvious
value to demonstrate that we can restrict our considerations to only a few of these formulas.

A method of analysis proposed by Stoer [18] and subsequently refined and applied by
Deuflhard [5] and Shampine [13] allows one to study the relative efficiency of the formulas in a
column of the tableau as H -+ 0. For standard choices of the { n, } and the explicit midpoint rule,
it turns out that in column j - 1, the sub-diagonal element Tj j_l is the most efficient formula,
and this is true for each j - 1. This behavior is not true of the semi-implicit midpoint rule with
the sequence we study. (Some details are given in Section 5). There is a simpler and more general
way to see that the subdiagonal elements are to be preferred as H + 0: In terms of function
evaluations, all elements q,k in row j of the tableau cost the same. Asymptotically TJ k+, is more
accurate than 7;,k (by a factor of 0(H2)), hence is more efficient. Thus as ‘H + 0, the
subdiagonal element Tj,i_l is the most efficient formula in row j, and this is true for each j.

6 L.F. Shampine / Step size and order in extrapolation codes

(This does not contradict our claim that ?;,j_l need not be the most efficient element in column
j- 1.)

The efficiency argument suggests that we restrict our attention to the subdiagonal and
diagonal elements of the tableau. In this context the stability of the formulas is crucial.
Kuhlemann [lo] found the linear stability of these formulas to be excellent. Hairer, Bader, and
Lubich [9] confirm the good stability of part of the tableau with respect to a nonlinear stability
concept.

There is another reduction possible in the number of formulas to be considered. It is one
aspect of what Deuflhard calls the ‘order window’. Suppose that we predict j subintegrations to
be optimal for the next step. As we take the step, we actually form &r for i = 1,. . . , j. Should
we test them as in (2.5)? By assumption q,j_l was the most efficient element in the previous step

so that

Hj,j_,/A, > Hi,,_,/Ai for I = l,..., j- 1.

By definition Hi,i_, is predicted to result in an error of TV. We actually take the step with step
size Hj ,_,, hence we predict that at i subintegrations we shall see an error of

~,(H,,,_1/Hi,i-1)2’-2 ’ Ta(Aj/Ai)2i-2.

The cost coefficients A, increase pretty rapidly with k. For i <j - 1 the factor Aj/A, here is
large, and we are predicting an error rather bigger than the tolerance 7. If we observe an error
less than 7, we cannot trust the result because it differs so much from what was predicted. The
case i =j - 1 is marginal because 7, is substantially smaller than 7 and A,/A,_, is not so large.
It seems reasonable, then, to restrict our attention to i > j - 1. The first step is a special case we
take up in Section 8.

3. Information theory approach

The standard approach to predicting an optimal step size and order just presented works well,
but only those orders actually tried in the step can be considered. Key practical questions are
when to try a higher order and what step size to try then. In [6] Deuflhard attempts to answer
these questions using information theory. The approach considers the behavior of an ideal
integrator when applied, for a given tolerance 7, to a large ensemble of sufficiently smooth

problems. Assuming that 4 + 1 subintegrations is optimal, it is argued that the ‘average’ error

ei,k satisfies

avg(e,,k) = 7(A,-A,~,+1)/(A,,,--A,+1). (3.1)

Obviously there is some difficulty applying this theory because of the assumption that the
optimal number of subintegrations is known. Leaving this aside, it is still necessary to ask if

extrapolation behaves enough like an ideal integrator that it can be described by (3.1). Now (3.1)
implies that

avg(e;+l,k) = 7(A,+l-A,+A,~,-A,+,~,)/(A,,, -A1+1) avg(e,,,).

L. F. Shampine / Step site and order in extrapolation codes 7

On the other hand, we already know that (2.3) holds asymptotically for all smooth problems,
hence for their average:

In this known relation there is no dependence on the tolerance 7 as there is in the case of an
ideal integrator. If a wide range of r is considered, there can be a considerable difference in
behavior. Thus it is far from clear that extrapolation is close enough to an ideal integrator that
the theory can provide useful predictions.

