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Abstract

In this work, we consider an elliptic system of two equations in dimension one (with Neumann boundary
conditions) where the nonlinearities are asymptotically linear at −∞ and superlinear at +∞. We obtain
that, under suitable hypotheses, a solution exists for any couple of forcing terms in L2.

We also present a similar result in which the superlinearity is in only one of the two equations, and we
discuss the resonant problem too.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this work we are mainly concerned with the problem⎧⎨⎩−u′′ = λv + g1(x, v) + h1(x) in (0,1),

−v′′ = μu + g2(x,u) + h2(x) in (0,1),

u′(0) = u′(1) = v′(0) = v′(1) = 0,

(1.1)

where the principal hypothesis is

(H1) g1,2 ∈ C0([0,1] × R
)
, lim

s→−∞
g1,2(x, s)

s
= 0, lim

s→+∞
g1,2(x, s)

s
= +∞

uniformly with respect to x ∈ [0,1], and h1,2 ∈ L2(0,1).
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Some hypotheses on the growth at infinity in the second variable of the nonlinearities g1,2
will be needed to obtain the PS condition for the functional associated to problem (1.1): defining
G1,2(x, s) = ∫ s

0 g1,2(x, ξ) dξ , we ask

(H2) ∃θ ∈ (0, 1
2 ), s0 > 0 s.t. 0 < G1,2(x, s) � θsg1,2(x, s), ∀s > s0;

(H3) ∃s1 > 0, C0 > 0 s.t. G1,2(x, s) � 1
2 sg1,2(x, s) + C0, ∀s < −s1.

Moreover, for certain “resonant” values of λ,μ, also one of the following hypotheses will be
assumed:

(HR0) lims→−∞ gi(x, s) = 0, hi(x) < −d < 0 a.e. x ∈ [0,1], i = 1 or 2;
(HR1) ∃ρ0 > 0, M0 ∈ R s.t. G1(x, s) + G2(x, s) + h1(x)s + h2(x)s � M0 a.e. x ∈ [0,1],

∀s < −ρ0.

An example of nonlinearities which satisfy the hypotheses above may be g1,2(x, s) = es ; in this
case (HR0) and (HR1) become hi(x) < −d < 0 a.e. and h1,2(x) � 0 a.e., respectively.

We will denote in the following with 0 = λ1 < λ2 � λ3 � · · · � λk � · · · the eigenvalues of
−Δ in H 1(0,1) and with (φk , k = 1,2, . . .) the corresponding eigenfunctions, which will be
taken orthogonal and normalized with ‖φk‖L2 = 1.

The main result of this work is the following theorem.

Theorem 1.1. For λ,μ > 0,
√

λμ ∈ (0, λ2/4), under hypotheses (H1)–(H3), there exists a solu-
tion for problem (1.1) for any h1, h2 ∈ L2(0,1).

We will also consider the two limiting (resonant) cases:

Theorem 1.2. Under hypotheses (H1)–(H3) and with h1, h2 ∈ L2(0,1) we have:

(i) For λ,μ > 0,
√

λμ = λ2/4, if hypothesis (HR1) is satisfied too, then there exists a solution
for problem (1.1).

(ii) If λ = 0,μ > 0 (or λ > 0,μ = 0, or λ = μ = 0), if hypothesis (HR0) is satisfied for i = 1 (or
i = 2, or i = 1,2, respectively), then there exists a solution for problem (1.1).

We remark that problem (1.1) with λ,μ > 0,
√

λμ > λ2/4 seems much more difficult to work
with, due to the more complicated interaction of the nonlinearity with the spectrum.

In the case λ < 0 or μ < 0 instead, it is simple to show that no result similar to Theorem 1.1
may be achieved, actually we will show in Proposition 7.1 that one may always find functions
h1, h2 ∈ L2 for which no solution exists.

Observe that in problem (1.1), we are assuming a linear–superlinear nonlinearity in both equa-
tions; however, we will show that few modifications in the proofs allow to treat also the problem
with the linear–superlinear term in one equation and a jumping nonlinearity in the other: namely⎧⎨⎩

−u′′ = λv + g1(x, v) + h1(x) in (0,1),

−v′′ = μ+u+ − μ−u− + g2(x,u) + h2(x) in (0,1),

u′(0) = u′(1) = v′(0) = v′(1) = 0,

(1.2)

where u±(x) = max{0,±u(x)} and now
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(H1∗) g1,2 ∈ C0([0,1] × R
)
, lim

s→−∞
g1(x, s)

s
= 0, lim

s→+∞
g1(x, s)

s
= +∞,

lim
s→−∞

g2(x, s)

s
= 0, lim

s→+∞
g2(x, s)

s
= 0

uniformly with respect to x ∈ [0,1], and still h1,2 ∈ L2(0,1).
In this case we will assume hypothesis (H2) only for g1, while for g2 we will assume the

equivalent of (H3) also at +∞ too, namely

(H3∗) G2(x, s) � 1
2 sg2(x, s) + C0, ∀s > s1.

The result is the following

Theorem 1.3. For λ > 0, μ+ > μ− > 0 and
√

μ−λ ∈ (0, λ2/4), under hypotheses (H1∗), (H2)
only for g1, (H3) and (H3∗), there exists a solution for problem (1.2) for any h1, h2 ∈ L2(0,1).

