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Not all GKK z-matrices are stable
Olga Holtz '

Department of Mathematics, University of Wisconsing Madison, W 53700, US4
Received 30 October 1998: aceepted 7 December 1998

Submiited by H. Schneider

Absteact

I{ermitian positive definite, totally positive, and nonsingular Af-matrices enjoy many
common propertics, in particular:

(A) positivity of all principitl minors,
(B) weak sign symmetry,

(C) cigenvalue monotonicity,

(D) positive stability.

The class of GKK matrices is defined by properties (A) and (B), whereas the class of
nonsingular z-matrices by (A) and (C). It was conjectured that:

(A), (B) = (D) [D. Carlson, J. Res. Nat. Bur. Standards Sect. B 78 (1974) 1-2],
(A). (C) = (D) [G.M. Engel and H. Schncider, Lincar and Multilinear Algebra 4
(1976) 155-176].

(A), (B) = a property stronger than (D) [R. Varga, Numerical Mcthods in Lincar
Algebra, 1978, pp. 5-15].

(A). (B), (C) = (D) [D. Hershkowitz, Liner = Algebra Appl. 171 (1992) 16§-- 186].

We describe a class of unstable GKK r-matrices, thus disproving all four conjec-
tures. © 1999 Elscvier Scicnce Inc. All rights reserved.
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1. Definitions and notation

Given a matrix A € C"", let A(2. f1) denote the submatrix of A whose rows
arc indexed by » and columns by ff (x, fie (n):= {1.....n}) and let A[x. fj]
denote det A(x. f8) if #x = # (where # stands for the cardinality of a set) with
the convention A[(.¢] := 1.

A matrix A is called o P-matnix if 4{x, 2] >0 V2 C ). A is weakly sign-
symietric i

Al flAfo2) 20 Vo pe ). Hi=#=H#xUfl -

Weakly sign-symmetric P-matrices are also called GKK after Gantmacher,
Krein. and Kotelyansky. It was proven by Gantmacher, Krein [5], and Carlson
[2] that a P-matrix is GKK ift it satisfies the generahzed Hadamard- -Fisher
mequality

Al ad[p. ] z AlzUpauplalxnfoan il Va5 C {n). (1)

Carlson [3] conjectured that the GKK matrices are positive stable, 1.c., Re 4
>0 Vi€ a(d) (here a(4) denotes. as usual, the spectrum of A4), and showed
his conjecture to be true for n< 4.

Let

1) = {min{ie c(AYNR} if a(A4)NR 0,

x otherwise.
A is called an e-matrix if it has eigenvalue monotonicity

HA( 2)) < T(A ) <> whenever B # ff C 2 C (n).

A is a T-matrix if, in addition, /(4) = 0.

Engel and Schneider [4] asked if nonsingular t-matrices, or equivalently, o-
matrices all whose principal minors are positive (see Remark 3.7 in {4]), are
positive stable. Varga [9] conjectured even more than stability, viz.

arg(s — ()] < f“% Vi € a(4).
This inequality was proven for # < 3 by Varga (unpublished) and Hershkowitz
and Berman [7]) and for # =4 by Mehrmann [8]). In his survey paper [6],
Hershkowitz posed the weaker conjecture that t-matrices that are also GKK
are stable.

Below we describe a class of GKK t-matrices which are not even nonneg-
ative stable. i.e.. have eigenvalues with negative real part. We construct
Toeplitz Hessenberg matrices 4,4, of size n for k € N and ¢ € R. We show that
Anie 18 GKK for any 1€ (0, 1), a t-matrix if n<2k +2 and ¢ € (0,1) 1s suffi-
ciently small, and that 4y, 1s unstable for sufliciently large & and sufficiently
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small positive 1. This provides a counterexample (o the Hershkowitz conjec-
ture, and therefore, to the Carlson, Engel and Schneider, and Varga conjec-
tures as well.

In what follows, we shall use the following notation;

N T P il p<y.
pog= {{l ! i / I Vp.g € N,
0 otherwise.
x x>0,
X, = { , vy ¢ R.
0 otherwise.