Even if the information theory model were applicable, it would not provide what is needed. In
the integration we deal with a specific problem, and we must answer questions like, should we
raise the order now? The answers depend on the problem at hand; obviously they cannot be
provided by a theory which averages out the effect of the problem like (3.1) does. The standard
prediction (2.6) is based on the observed behavior of the formula applied to the given problem.
The information theory approach says that for a given tolerance T, the efficiency increases on the

aoeruge as the order is increased, up to a certain value. (This is the content of (4.8’) of [6], see
also the discussion of p. 9 of [7].) The distinction is most clearly seen when, as often happens, the
standard approach says to reduce the order for this particular problem when the information
theory approach says that a higher order is better for a ‘typical’ problem. Of course, one should
give preference to the scheme based on the observed behavior in this situation, and METANl
does.

The rules for adjustment of order presented in [6] and implemented in METANl are plausible
enough. It is not clear that extrapolation is modelled well enough by the information theory
approach to justify these rules and we have noted that the approach does not really answer the
right questions. For these reasons we tried a more traditional approach to the adjustment of
order. The numerical results of Section 9 show that it works at least as well as the approach
based on information theory.

4. A failed step

In this section it is supposed that T,*,_, was predicted to have the required accuracy 7, but on
trying the step, it did not. With a fixed order method, the standard procedure is to reduce the
step size H and try the step again. With variable order methods like the backward differentiation
formulas (BDF), the same thing is done except that a lower order might be used. It is remarkable
that the extrapolation codes try a higher order formula, T,+i , , . If this attempt fails, the step size
is reduced and the step tried again. This remarkable action on a failed step has not received
comment that the author has noticed. We shall explain in this section why we believe it to be the
correct way to proceed. Also, we contribute to understanding a matter that has always puzzled
the author, namely that the extrapolation codes resort to much higher orders than competitors
like the BDF codes.

Recall that T,,,_i results from subintegrations with step sizes h,, . _ . , h,. The formula 7;+,,,_,
of the same order results from subintegrations with the smaller step sizes h,, . . . , h,,, ,. The errors
of these two formulas are related asymptotically according to (2.3) as

e,+l,j-1 L (n2/nj+l)2e/;i-1-

8 L.F. Shampine / Step size and order in extrapolation codes

One possibility for dealing with an error eJ,,_i too large is to repeat the step with the formula

TJ,j-1 and a smaller step size H’. Another is to form 7;+i Pi with the same step size H. The
observations just made about the formulas and their error: show that the two possibilities are
very closely related. There are two main differences. The first possibility shortens the interval to

[X0> x0 + H’], and the second continues to work with [x0, x0 + H]. If the problem changes
character in (x0 + H’, x0 + H], the possibilities behave quite differently. The other main
difference is that with the standard procedure, one can reduce H as much as is needed, but in

going to 7;+1,j-1, we have already chosen n,,,, hence the asymptotic reduction of the error.
We predicted that I(ej,j_l I(would be roughly ra < r. In view of the fact that the observed

error is greater than r, either the problem has become somewhat harder, or the assumptions
justifying the prediction have broken down. If the assumptions have some validity, 1;+,,,_,
should be enough more accurate to yield convergence. Moreover, we expect the higher order
result T/+ i.j to be even more accurate, and it is available at no extra cost. Thus it is reasonable to
expect that ?;+i,j will provide a sufficiently accurate solution. In our view, the raise in order is
largely formal. What is done can be regarded as the functional equivalent of trying again with a
smaller step size, followed by local extrapolation.

There are a couple of other reasons for raising the order. As Stoer [18] observed, if we reject
the step, we must go to all the work of building up to T,,,_, again. It may well be cheaper to

form T,+i,,. This matter can be quantified, but we do not do so because it is useful to raise the
order even if it is not a cheaper way to get a successful step. A variable order code must explore
the possibility that higher orders are more efficient. In METANl and SIMP raising the order in
this situation is an important way to find the most efficient order.