1.1. Some comments about the techniques used and some related results

The main theorems will be proved by finding a critical point of the functional associated to
problem (1.1):

F :E = H 1 × H 1 → R : u = (u, v) �→ F(u)

=
1∫

0

u′v′ −
1∫

0

(
λ

2
v2 + μ

2
u2

)
−

1∫
0

(
G1(x, v) + G2(x,u)

) −
1∫

0

(h1v + h2u), (1.3)

or to problem (1.2), which is analogous to this except for the second integral being replaced by

1∫
0

(
λ

2
v2 + μ+

2

(
u+)2 + μ−

2

(
u−)2

)
.

We observe that one important characteristic of this kind of system is that, in order to treat it
variationally, we are led to work with this functional, which is strongly indefinite, in the sense that
there exist two infinite dimensional subspaces of E such that F is unbounded from above in one
and from below in the other (see Lemma 2.1). This implies that the standard linking theorems are
no more available to find critical points. Some of the techniques used in approaching this kind of
problems may be seen in [1–4]; in particular, we will use an approximation technique (Galerkin
procedure), namely we will solve finite dimensional problems, then take limit on the dimension
of such problems and prove that the result is actually the critical point we were looking for (see,
for example, [4]).

The scalar counterpart of problem (1.1) is{−u′′ = λu + g(x,u) + h(x) in (0,1),

u′(0) = u′(1) = 0
(1.4)

and it has been considered in many works.
For λ < λ1 (no matter whether the boundary conditions are Neumann or Dirichlet) it is the

so-called Ambrosetti–Prodi problem (first considered in [5]) and it has zero, at least one or at
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least two solutions, depending on the forcing term h ∈ L2. The result in Propositions 7.1 and 7.2
suggests that a similar phenomenon may happen for our system too.

For λ > λ1, the behavior is quite different for Neumann and Dirichlet conditions: in [6] it is
shown that, in the Dirichlet case, for any λ > λ1, there exist examples in which no solution exists,
while for the Neumann case (in dimension one), it was obtained in [7] and later in [8] that for λ ∈
(0, λ2/4), a solution exists for any h ∈ L2; this result was then extended to λ ∈ (λk/4, λk+1/4),
k � 2 in [9].

Our Theorems 1.1 and 1.3 look to be the equivalent of the results in [7,8] for the problems (1.1)
and (1.2), while the result in [9] appears much more difficult to be extended to these systems.

In [7], also the resonant case λ = 0 is considered, with a nonresonance condition similar, but
weaker, to our (HR0); the resonance for λ = λ2/4 was considered in [10] and in [9]; in this last
one, the nonresonance condition is quite similar to our (HR1), although it is interesting to remark
that in (HR1) we could assume a joint condition on the nonlinearities in the two equations, which
is much weaker than asking the condition in [9] for both, separately.

Finally, we remark that problem (1.2) with μ+ = μ− = 1 and g2 ≡ 0, h2 ≡ 0, becomes a
fourth order scalar problem, which was considered in [11] and (for higher values of λ) in [6]: the
result here may be seen as a generalization of that in [11]; however, since here we are considering
a more general nonlinearity, the result in [11] is stronger: it was obtained up to dimension three
and, for dimension one, the existence was proved for λ ∈ (0, γ ), where γ was approximatively
0.32π4: a value much larger than λ2

2/16 = π4/16  0.0625π4, which results from Theorem 1.3.
This is due to the fact that, since here we are considering a more general nonlinearity, the sets
chosen to estimate the functional may not be adapted to the problem as well as there.

The techniques we will use in order to prove the main theorems will be inspired by those
in [7,8] (which we will briefly describe in Section 3), but will need to be adapted to the more
complex characteristics of the functional (1.3) and of its variational setting, which forces us to
use the Galerkin approximation technique described above.

2. Definitions and notations

Consider the eigenvalue problem⎧⎨⎩
−u′′ = λv in (0,1),

−v′′ = λu in (0,1),

u′(0) = u′(1) = v′(0) = v′(1) = 0,

(2.1)

it is known that the eigenvalues of problem (2.1) are:

• λk , k = 1,2, . . . (with corresponding eigenfunctions the couples (φk,φk)),
• −λk , k = 1,2, . . . (with corresponding eigenfunctions the couples (φk,−φk)).

In view of the above structure, let H = H 1(0,1), E = H × H (with norm ‖(u, v)‖2
E =

‖u‖2
H + ‖v‖2

H ) and define

E+ = {
(u, v) ∈ E: u = v

}
, E− = {

(u, v) ∈ E: u = −v
}
, (2.2)

E+
n = {

(u, v) ∈ E: u = v ∈ span{φ1, . . . , φn}
}
, (2.3)

E−
n = {

(u, v) ∈ E: u = −v ∈ span{φ1, . . . , φn}
}

(2.4)
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and finally,

En = E+
n ⊕ E−

n , (2.5)

so that
⋃

h∈N
Eh = E.