2. Counterexample

Given k,n € N, and 7 € (0, ). let 4,4, be the following Toeplitz Hessenberg
matrix. I{f n <k 41, set
( I 0 -~ 0 0\
t b 00

00 -~ 10

\o 0 . 1 1/

Otherwisce let

[ | )
1 000 & & - ', d'
L 100 0 & o d' ., df,,
0 0.---10 0 0 dtd
Aps=10 0--- 11 0 0 0 d’
0O 6---01 1 0 ) 0
¢ 0-.-00 1 l 0 0
o 0.--00 0 0O - 1 0
\0 0.--00 0O 0 RIS l }n.-'n

where a;*'s are chosen so that 4, [(k + j + 1). (k + j + 1)} = ¢. This definition
makes sense for all j=1....,n—4% -1. Indeed, the expansion ol

Atk + j+ 1), (k 4+ j + 1}] by the first row gives
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-’L;.k.![(l‘- + I + l> <,‘ 1 /+ l)](: dCl Af\ Cfi l./\.!)
=Adp 2k + i+ L2k 4+ 1]

)
+ Y (=D g e+ D+ 2 k4 Lk 420k 4+ 1]
I

/
= dCl AA' ik + Z(_ I)A . ’af.f dCl A',,.}A[ (2)
I

(recall that 4,4, [0. 0] = 1. so the last term in the sum is well defined). As the
coeflicient of af" m Eq. (2) is equal to (—l)'i . the equation 4, ., = s (lincar in
aﬁ") has a solution for any right-hand side s. in particular, for s := ¢ Since 4,4,
is Toeplitz, this implies A, [ici+j—1ii+j—1] =i+,

We show that the matrices 4,4, are GKK for any ¢ € (0. 1). Since A, is
Hessenberg, the submatrix A, () \i:i+j— 1.y \i:i+j—1) is block
upper triangular if | <i<i+j—1<n, s0

Apia[2U BoxU ] = dya |2 2fdis [P )] whenever / <
~ 10 forall iex jef. (3)

This shows that 4,,;, is & P-matrix. Mercover, since 0 < ¢ < | and

(xAv—k=1) +(x+z—k=1),

Slx=k=1, +(x4+r+cz—k-1) Vrpz20.

we have
Apigfcidj=0ici4j=1) Al +m =10 L+ m=1]
— ’[_f"k--H, m=k-1},

> ik ik,

=dppeli sl +m=Vicl+m=1) Al i+i-Li+j-1]

ir/<i+j—~1. (4)
Together with Eq. (3). Eq. (4) shows that 4, ;, satisfies Eq. (1) if «, § are sets of
consceitive integers,

To prove Eq. (1) in general, first make a definition, Call the subsets «, f# C
() separated it |p — g| > 1Yp € 2, g € f. Suppose a, f§..... 5; C (n) are sets of
consecutive integers, fi; (i = 1,..../) are separated, and

forany i=1...., Jj. there exist p € f§; and g € « such that |p— g| < 1.

(%)

Then 4,4, 2 and fi:= U: | satisfy Eq. (1). Indeed, Eq. (1) holds for x and
fi. 101 <1 <, then, assuming Eq. (1) for « and 7, := Ufl,, f}.. we have
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/1u.k.![“! 1]‘4;?.!{.! [}‘f: 1+ 71 1] - An.k.f[m :‘:]/,n.k,! {;‘!‘ -J'i]f’n.k.r[ﬁf i ] [‘ i |]
Z A2 Uyt Ui Oyt vyl By By

Due to Eq. (5}, 2 U, is a set of consecutive integers, so an application of Eq.
(1) yields
Anra[2 U2 U duaad B Brl
Z Ayt Uiy 2 Uy Jdua (U ) O B (U ) 0 )

But (xUy) 0 fs,,, =2nf,,, since the sets fi; are pairwise disjoint. So,

An.k.r[x- 1]Au.k.:[}'/; i+ 71 |J
= AUy oo Uy el ey Jdada 0 i a0 fi
= Apsa[r Uy 2 U a0 20y . (6)

Now, given a set of consecutive integers % C (1) and any index set ff C (n),
write ff =3, Jsa where 5, i= UL oo = U0 Beall B (=10, 0+ m) are
separated, and f; satisfies Eq. (5) tf and only 1if i < /. Then
Anga[ A Ansal B B) = Auwral2 A Awailyr i Ansal20]
2 AU sy U2 0o 0 Al )
= Ay 2 U7 Ui Uy Uinfdys[x Ny a0y
= A2 U B 2U A, 2N foxnf.