If T,+l,j does not result in a successful step, it is clear that the assumptions justifying the
prediction are not valid. Because we do not then trust the estimates of the local errors, we halve
the step size in SIMP. In METANl an ‘optimal’ reduction is made, but the step is at least
halved. Usually the codes behave the same, but it is easy to understand why an ‘optimal’
reduction might be very much too small. If the problem changes character in [x0, x0 + H], the
code might think a very large reduction necessary when all that is needed is a step size H’ small
enough that the problem is well behaved on [x0, x0 + H’]. To cope with this kind of difficulty
efficiently, we must do more than just halve the step size, we must limit subsequent step size
increases. The matter is discussed in Section 7. This is one situation handled much more
efficiently by SIMP than by METANl.

5. Raising the order

After a step is taken successfully, we have the information available to select the most efficient
among orders up to the highest tried. Crucial questions are when to try a still higher order and
what step size to try then. We have already argued that if we are not successful at the order
expected, we should try the next higher order. This is an important way to explore higher orders,
but it does not suffice. Unfortunately there is a way by which we actually lose information. In
connection with our discussion of the ‘order window’ in Section 2, we observed that we might
obtain a sufficiently accurate approximation with one fewer subintegrations than predicted.
Accepting this result reduces the orders we can consider for the next step. We have experimented
with a version of SIMP which does not allow this loss of information, but using a cheaper, lower
order when possible helps the overall efficiency too much to exclude accepting early convergence.

L. F. Shampine / Step size and order in extrapolation codes 9

We must be careful about our assumptions when discussing the most efficient order in a
variable order code. This is because as H + 0, a higher order formula eventually is more efficient
regardless of how much more it costs. Experience with extrapolation codes suggests that they
must resort to rather high orders to be competitive. This is not just a consequence of the
information theory approach for not all codes use it, and experiments with many different
algorithms in the investigation reported here support the belief. Exercising due care about our
assumptions, we use asymptotic arguments in this section to conclude that high orders are often
efficient when extrapolating the semi-implicit midpoint rule. This is the basis of the algorithm we
then detail.

Following the method of [13] we compare the efficiency of TJ+i,+, to TJ,j_,. We suppose that
we have taken a step of length H with T/,j_l. The expression (2.6) with (i, k) = (j, j - 1)

provides an estimate of the largest step size, Hj,,_l, which will achieve an accuracy of TV. The

same argument with the formula 7;+i,,_i, the definition of efficiency, and the asymptotic

relation (2.3) lead to

eff(j+ 1, j- 1) . Aj n,+l
=--

l i

*'('-l)

eff(j, j- 1) Aj+1 n2 ’

(5.1)

Here we assume only that H is small enough that the leading terms dominate in the asymptotic
expansions. This is a fundamental practical assumption for the adjustment of the step size in the
code.

The costs A, depend on the cost cJ of forming a Jacobian. For the procedure studied in this
paper, it is now easy to evaluate (5.1) numerically to learn that T,+l,j_, is more efficient than
7;,j_1 for j = 2,. . . ,6 for all c, >, 8.

The error in 7;,jpi is estimated by comparison to l;,j, so another fundamental practical
assumption is that]I e,,, (1 is less than I] e,,]_,]I, say,

II e,,, II = P II e,,,-1 II 3 P < 1.

Asymptotically p is 0(H2), but with practical step sizes H it need not be particularly small. The
asymptotic relation (2.3) implies that approximately

II ej+l,j II L P(~~/nz)* II ej+l,,-1 II = tP II e,+l,j-1 II.

This argument supports our claim that I;+l,j is normally rather more accurate than I;+i,,;_i. We
conclude that if it is more accurate at all, then for all cJ 2 8, T,,, ; is more efficient than 7; j_1.
If it were just 10% more efficient, it would be better to raise the order for all cJ 3 3. ’

The asymptotic analysis presented is based on assumptions reasonable for describing comput-
ing practice. We shall not push it far, merely use it to justify an aggressive approach to trying
higher orders. Now we shall describe and explain this approach as implemented in SIMP, except
in the case of the first step which is taken up in Section 8.