Since the functional (1.3) has the term
∫ 1

0 u′v′ as its principal part, the following estimates
will be useful:

Lemma 2.1.
1∫

0

2u′v′ � λk+1

1∫
0

(
u2 + v2) for u = (u, v) ∈ (

E− ⊕ E+
k

)⊥
, (2.6)

1∫
0

2u′v′ � −λk+1

1∫
0

(
u2 + v2) for u = (u, v) ∈ (

E−
k ⊕ E+)⊥

, (2.7)

1∫
0

2u′v′ � λk

1∫
0

(
u2 + v2) for u = (u, v) ∈ E− ⊕ E+

k , (2.8)

1∫
0

2u′v′ � −λk

1∫
0

(
u2 + v2) for u = (u, v) ∈ E−

k ⊕ E+. (2.9)

Proof. In (E− ⊕ E+
k )⊥ one has u = v and then

1∫
0

2u′v′ = 2

1∫
0

|u′|2 � 2λk+1

1∫
0

u2 = λk+1

1∫
0

u2 + v2, (2.10)

proving (2.6).
Then observe that

1∫
0

2u′v′ = 1

2

1∫
0

∣∣(u + v)′
∣∣2 − ∣∣(u − v)′

∣∣2

and that for u ∈ E− ⊕ E+
k one has (u + v,u + v) ∈ E+

k , then

1∫
0

2u′v′ � 1

2

1∫
0

∣∣(u + v)′
∣∣2 � λk

1

2

1∫
0

(
u2 + v2 + 2uv

)
� λk

1∫
0

u2 + v2, (2.11)

proving (2.8).
The same argument gives the other two estimates. �

3. Proof of Theorem 1.1

In [7,8], the solution of problem (1.4) is found as a mountain pass critical point: the functional
J associated to the problem is such that:
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• J is bounded from below in the set

S =
{
u ∈ H 1(0,1) such that sup

x∈[0,1]
u(x) = 0

}
, (3.1)

provided λ < π2/4,
• limt→±∞ J (tφ1) = −∞, provided λ > 0;

since H 1(0,1) ⊆ C([0,1]), the set S splits H 1(0,1) into two components and ±φ1 lie on the
opposite sides of it, so one gets the linking structure which provides (through the PS condition)
a critical point. Moreover, the value π2/4 = λ2/4 was obtained through the variational charac-
terization

π2

4
= inf

{∫ 1
0 (u′)2∫ 1

0 u2
with u ∈ S\{0}

}
(3.2)

(this characterization is the one used in [8], the one used in [7] it is slightly different).
We will try to adapt this idea to our problem.
First of all, the following lemma will allow us to work with simpler hypotheses.

Lemma 3.1. In the hypotheses of Theorem 1.1, problem (1.1) admits a solution with the parame-
ters λ,μ if and only if it admits a solution with parameters λ̂ = μ̂ = √

λμ.

Proof. If we change the unknown functions u,v with the new ones U = u and V = δv, being
δ = √

λ/μ, then we obtain a new system with parameters λ̂ = μ̂ = √
λμ, and in which the given

hypotheses are still satisfied; then the two problems are equivalent. �
Then, we make the following definitions: given u = (u,u) ∈ E+, we define

σ(u) = sup
x∈[0,1]

u(x); (3.3)

then we define (for n > 1) the following sets and quantities:

Tn =
{

u = (u,u) ∈ E+
n :

1∫
0

uφ1 = 0

}
, (3.4)

Sn = {
u = (u,u) ∈ E+

n : σ(u) = 0
}
, (3.5)

γn = inf

{∫ 1
0 (u′)2∫ 1

0 u2
with u = (u,u) ∈ Sn\{0}

}
, (3.6)

Ln =
{

u = (u, v) ∈ (
E−

n ⊕ E+
1

)
:

1∫
0

u2 + v2 = 1

}
, (3.7)

L̃n =
{

u = (u, v) ∈ (
E−

n ⊕ E+
1

)
:

1∫
0

u2 + v2 � 1

}
. (3.8)

First we will prove some properties of the above definitions:
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Lemma 3.2. The function σ :E+ → R : u �→ σ(u) is continuous.

Proof. We have, since H 1(0,1) ⊆ C0[0,1] with continuous inclusion,∣∣σ(u,u) − σ(v, v)
∣∣ � ‖u − v‖L∞ � C‖u − v‖H 1 � C

∥∥(u,u) − (v, v)
∥∥

E
. � (3.9)

Lemma 3.3. The set Sn is homeomorphic to Tn, moreover Sn links in En with RLn for any R > 0.

Proof. Observe that En = E−
n ⊕E+

1 ⊕Tn and denote by PT :En → Tn and PL :En → E−
n ⊕E+

1
the two orthogonal projections.

The map M :Tn → Sn : (u,u) �→ (u,u)−σ(u)(1,1) is continuous by the previous lemma and
has the restriction of PT to Sn as its inverse, so it is a homeomorphism.

Now observe that the action of the map M is a translation parallel to the subspace E−
n ⊕ E+

1
(in which lies L̃n) and that Tn is orthogonal to this subspace. Then we may extend the map M to
the map

M̃ :En → En : (u.v) �→ (u, v) − σ
(
PT (u, v)

)
(1,1), (3.10)

which is still an homeomorphism and which translates each plane parallel to L̃n by the same
quantity. Since the plane containing L̃n intersects Tn in the origin and σ(0,0) = 0, this plane is
not translated and then M̃|Ln = Id.