In other words, 4, satisfies Eq. (1) if 2 C {n) is a sct of consecutive integers
and f# C (n) 1s arbitrary.

Finally, if 2), 22, # C {n), the sets %; (i = 1,2) are separated, Eq. (1) holds for
o and ff, and o, is a set of consecutive integers, then Eq. (1) holds for o := o) U
¥, and fi:

Apiio Ui B Bl = Ausi[tr o Ao alo, 2a)du i, B
> A, el U B oy U Bd, el 0 Booy N A ko2, 2]
= Al (o U B) Uata, (3 U BYU 2a)d, s, [(20 U ) Mg, (o U fB) N 2o
Ao 0B 0 f
= Ay U B U flApselon 0 ooy O BA,xll2e O 20 fi]
= Apisr U B a U BlA, {20 a0 fi].

So, by induction on the number of ‘components’ of «, Eq. (1) holds for any 2,
B C (n). Thus, by the Gantmacher-Krein-Carlson theorem, 4,4, 's GKK for
any t € (0,1) and any £,n € N,

Now check that 4,,, have eigenvalue monotonicity if n <% +2 and ¢ €
(0, 1) is sufficiently small. Let (pff"().) = det(dgyjpiug =) forj=1.....k+ L
We show by induction that
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' (4) =
(1= = (=) if j=1,
D=y = (=) = (= 0P = Ay 7
= (= D = =20 = A i j > 1,
g ~1)M1 - il j=1.
aj;' = ( )QF,‘ -1) 2 I (8)
(=D =)y >,
[(1=7) 0 o0 ')
I (-2 ... 0 d)",
g (1) = (-1 det
0 0 e (1= &
\.\ 0 0 ] a‘,'" /
<y -1 1
. (L= =0
T T i) vjeN. o)

(1 -4)~1

By direct calculation, ¢p‘§"(z’.) = (1 - P AR (*-l)*a‘,“’. 50, since rpf’(O) =1, We
have a)' = (=1)*(1 = ¢). Thus Egs. (7)-(9) hold for j = 1. Now suppose that
J = 2 and our formulas are true for j— I. Expansion of ¢ (4) by its last row
gives

o' (2) = (1= Aok (A) + g/ (4). (10)

Since ¢}'(0) = ¢ ¥j € N, this implies g}‘(0) =« ~¢~'. On the other hand,
expanding gff"(.?.) by its first row, we gel

g'(2) = (1= gy () + (=1) "y, (11)

so @' = (=)' gl (2) — (1= g ()], = (=121 1), which gives
Eq. (8). Now. using Eq. (11) again together with the inductive hypothesis on
gf'_’,, we get Eq. (9):

(1= = (1 =)

¢y =-(1=n( ="+ (1 -1 + 1) = 1)

=-(1-0(1=2"+1-1
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Fmdlly substituting the expression for (p, ', (4) and the just verified expression

for s,r “(2) into Eq. (10) yields Eq. (7).
i (n) D= U’ a; 1s the umon of separated sets of consecutive integers,

then det(A,4,(x,2) — A1) =[]} | det(d(o., ;) — A} since A4, - Al 15 Hessen-
berg (the same observation earlier led to Eq. (3)). Since 4,4, — Al is Tocplitz,
the product in the right-hand side equals [T/, det(d, .. {(Ba;), (#a;)) — AT).
Hence, to prove eigenvalue monotonicity of A, ;, lor n < 2k - 21t 1s enough to
prove it for leading principal submatrices of 4,, only, 1.e., to show