In some circumstances we cannot, or should not, consider a raise of order. If we are already
doing the maximum number of subintegrations allowed (7), we obviously cannot raise the order.
In Section 7 several reasons for restricting the step size are given. If they cause the step size to be
limited, raising the order is not efficient because a higher order will be a more expensive way to
take the same step. On taking a step, we can consider a number of orders for their efficiency. If
the highest order tried is not the most efficient, we would normally lower the order for the next
step. It hardly seems reasonable to consider an increase of order then, and we do not.

10 L. F. Shampine / Step size and order in extrapolation codes

We have argued that if certain assumptions hold, it is likely to be efficient to raise the order.
There is, of course, the possibility that the assumptions do not hold. Part of the algorithm in
METANl can be thought of as a way of recognizing when the hypotheses are not valid. We do
something similar, though much simpler. The idea is that unexpected behavior indicates a
possible breakdown in the assumptions so that one should be cautious about raising the order. In
SIMP a step failure for any reason prevents a raise in order for two successful steps. (Recall that
the order might be raised anyway in an attempt to get a successful step.) If there is a loss of order
because of convergence one subintegration earlier than predicted, a raise in order is considered
immediately (subject to the basic qualifications about the last step and the step size restrictions).
The much more elaborate algorithm in METANl keeps track of the order at which failures occur
and how often. Though plausible, the complication did not seem justified in our experiments.

Having decided to try a higher order, we must select a corresponding step size. As an
alternative to the information theory model, we take the simple approach of hypothesizing that
T J+l,, will be a little more efficient than q,j_,. Experiments showed that 10% is a suitable value
for SIMP. Thus we use

reduced if necessary to satisfy the various restrictions imposed on the step size in general as
described in Section 7. In the code we do not reset the variable which contains the predicted
‘optimal’ order. In effect we say that j is the best number of subintegrations, but that we are
very aggressive in the selection of H, hence expect to have to resort to j + 1 subintegrations to
get convergence. Indeed, in this situation only, we allow j + 2 subintegrations before declaring a
step unsuccessful.

6. Consistency checks

For reasons of efficiency an extrapolation code must allow large increases in the step size.
Unfortunately this may result in a step size so out of scale that basic assumptions fail. The
situation may be recognized by the local error estimates and corrected by a reduced step size.
Here is a situation in which an ‘optimal’ step size reduction deduced from the asymptotic
behavior of the error estimates is certainly not justified and may be far from a suitable value.
Besides the difficulty of the local error estimates being of, at best, marginal value, they are
formed only after quite a bit of computation. In [15] a consistency check is proposed which can
be performed early in the computation. It is based on the fact that two results of the same order
are formed at the end of each subintegration - the basic result of the semi-implicit midpoint
rule, q,, and the smoothed result, S,,. It is reasonable to insist that these results be consistent. In
SIMP we require that

II ?1, - Xl II G 0.75

where the 0.75 is an experimentally determined quantity. This relies on the fact that the error
control in SIMP is a relative one which we describe fully below. If the results are not consistent,
the step is rejected and tried again with half the step size. This check is performed at the end of
the first subintegration, hence early in the computation. Experiments showed that it was worth
the trouble to apply the same consistency check to the second subintegration, too.

L. F. Shampine / Step size and order in extrapolatiorl codes 11

One of the examples we take up in Section 9 is a relaxation oscillation described by Van der
Pol’s equation. The oscillation has long stretches of slow change followed by very large changes
taking place in very short times. The role of the consistency checks is easy to understand here.
While the solution is changing slowly the code will take large steps and possibly resort to high
orders. Eventually the code steps past the sharp change. The step is then completely out of scale,
which can be recognized cheaply by the consistency checks. Attempting to use an error estimate
to reduce the step size ‘optimally’ is likely to result in a tiny step size which falls far short of the
trouble spot and so is equally inappropriate. Very sharp changes in the solution is one situation
leading to a failure of consistency. A less dramatic, but much more common, situation is the
solution of problems to nominal accuracy. In this accuracy range it is always difficult to obtain
reliable results. The consistency checks are a big help then.