Finally, consider any map ψ : L̃n → En with ψ |Ln = Id and consider the composition
Ψ = PL ◦ M̃−1 ◦ ψ : Ψ is the identity on Ln and so the topological degree deg(Ψ, L̃n,0) =
deg(Id, L̃n,0) = 1, since 0 ∈ L̃n. This implies that there exists p ∈ L̃n such that Ψ (p) = 0, that
is ψ(p) ∈ M̃(Ker(PL)) = Sn, giving the claimed linking property. �
Lemma 3.4. Let γn be given by (3.6). Then γn � λ2/4 (in fact, {γn} is nonincreasing and
γn → λ2/4).

Proof. The definition in (3.6) is analogous to that in (3.2), except for the fact that the inf is taken
on Sn which is an increasing sequence of subsets of S which fill it. �

Now we define, for n > 1 and Rn > 0,

en = inf
γ∈Γ ∗

n,Rn

sup
u∈γ (Bn+1)

F (u), (3.11)

where now

Γ ∗
n,Rn

= {
γ ∈ C0(Bn+1,En

)
s.t. γ |∂Bn+1 is an homeomorphism onto RnLn

}
. (3.12)

What we intend to prove is the following proposition, which in fact implies Theorem 1.1 by
virtue of Lemma 3.1.

Proposition 3.5. Under hypothesis (H1), for λ = μ ∈ (0, λ2/4), h1,2 ∈ L2(0,1) and suitable Rn

large enough, the values en are critical for the restriction to En of the functional F .
Moreover, under hypotheses (H2) and (H3), up to a subsequence, en → e ∈ R for n → ∞

and the critical points corresponding to the values en converge to a nontrivial solution of prob-
lem (1.1).
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First, we need to estimate F on the sets defined above, in order to obtain the claimed critical
points: observe that since h1,2 ∈ L2 and using hypothesis (H1), we can find constants C1, C2 and
C3 as follows:

• C1(δ, h1,2) such that∣∣∣∣∣
1∫

0

h1v + h2u

∣∣∣∣∣ � δ

4

(‖u‖2
L2 + ‖v‖2

L2

) + C1(δ, h1,2); (3.13)

• C2(δ, g1,2) such that∣∣∣∣∣
1∫

0

G1
(
x,−v−) + G2

(
x,−u−)∣∣∣∣∣ � δ

4

(‖u‖2
L2 + ‖v‖2

L2

) + C2(δ, g1,2); (3.14)

• C3(g1,2) such that

1∫
0

G1
(
x, v+) + G2

(
x,u+)

� −C3(g1,2). (3.15)

Lemma 3.6. If λ = μ > λ1 = 0, then ∀C ∈ R there exists R > 0 such that F |γ (∂Bn+1) � C for
any γ ∈ Γ ∗

n,R , n > 1.

Proof. Let u = (u, v) ∈ Ln. Then
∫ 1

0 (u2 + v2) = 1 and
∫ 1

0 u′v′ � λ1
2

∫ 1
0 (u2 + v2) (in fact, here

λ1 = 0).
By using the above estimates, one gets (for ρ > 0)

F(ρu)

ρ2
=

1∫
0

u′v′ − λ

2

1∫
0

(
v2 + u2) −

1∫
0

G1(x,ρv) + G2(x,ρu)

ρ2
−

1∫
0

h1ρv + h2ρu

ρ2

� λ1 − λ

2

1∫
0

(
v2 + u2) +

1∫
0

∣∣∣∣G1(x,−ρv−) + G2(x,−ρu−)

ρ2

∣∣∣∣
−

1∫
0

G1(x,ρv+) + G2(x,ρu+)

ρ2
+

1∫
0

∣∣∣∣h1ρv + h2ρu

ρ2

∣∣∣∣
� λ1 − λ + δ

2
+ C1(δ, h1,2) + C2(δ, g1,2) + C3(g1,2)

ρ2
. (3.16)

Then by choosing 0 < δ < λ − λ1, we have that the first part is negative and then for
R large enough (namely R2 > 2C−C1(δ,h1,2)−C2(δ,g1,2)−C3(g1,2)

λ1−λ+δ
) one gets the claim for u =

(u, v) ∈ RLn. �
Lemma 3.7. For λ = μ < λ2/4, there exists η such that F |Sn � η for any n > 1.

Proof. For u = (u,u) ∈ Sn we have u(x) � 0 and
∫ 1

(u′)2 � γn‖u‖2
2 , then we may estimate:
0 L
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F(u) =
1∫

0

(u′)2 − λ

1∫
0

u2 −
1∫

0

G1(x,u) + G2(x,u) −
1∫

0

h1u + h2u

� (γn − λ)‖u‖2
L2 −

(
δ

2

1∫
0

u2 + C2(δ, g1,2)

)
−

(
δ

2

1∫
0

u2 + C1(δ, h1,2)

)

� (γn − λ − δ)

1∫
0

u2 − C2(δ, g1,2) − C1(δ, h1,2). (3.17)

Now, if λ < λ2/4, we may choose δ < λ2/4 − λ so that the first term is non negative for any
n > 1 by Lemma 3.4 and so F(u) � −C2(δ, g1,2) − C1(δ, h1,2). �
Lemma 3.8. For λ = μ ∈ (0, λ2/4), there exist ζ, η ∈ R such that ζ � en � η, for any n > 1.