HAgyyorane) SHAG ae) Y EN,
i.e., that ([J‘f'[ has a root in (0, 1] for any j<4 + 1, and

min{4 € (0,1]: ,(2) =0} < min{Z € (0,1] : ;_,(£) = D},

(since Ay, 4, is a P-matrix, the ceeflicients of its characteristic polynomial are
Sll‘lLlly allcmdtmg, 50 Aiy ;4. has no nonpositive cigenvalues). Observe that

cpj A)y=+¢ - /(p, ‘(1) where

~ k. ((0) d(ﬂjr()) . ~ Ei_l“_:_(j‘_),
Vi di | -0 N dz .
VEN! ;o
V(4) = lim }(4) = (1 =2 =2 4 (=1 =2

So, lim,_g: (pj "W =k+3-j22 V]—l k41

Since 0, the minimal real root of v} Vi, 18 stmplc the minimal real root Z; of cp,
is positive and simple for all j = 1,...,k + | whenever 7 is sufﬁuenlly small.
But then @{'(4;) is bounded below by a positive constant for any

j=1,...,k+1, hence

4 O il k4l
-~ <~- :"-I j: ,---\’+'a
o) @)

if ¢ is small. So, for any &k € N and »n < 2k + 2, there exists (k) € (0, 1) such that

Ay, is a T-matrix for all ¢ € (0, 1(k)).
Now let B := lim,_.q; A .24, The matrix By is Toeplitz with first column

(1,1,0,...,0)"
Ny e’

(2k times)

Aj =

and first row

k
(1,0,...,0,(= )", (=1)*,0,...,0).

k times k—1 umes
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We show that there exists K < N such that, for all & > K, B, has an cigenvalue
7 with Re 7 < 0. As the eigeiivalues depend continuously on the entries of the
matrix, this will demonstrate that, for any £ > K, there exists 7 € (0,1) such
that the GKK -matrix As; .4, has an cigenvalue with negative real part.

The polynomial ¥ | has a root with negative real part ifl the polynomial i,
where

po(i) s =l S (L Y kR () k

has a root with positive rcal part. Since

. !\ % .v;'{_,'..
W, (4) = {;( J: ) ' 2}.

it is, in turn, cnough to show that 5, where
o 2 k43 s
N (4) 1= 4 ‘1//A Z ’
i /

has a root with positive real part. The Hurwitz matrix for the polynomial ;. is

(A (D) ) G G
|2 ) ) )
o Y 6N 6D (D)
Sl IS O RGO I
00 () )G
\ D : ; 5 "'}‘kh’.)x!kﬂ)
Compute the minor H[2:5,2: 5], taking out the factors (*,%), (*;*). (!,
fromns 1ts second, third, and lounlh columns respectively. We obtain
I
2 - §) = (3 — 4957 - 210k —
Hi[2:5.2: ] ~ T3 300" 36 — 49K% — 210k — 318)(k + 4)°(k + 5,

CENED)

It follows that Hy[2:5,2:5] <0 for k large enough, prccisely, for all £ > 20.
But the Hurwitz matrix of a nonpositive stable polynomial is totally nonneg-
ative {see [1]). So, for k > 20, n, has a zero with positive real part, therefore,
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vt . has a zero with negative real part. This completes the proof that the GKK
T-matrices A 24, are unstable for sufliciently large £ and small 1.

Remark. To illustrate the vesult, consider the matrix Ay, ic., the Toeplitz
matrix whose firs: colunm is

{42 times)

and first row is

(1,0, 00-4 /2, =1/2° 1720 =172 ... —1/9)
N e’

21 times

and the limit matrix By, with the same foest cofwomin as Agg 102 and first row equal
to

(1,0,...,0.=1,=1.0.....0).
N — N’

Mt 20 tmes

Acceording to MATLAB, the two cigenvalues with minimal real part of the first
matrix are —2.809929189497896 - 1072 4 3.275076252367531 - 107i; those of
the second are —3.420708309454068 - 10-* 4 3.400425852703498 - 1011,
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