In an earlier version [l] of METANI, Bader and Deuflhard monitored the growth of the
approximate solutions in the subintegrations. This played the role of the consistency checks we
have described. Later they abandoned this device in favor of the same kind of consistency checks
we propose; but executed in a much more elaborate manner. The scheme we propose seems to
work at least as well as previous attempts to cope with step out of scale, and has the virtue of
simplicity.

7. Limits on the step size

There are a number of reasons for altering an ‘optimal’ step size selected by the code. One is
to accommodate output. It is not our purpose to compare extrapolation codes to a competitor
like the backward differentiation formula (BDF) codes, but they differ so dramatically in this
matter that some comment is necessary. A step with an extrapolation code is very expensive
compared to a step with a BDF code, so to be competitive, an extrapolation code must take
much longer steps. This means that fewer answers are produced by an extrapolation code. By
limiting the step size to a maximum value specified by the user, more answers can be obtained.
Although this increases the cost, variation of order ameliorates the effect. A BDF code not only
produces many more answers directly, it can even interpolate between steps. A carefully written
code is, then, weakly affected by the number and placement of points where an answer is desired.
Some work [16] has been done on interpolation for extrapolation codes, but there is still much to
be done. Like METANl, SIMP integrates to a specified output point with the option of
returning results at each step. A maximum step size provides a way to get more frequent output.
Extrapolation codes in general, and METANl and SIMP in particular, are very inefficient if a
lot of output is requested at specific points. To reduce this inefficiency, the technique of
‘stretching’ [17] is used in both codes. Specifically, in SIMP a step size can be increased by up to
10% so as to reach an output point.

The fact that an extrapolation code takes much longer steps than a BDF code does not matter
as long as appropriate step sizes vary slowly. Extrapolation is at a disadvantage when a large
increase of step size is needed. A BDF code can accumulate such a large change over a number
of steps. To be competitive, an extrapolation code must accomplish the increase in a very few
steps. METANl allows an increase by a factor of 100 in a single step. BDF codes do not permit
such a large increase because it cannot be justified by asymptotic arguments. Nevertheless, we
are convinced that this must be done for reasons of efficiency in an extrapolation code and that

12 L. F. Shnmpine / Step size and order in extrapolation cctdes

it is possible. The distinction between the methods is that computation of a step by extrapolation
is independent of the results of earlier steps. In taking a step, increasingly high orders are tried,
and each order is very much more accurate than the preceding one. For these reasons even
extremely poor step size predictions can be handled. Experiments we have made confirm that
permitting large increases of step size are necessary to an efficient extrapolation code. On the
other hand, this can also cause trouble in a way that we now take up.

In Section 4 we emphasized that proceeding as we do, a failed step is likely to be due to a
breakdown of basic assumptions. Suppose the problem abruptly changes character somewhere in

1x0, x0 + H]. In the absence of other information it is appropriate to halve H when the step
fails. After possibly repeated halving, we are able to take a successful step from x0 to x0 + H’. It
may well be that the problem is perfectly regular on [x0, x0 + H’] with the consequence that a
very large increase of step size is indicated. Allowing this increase is likely to get us back into
trouble immediately. Simply preventing an increase on the first step after a failure helps the
efficiency a great deal. In SIMP we even restrict the rate of increase for several steps.
Specifically, we limit the increase at each step to a factor of SAFE. The factor is initialized to
100. On a step failure it is set to 1. On subsequent steps SAFE is multiplied by 3, but its value is
limited to 100. METANl permits an increase by a factor of 100 after any step. This small
algorithmic difference in SIMP makes it more efficient when dealing with difficult problems.

8. Initial step size

The first step is special because we have no assurance that the step size provided is at all
appropriate. In variable order codes based on the backward differentiation formulas, the first
step is taken at the lowest order, and the step size and order are built up gradually. We have tried
this plan with extrapolation, and found it to be ineffective because very few steps are taken in
the whole integration. Although the procedure we present here for handling the first step
performs adequately, we think this matter needs more investigation.

The consistency checks described in Section 6 are important to recognizing and coping
efficiently with an initial step size much too large. Let us suppose in the rest of this section that
the step size H being attempted passes these checks.