Proof. The bound from below is given by Lemma 3.7 and the linking property in Lemma 3.3.
For the bound from above one may simply build a map γ̃ ∈ Γ ∗

n,R such that γ̃ (Bn+1) = RL̃n

and then the same computations in Lemma 3.6 provide the estimate

sup
u∈γ̃ (Bn+1)

F (u) � λ1 − λ + δ̂

2

1∫
0

(
u2 + v2) + C1(δ̂, h1,2) + C2(δ̂, g1,2) + C3(g1,2); (3.18)

then again by choosing 0 < δ̂ < λ − λ1 one gets the claimed estimate from above with ζ =
C1(δ̂, h1,2) + C2(δ̂, g1,2) + C3(g1,2). �

Now we may conclude:

Proof of Proposition 3.5 and Theorem 1.1. By Lemmas 3.8 and 3.6 with C < η we can apply
a linking theorem to obtain that the levels en are critical for the restriction of F at the finite
dimensional subspace En, that is there exists un = (un, vn) ∈ En such that Eq. (4.2) below holds.

Moreover, the estimate ζ � en � η implies (4.1) below and then we have, by Proposition 4.1,
that (up to a subsequence) un

E−→ u = (u, v) ∈ E, which is a solution of problem (1.1) (using also
Lemma 3.1). �
4. Proof of the PS* condition

In this section we prove that the sequence of points in E obtained in the first part of Proposi-
tion 3.5, contains a convergent subsequence (this is known as PS* property) and that its limit is
actually a critical point for F .

Proposition 4.1. Let the sequence {un} = {(un, vn)} ⊆ E with (un, vn) ∈ En be such that

∣∣F(un)
∣∣ =

∣∣∣∣∣
1∫

0

u′
nv

′
n −

1∫
0

λ

2
v2
n + μ

2
u2

n −
1∫

0

G1(x, vn) + G2(x,un)

−
1∫
h1vn + h2un

∣∣∣∣∣ � T , (4.1)
0
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〈
F ′(un), (φ,ψ)

〉 = 1∫
0

u′
nψ

′ + v′
nφ

′ −
1∫

0

λvnψ + μunφ −
1∫

0

g1(x, vn)ψ + g2(x,un)φ

−
1∫

0

h1ψ + h2φ = 0 ∀(φ,ψ) ∈ En. (4.2)

Then, for λ,μ �= 0 and under hypotheses (H1)–(H3), there exists u = (u, v) ∈ E such that

1∫
0

u′ψ ′ + v′φ′ −
1∫

0

λvψ + μuφ −
1∫

0

g1(x, v)ψ + g2(x,u)φ −
1∫

0

h1ψ + h2φ = 0

∀(φ,ψ) ∈ E, (4.3)

that is, (u, v) is a solution of problem (1.1).
In fact, up to a subsequence, un → u in E.

The proof will be in most parts very close to that in [9], for the scalar problem: we sketch it
here, underlining the differing parts:

(1) First one estimates (from hypothesis (H1)):

for any ε > 0, s̄ ∈ R and M ∈ R, there exist CM , Cε ∈ R (of course depending also on s̄) such
that

g1,2(x, s) � Ms − CM for s > s̄, (4.4)∣∣g1,2(x, s)
∣∣ � ε(−s) + Cε for s � s̄. (4.5)

Then one supposes that the sequence un is not bounded in E and so assumes ‖un‖E � 1,
‖un‖E → +∞, defines zn = (Un,Vn) = un/‖un‖E , so that zn is a bounded sequence in E and
then we can select a subsequence such that zn → z0 = (U0,V0) weakly in E and strongly in
[L2]2 and [C0[0,1]]2.

(2) Claim: U0,V0 � 0.

Proof of the claim. From 〈F ′(un,vn),(φ1,φ1)〉‖un‖E
= 0 one gets (remember that in this case φ1 = 1)

1∫
0

g1(x, vn)

‖un‖E

+ g2(x,un)

‖un‖E

�
∣∣∣∣∣

1∫
0

λVn + μUn

∣∣∣∣∣ +
∣∣∣∣∣

1∫
0

h1

‖un‖E

+ h2

‖un‖E

∣∣∣∣∣. (4.6)

Then we proceed as in [9] to obtain that, for any x̄ such that V0(x̄) > 0, we have

lim
n→+∞

g1(x̄, vn)

‖un‖E

= +∞, (4.7)

and that (for any x ∈ [0,1])
g1(x, vn) � −ε|Vn| − CM,ε ; (4.8)
‖un‖E ‖un‖E
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now taking lim inf, we get

lim inf
n→+∞

g1(x, vn)

‖un‖E

� −ε
∣∣V0(x)

∣∣ (4.9)

for any choice of ε and then

lim inf
n→+∞

g1(x, vn)

‖un‖E

� 0. (4.10)

The analogous to (4.7) and (4.10) hold replacing g1 with g2 and v with u.
Since Un,Vn are uniformly bounded (by their C0 convergence) and ‖un‖E � 1, (4.8) implies

that the functions g1(x,vn)
‖un‖E

, g2(x,un)
‖un‖E

are bounded below uniformly so that we can use Fatou’s

Lemma and get from (4.6), (4.7) (supposing U+
0 �≡ 0 or V +

0 �≡ 0) and (4.10)

+∞ =
1∫

0

lim inf
n→+∞

(
g1(x, vn)

‖un‖E

+ g2(x,un)

‖un‖E

)