We need to explore the higher orders, but we do not want to waste a lot of effort by going to a
high order only to reject the step. On the first step it is natural to test convergence at each order,
and this is done in both METANl and SIMP. The information theory model is employed in
METANl by assuming that the optimal number of subintegrations is the maximum (for the
tolerance specified) and raising the order until convergence is obtained, or the maximum order is
reached, or the error observed is not consistent with the prediction of the model. The model is
certainly not justified in these circumstances because we do not know the optimal order. The
scheme is properly viewed as a heuristic one that expects a certain accuracy at each order and if
it is not found, the step is rejected. We do this too, but in a simpler way. After j subintegrations,
we have an estimate of 11 ej j_1 11. If we do not have convergence, we ask if an order of
magnitude improvement at each subintegration would yield convergence by the time we reach
the maximum number of subintegrations; specifically, is

1O-(7-j) 11 ej,j-l 11 < r?

If so, we try another subintegration. Otherwise we reject the step.

L.F. Shampine / Step size and order in extrapolation codes 13

When the step is rejected, the optimal order (and step size) is determined. In SIMP we at least
halve the step size, but do not allow a reduction of more than two orders of magnitude.
METANl proceeds in a similar way. Normally we do not trust the error estimates on a failed
step, so we do not make an ‘optimal’ reduction. We do not trust them on the first step either; this
is just a reasonable way to reduce the step size faster than halving in circumstances when this
might be desirable.

9. Experimental results

In this section we present some numerical results comparing METAN to SIMP. The rather
traditional approach to step size and order control realized in SIMP performs at least as well as
the information theory approach realized in METANl. For easy problems the codes behave
much the same. In this paper we have raised a number of software issues and proposed ways of
coping with them which give SIMP an advantage for difficult problems.

It is relatively easy to compare METANl [7] and SIMP because they are so closely related.
The error control implemented in METANl, like all controls for stiff problems, presents
difficulties for certain problems. This is the only thing we altered in METANl, except for those
changes necessary to run in single precision on CDC and Cray computers with a unit roundoff u
of about 7.1 x 10-15. Roughly speaking, METANl controls the error in a component relative to
the largest value of the solution seen so far in the integration. This may not be sufficiently
stringent when a component has a peak, a difficulty that occurs in one of the examples. An RMS
norm is used which this author feels is not sufficiently stringent. We accepted these difficulties,
but we could not accept the initialization of the error control when a solution component has
initial value zero. Thus we have altered METANl so that the error in a component is taken
relative to the larger of 10~ and the largest magnitude of the component seen so far in the
integration, including the tentative result of the step. This is a minor modification which leads to
a much more stringent control on components with initial value zero, which is common with the
test problems.

For a test set we have basically chosen to work with the ten problems Chm 1,. _ . , Chm 10 of
Enright and Hull [8]. Like Curtis [4] we describe this as a set of small but realistic problems. Also
like Curtis [4, p.791, we corrected an error in the sign of a coefficient of Chm 4. We changed Chm
6 back to its original form [ll, p.1971 posed on the interval [0, lOOO] with initial step size
7.55 X lO_“. We added the kidney model problem with parameter 0.99 considered by Bader and
Deuflhard [2, p.3941, which has interesting features they discuss. Van der Pol’s equation in
relaxation oscillation as stated in [12, p.4111 with initial step size 3.33 x 10v4 is an additional,
demanding problem.

One of the difficult aspects of comparing codes is to treat fairly the accuracy they achieve.
SIMP and METANl usually get about the same accuracy when given the same tolerance, so for
the limited objective of this section, we ignore this point and just compare the cost of solution.
Conventional tolerances with stiff problems are 10-2, 10p4, 10p6. Some of the problems are so
difficult that the results with tolerance 1O-2 are not consistent. Indeed, in the tests of Bader and
Deuflhard [2] for the kidney model problem, they report consistent results only for tolerances
lop6 and smaller. In the present tests the harder problems are solved with tolerances 10-4, 10e6,
lop8 and consistent results are obtained with one exception. As we alluded to earlier and Curtis

14 L. F. Shampine / Step size and order in extrapolation codes

[3] discusses at some length, the error control implemented is quite inappropriate for Chm 9 with
the consequence that the end point errors are not consistent. Because we believe that the codes
are producing comparable accuracy, we did not give this problem special treatment.