� lim inf
n→+∞

1∫
0

g1(x, vn)

‖un‖E

+ g2(x,un)

‖un‖E

� lim inf
n→+∞

(∣∣∣∣∣
1∫

0

λVn + μUn

∣∣∣∣∣ +
∣∣∣∣∣

1∫
0

h1

‖un‖E

+ h2

‖un‖E

∣∣∣∣∣
)

. (4.11)

The right-hand side can be estimated since the first term is bounded by (λ‖Vn‖H 1 +μ‖Un‖H 1) �
λ + μ and the last one clearly goes to zero; then Eq. (4.11) gives rise to a contradiction unless
U0,V0 � 0. �
(3) Claim: Using hypotheses (H1) and (H3), we obtain a constant A such that∫

vn>s0

g1(x, vn)vn � A‖un‖E,

∫
un>s0

g2(x,un)un � A‖un‖E, (4.12)

at least for n big enough.

Proof of the claim. From |2F(un) − 〈F ′(un),un〉| � 2T one gets∫
vn>s0

g1(x, vn)vn − 2G1(x, vn) +
∫

un>s0

g2(x,un)un − 2G2(x,un)

�
∫

vn�s0

2G1(x, vn) − g1(x, vn)vn +
∫

un�s0

2G2(x,un) − g2(x,un)un

+
∣∣∣∣∣

1∫
0

h1vn + h2un

∣∣∣∣∣ + 2T , (4.13)

and proceeding as in [9] obtains (by using hypotheses (H2) and (H3))∫
g1(x, vn)vn +

∫
g2(x,un)un � A

2
‖un‖E + A

2
� A‖un‖E (4.14)
vn>s0 un>s0
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for some constant A; but by hypothesis (H2), both integrals are nonnegative, and then we ob-
tain (4.12). �
(4) Claim:

1∫
0

|g1(x, vn)|
‖un‖E

→ 0,

1∫
0

|g2(x,un)|
‖un‖E

→ 0. (4.15)

Proof of the claim. As in [9]. �
(5) Claim: λ,μ �= 0 implies (U0,V0) = (0,0).

Proof of the claim. For any given (φ,ψ) ∈ Eh we get, from 〈F ′(un),(φ,ψ)〉
‖un‖E

= 0 with n > h:∣∣∣∣∣
1∫

0

U ′
nψ

′ + V ′
nφ

′ −
1∫

0

λVnψ + μUnφ

∣∣∣∣∣
�

1∫
0

|g1(x, vn)|
‖un‖E

|ψ | + |g2(x,un)|
‖un‖E

|φ| +
∣∣∣∣∣

1∫
0

h1ψ + h2φ

‖un‖E

∣∣∣∣∣; (4.16)

but now the right-hand side goes to zero by Eq. (4.15), and then we get, taking limit and using
weak convergence of (Un,Vn), that

1∫
0

U ′
0ψ

′ + V ′
0φ

′ −
1∫

0

λV0ψ + μU0φ = 0. (4.17)

Since
⋃

h∈N
Eh is dense in E, this remains true for arbitrary (φ,ψ) ∈ E and then (U0,V0) satisfy

the system⎧⎨⎩
−U ′′

0 = λV0 in (0,1),

−V ′′
0 = μU0 in (0,1),

U ′
0(0) = V ′

0(0) = U ′
0(1) = V ′

0(1) = 0.

(4.18)

Since we know that all solutions of this system with λ,μ �= 0 change sign (while U0,V0 � 0),
this implies (U0,V0) ≡ (0,0). �
(6) Claim: (un, vn) is bounded.

Proof of the claim. From 〈F ′(un),(vn,un)〉
‖un‖2

E

= 0 one gets

1∫
0

(
U ′

n

)2 + (
V ′

n

)2 �
1∫

0

(λ + μ)VnUn +
1∫

0

|g1(x, vn)||Un| + |g2(x,un)||Vn|
‖un‖E

+
1∫

h1Un + h2Vn

‖un‖E

. (4.19)
0
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Using (4.15) and the fact that (Un,Vn) → (0,0) in [L2]2 and [C0[0,1]]2, (4.19) becomes

1∫
0

(
U ′

n

)2 + (
V ′

n

)2 → 0, (4.20)

which gives contradiction since one would get 1 = ‖(Un,Vn)‖E → 0. �
(7) Thus un is bounded and so there exists a subsequence such that un → u = (u, v) weakly in
E and strongly in (L2)2 and [C0[0,1]]2.

By taking limit in (4.2) for a given (φ,ψ) ∈ Eh and using the weak convergence of un one
obtains (the nonlinear terms are continuous: if vn → v in C0 then g1(x, vn) → g1(x, v) in L2)

1∫
0

u′ψ ′ + v′φ′ −
1∫

0

λvψ + μuφ −
1∫

0

g1(x, v)ψ + g2(x,u)φ −
1∫

0

h1ψ + h2φ = 0

(4.21)

and, again, this remains true by a density argument for arbitrary (φ,ψ) ∈ E.