The Van der Pol equation problem is so much harder than the rest that results for it are
presented separately. Chm 6 in its original form, Chm 9, and the kidney model problem are
aggregated as the ‘hard’ problems. The remaining problems, Chm l-5, 7, 8, 10, are aggregated as
the ‘moderately hard’ problems. All problems are written in autonomous form and all are
nonlinear.

The test set [8] specifies an initial step size h,, and we computed one in a similar way for the
problems we added or changed. To reduce the effect of the given initial step size, we solved each
problem with h,, lOho, and 10-‘h, and averaged the results.

There are a number of the usual annoyances arising in numerical testing. One is that
METANl would not solve Chm 6 in its original form for initial step size lo-‘h, at all the
tolerances. We simply dropped this step size in the comparison for the ‘hard’ problems.

Neither code can solve the Van der Pol equation problem posed in a straightforward way
because of overflow (even with the very large exponent range we had available). We modified the
definition of the equation so that whenever a solution component becomes larger in magnitude
than 105, the derivative of the component is defined to be zero. The true solution of the problem
posed has components rather smaller in magnitude than 105, so this device amounts to redefining
the problem well outside a region containing the desired solution. The codes do try to leave this
region at which time the lack of smoothness of the derivatives then causes the codes to realize
that the step size is out of scale.

Tables l-3 present a comparison of SIMP and METANl with respect to the major measures
of work, viz. NJAC - the number of approximate Jacobians formed, NDEC - the number of
times a matrix was decomposed into triangular factors, NFCN - the number of evaluations of
the f of (2.1), NSOL - the number of times a linear system with factored matrix was solved.
Both codes form approximate Jacobians by differences. Because the test set involves only small
problems, we preferred to count NJAC rather than to include the cost of forming the Jacobian in
NFCN. It is hoped that a better guide to costs-for larger problems is thereby provided. It must
be recognized that the basic algorithms take cJ into account. Here it is set equal to the number of
equations.

The codes di,ffer in certain respects that we do not think affects the results. Specifically, they
do not use the same subroutines for the solutions of linear systems nor for the approximation of

Jacobians.
The codes behave much the same for the eight moderately hard problems of Table 1, although

SIMP does seem more efficient at the crudest tolerance. This supports our claim that a rather

Table 1
Cost of solution of 8 moderately hard, nonlinear problems. Results are averaged over 3 initial step sizes

TOL SIMP METANl

NJAC NDEC NFCN NSOL NJAC NDEC NFCN NSOL

10-l 66 143 698 115 76 174 872 970
10-4 87 248 1554 1715 87 263 1669 1845
10-6 104 392 3192 3480 101 391 3237 3527

L. F. Shampine / Step size and order in extrapolation codes 15

Table 2
C,ost of solution of 3 hard, nonlinear problems. Results are averaged over 2 initial step sizes

TOL

1O-4
1O-6
1o-8

SIMP METANl

NJAC NDEC NFCN NSOL NJAC NDEC NFCN NSOL

99 387 2654 2942 133 459 2778 3104
108 488 4354 4734 144 591 4645 5092
128 642 6862 7376 162 786 7836 8460

Table 3
Cost of solution of a relaxation oscillation described by the nonlinear Van der Pol equation. Results are averaged over
3 initial step sizes

TOL

1o-4
lo+
lo-*

SIMP METANl

NJAC NDEC NFCN NSOL NJAC NDEC NFCN NSOL

77 386 2636 2945 133 466 2743 3076
87 497 4438 4848 177 731 5120 5674

132 831 8833 9532 224 1000 8707 9483

traditional approach to step size and order selection can work as well as one based on
information theory. The additional software devices of SIMP come into play on the three harder
problems of Table 2 and especially on the difficult problem of Table 3. Considering that the
underlying method is the same for both codes, the differences seen in these two tables are
notable. The performance of SIMP on the problems of Table 2 supports our statement in Section
2 that a code based on the lower order assumption can perform as well as one based on the
higher order assumption when solving difficult problems. We have already explained how
integration of the relaxation oscillation of Table 3 benefits from software devices in SIMP. The
improvement with respect to NJAC and NDEC is dramatic.