(8) Finally, we prove that in fact un → u strongly too.
Let Pn :H → Hn = span{φ1, . . . , φn} be the orthogonal projection map, then Pnu → u and

Pnv → v in H and so Pnu − un → 0 and Pnv − vn → 0 in L2.
Consider Eq. (4.2) with ψ = un − Pnu and φ = 0:

1∫
0

u′
n(un − Pnu)′ −

1∫
0

λvn(un − Pnu) −
1∫

0

g1(x, vn)(un − Pnu)

−
1∫

0

h1(un − Pnu) = 0; (4.22)

g1(x, vn) is bounded in L2, (un − Pnu) → 0 in L2 and then

1∫
0

u′
n(un − u + u − Pnu)′ → 0, (4.23)

which implies un → u strongly in H .
The same argument gives vn → v strongly in H .

5. Proof of Theorem 1.2: The resonant cases

5.1. The resonance in λ2/4

Since we may make a change of unknowns as in Lemma 3.1, assume λ = μ = λ2/4 and
(HR1).

Since Lemma 3.6 and Proposition 4.1 still hold in this case, the only difference arises in
Lemma 3.7, where one has to exploit (HR1) to obtain
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F(u) =
1∫

0

(u′)2 − λ2

4

1∫
0

u2 −
1∫

0

G1(x,u) + G2(x,u) −
1∫

0

h1u + h2u

�
(

γn − λ2

4

)
‖u‖2

L2 − M0; (5.1)

actually, we assumed without loss of generality that ρ0 = 0, since the integral∫
u∈[−ρ0,0]

G1(x,u) + G2(x,u) + h1u + h2u

is bounded.

5.2. The resonance in zero

We observe that the resonance in zero is more complicated: we may no longer proceed as
in Lemma 3.1, that is suppose λ = μ; however, we may exploit the same kind of change of
unknowns to assume, without loss of generality, λ,μ < λ2/4. This implies that the conclusions
of Lemma 3.7 still hold, by simply replacing the term λ

∫ 1
0 u2 with λ+μ

2

∫ 1
0 u2 in (3.17).

So consider first the case λ = μ = 0 and assume (1.1) holds for i = 1,2.

Modifications in the proof of Lemma 3.6. We will estimate (for δ,M > 0)

−
1∫

0

h1v �
∣∣∣∣∣

1∫
0

h1v
+
∣∣∣∣∣ +

1∫
0

h1v
− � δ

1∫
0

(
v+)2 + Cδ − d

1∫
0

v−, (5.2)

1∫
0

∣∣G1
(
x, v−) + G2

(
x,u−)∣∣ � δ

1∫
0

(
v− + u−) + Cδ, (5.3)

1∫
0

G1
(
x, v+) + G2

(
x,u+)

� M

1∫
0

[(
v+)2 + (

u+)2] − C3(g1,2,M), (5.4)

where we used (HR0) in the first two lines (and the same holds with h2 and u in place of h1
and v).

Then we may join the above estimates to obtain, in place of (3.16) (recall that λ = μ =
λ1 = 0):

F(ρu) � KM,δ −
(

Mρ2

1∫
0

[(
v+)2 + (

u+)2]) +
(

δρ

1∫
0

v− + u−
)

+
(

−dρ

1∫
0

(
v− + u−) + δρ2

1∫
0

((
v+)2 + (

u+)2))

� KM,δ + (−M + δ)ρ2

1∫ ((
v+)2 + (

u+)2) + (−d + δ)ρ

1∫ (
v− + u−)

, (5.5)
0 0
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where we collected all the constants in KM,δ .
Now, by choosing δ < d < M , we obtain a negative contribution from both the positive and

the negative part of the functions; however,
∫ 1

0 [(v+)2 + (u+)2] + ∫ 1
0 (v− + u−) is bounded away

from zero in Ln but not uniformly with respect to n: this implies that we may find the claimed R

but depending on n; however this is not a problem since in the proof of Proposition 3.5 R may
depend on n. �
Modifications in the proof of Proposition 4.1. From Eq. (4.18) we now obtain that U0 and V0
are two independent nonpositive constants.

However, by using Eq. (4.2), with test functions the couples (φ1,0) and (0, φ1) we get, re-
spectively

1∫
0

g1(x, vn) +
1∫

0

h1 = 0,

1∫
0

g2(x,un) +
1∫

0

h2 = 0 (5.6)

where (if U0,V0 �≡ 0), un, vn → −∞ uniformly and so we get, by (HR0), the contradiction∫ 1
0 h1,2 → 0; then as before U0 ≡ V0 ≡ 0. �

Finally, the case in which only one of the parameters is zero is similar: let λ = 0, μ > 0 (and,
without loss of generality as observed above, μ < λ2/4) and assume (HR0) only for i = 1: then
in (5.5) one has also a term −μ

∫ 1
0 u2 which may be exploited as in Eq. (3.16), so that it is no

more necessary to assume (HR0) for i = 2, while from system (4.18) one obtains U0 ≡ 0 and
V0 � 0 constant, and proceeds as above to show that in fact V0 ≡ 0 too by (HR0).

Remark 5.1. By comparing hypothesis (HR0) and Proposition 7.1 below, one sees that if in ad-
dition to (HR0) we have also gi > 0, then the sufficient condition hi < −d < 0 and the necessary
one

∫ 1
0 h1 � − infx∈[0,1],s∈R(gi(x, s)) = 0, become similar enough.

6. Proof of Theorem 1.3

To deal with this problem, we may exploit a change of unknown as done in Lemma 3.1; in
this case we will assume λ = μ− ∈ (0, λ2/4) and μ+ > 0.

Observe that the right-hand side of the second equation may be rewritten as μ−u + (μ+ −
μ−)u+ + g2(x,u) and that the term g̃2(x,u) = (μ+ − μ−)u+ + g2(x,u) satisfies the estimates
(3.14) and (3.15) since μ+ > μ−. Then Lemmas 3.6 and 3.7 still hold.

Modifications in the proof of Proposition 4.1. Estimate (4.4) now holds only for g1, while g2
satisfies an estimate as (4.5) also for s > s̄; then (4.11) becomes

1∫
0

lim inf
n→+∞

g1(x, vn)

‖un‖E

� lim inf
n→+∞

(∣∣∣∣∣
1∫

0

λVn + μ+U+
n − μ−U−

n

∣∣∣∣∣ +
∣∣∣∣∣

1∫
0

h1 + h2 + g2(x,un)

‖un‖E

∣∣∣∣∣
)

(6.1)

and implies V + ≡ 0.
0
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Later, in (4.13), one passes the whole term containing g2 and G2 to the right-hand side and
estimates it with (H3) and (H3∗), and so obtains (4.12) (and (4.15) later) for g1 only.

Finally, in place of (4.18) one gets⎧⎪⎨⎪⎩
−U ′′

0 = λV0 in (0,1),

−V ′′
0 = μ+U+

0 − μ−U−
0 in (0,1),

U ′
0(0) = V ′

0(0) = U ′
0(1) = V ′

0(1) = 0;
(6.2)

and again deduces (U0,V0) ≡ (0,0), actually since λ �= 0 and V0 does not change sign, U0 may
only be a constant and so V0 ≡ 0, but then the second equation implies that U0 ≡ 0 too since
μ± �= 0.

The rest of the proof follows straightforward. �
7. The case λ,μ < 0 and an analogous result for the Dirichlet problem

As anticipated in the introduction, we will show here (Proposition 7.1) that when λ or μ is
below the first eigenvalue λ1 = 0, no result like Theorem 1.1 may hold, since it is always possible
to find forcing terms h1 or h2 for which no solution exists.

This result has an analogue for the Dirichlet problem, which will be given in Proposition 7.2.

Proposition 7.1. For λ < 0 (respectively μ < 0), under hypothesis (H1), the problem (1.1)
has no solution if

∫ 1
0 h1φ1 > −minx∈[0,1],s∈R[λs + g1(x, s)] (

∫ 1
0 h2φ1 > −minx∈[0,1],s∈R[μs +

g2(x, s)], respectively).

Proof. Consider the case λ < 0: by testing the first equation against φ1 = 1 one gets

0 =
1∫

0

λv + g1(x, v) +
1∫

0

h1 (7.1)

� min
x∈[0,1],s∈R

[
λs + g1(x, s)

] +
1∫

0

h1, (7.2)

where the minimum above is well defined by the continuity of g1 and the hypotheses (H1) and
λ < 0. Then we obtain the necessary condition

∫ 1
0 h1 � −minx∈[0,1],s∈R[λs + g1(x, s)].

Analogous computations give the result for μ < 0. �
The same kind of nonexistence result may be proved for the Dirichlet problem, with some

more complicated computation: in the following λ1 and ϕ1 will denote the first eigenvalue and
eigenfunction of the Dirichlet problem.

Proposition 7.2. For λ < 0, or μ < 0, or
√

λμ < λ1, under hypotheses (H1), there exist two
constants C ∈ R and m > 0, such that if m

∫ 1
0 h1φ1 + ∫ 1

0 h2φ1 > C, then problem (1.1) has no
solution.

Proof. Let ξ > 0, test the equations against ϕ1, multiply the first by ξ , integrate by parts and
sum them: this gives
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0 =
1∫

0

(ξλ − λ1)vϕ1 + ξg1(x, v)ϕ1 +
1∫

0

(μ − ξλ1)uϕ1 + g2(x,u)ϕ1 +
1∫

0

ξh1ϕ1 + h2ϕ1.

(7.3)

Now, if (ξλ − λ1) and (μ − ξλ1) were both negative, then as in the proof of Proposition 7.1
one could get the minimum obtaining the necessary condition

ξ

1∫
0

h1ϕ1 +
1∫

0

h2ϕ1

� −
(

min
x∈[0,1]

s∈R

[
(ξλ − λ1)s + ξg1(x, s)

] + min
x∈[0,1]

s∈R

[
(μ − ξλ1)s + g2(x, s)

]) 1∫
0

ϕ1. (7.4)

But this may always be obtained: for λ,μ > 0,
√

λμ < λ1 one may choose ξ = √
μ/λ, while

if λ < 0 (respectively μ < 0), then a good choice is ξ sufficiently large (respectively sufficiently
small). �
Remark 7.3. Observe that these two nonexistence results may be extended straightforward to
any spatial dimension, whenever the usual conditions (on the superlinearities g1,2) which allow
to use variational techniques are satisfied.

Moreover, the hypothesis (H1) was used just in order to guarantee that the functions λs +
g1(x, s), etc., were bounded from below; then superlinearity is not necessary, one could simply
ask lim infs→+∞ λ + g1(x,s)

s
> 0 and an analogous condition for g2, in the Neumann case, and

a some more complicated condition (since the two equations remain coupled) for the Dirichlet
case.
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