Even with the difficult problems, there is not a large number of successful steps so that the
initial step size has a much greater effect than with, say, a BDF code. Nevertheless the relative
behavior of the two codes for each initial step size is the same as the average behavior displayed.

Acknowledgement

An investigation of this kind involves a great deal of numerical experimentation. L.S. Baca
provided the author with this vital support, and she provided something even more important -
constructive criticism which helped the author sort out his ideas. He acknowledges with gratitude
her contribution to this paper. The constructive criticism of an anonymous referee made this a
better paper.

References

[l] G. Bader and P. Deuflhard, A semi-implicit mid-point rule for stiff systems of ordinary differential equations,
Univ. Heidelberg, SFB 123 Rept. 114, 1981.

16 L.F: Skampine / Step size and order in extrapolation codes

[2] G. Bader and P. Deuflhard, Numer. Math. 41 (1983) 373-398.
[3] A.R. Curtis, Solution of large, stiff initial value problems - the state of the art, in: D. Jacobs, Ed., Numerical

Software - Needs and Availability (Academic Press, New York, 1978) 257-278.
[4] A.R. Curtis, The FACSIMILE numerical integrator for stiff initial value problems, in: I. Gladwell and D.K.

Sayers, Eds., Computational Techniques for Ordinary Differential Equations (Academic Press, New York, 1980)
47-82.

[5] P. Deuflhard, Order and stepsize control in extrapolation methods, Univ. Heidelberg, SFB 123 Rept. 93, 1980.
[6] P. Deuflhard, Numer. Math. 41 (1983) 3999422.
[7] P. Deuflhard, Recent progress in extrapolation methods for ordinary differential equations, SIAM Reu. 27 (1985)

505-535.
[S] W.H. Enright and T.E. Hull, Comparing numerical methods for the solution of stiff systems of ODES, in: L.

Lapidus and W.E. Schiesser, Eds., Numerical Methods for Differential Systems (Academic Press, New York, 1976)
45-66.

[9] E. Hairer, G. Bader, and Ch. Lubich, On the stability of semi-implicit methods for ordinary differential
equations, BIT 22 (1983) 211-232.

[lo] C. Kuhlemann, Stabilitatsuntersuchungen an der semi-impliziten Mittelpunktsregel, Univ. Heidelberg, Inst.
Angew. Math. Diplomarbeit, 1973.

[ll] L. Lapidus, R.C. Aiken and Y.A. Liu, The occurrence and numerical solution of physical and chemical systems
having widely varying time constants, in: R.A. Willoughby, Ed., Stiff Diff erential Systems (Plenum Press, New
York, 1974) 187-200.

[12] L.F. Shampine, Evaluation of a test set for stiff ODE solvers, ACM TOMS 7 (1981) 409-420.
[13] L.F. Shampine, Efficient extrapolation methods for ODES, ZMA J. Numer. Anal. 3 (1983) 383-395.
[14] L.F. Shampine, Efficient extrapolation methods for ODES II, ZMA J. Numer. Anal. 5 (1985) 23-28.
[15] L.F. Shampine and L.S. Baca, Smoothing the extrapolated midpoint rule, Numer. Math. 41 (1983) 165-175.

[16] L.F. Shampine, L.S. Baca and H.-J. Bauer, Output in extrapolation codes, Comput. Math. Appl. 9 (1983) 245-255.

[17] L.F. Shampine and H.A. Watts, The art of writing a RungeeKutta code II., Appl. Murk. Comp. 5 (1979) 93-121.
[18] J. Stoer, Extrapolation methods for the solution of initial value problems and their practical realization, in: D.G.

Bettis, Ed., Proc. Conference on Numerical Solution of ODES, Lecture Notes in Math. 362 (Springer, New York,
1974) 1-21.

