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Abstract

In this paper, we investigate nonlinear m-term approximation with regard to orthogonal dictionaries.
We consider this problem in the periodic multivariate case for generalized Besov classes M B�q,θ under

the condition �(t) = ω(t1 · · · · · td ) where ω(t) ∈ 9∗
l is a univariate function. We prove that the well-

known dictionary Ud which consists of trigonometric polynomials (shifts of the Dirichlet kernels) is nearly
optimal among orthogonal dictionaries. Moreover, it is established that for these classes near-best m-term
approximation, with regard to Ud , can be achieved by simple greedy-type algorithms.
c⃝ 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Nonlinear approximation, namely, m-term approximation, has been widely researched
recently. Nonlinear m-term approximation is important in applications in image and signal
processing (see, for instance, the survey [2]). One of the major questions in approximation
(theoretical and numerical) is: What is an optimal method? Here, we discuss this question in
a theoretical setting, with the only criterion of the quality of the approximating method its
accuracy. One more important point in the setting of the optimization problem is specifying a
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set of methods over which we are going to optimize—for example, when we are solving the
problem on Kolmogorov’s n-width for a given function class that we are optimizing, in the
sense of accuracy for a given class over all subspaces of dimension n.

In what follows, we give the formulation of best m-term approximation. For the best m-term
approximation of a given function with regard to a given system of functions (dictionary), we are
optimizing over all m-dimensional subspaces spanned by elements from a given dictionary. In
this paper, we want to solve the problem of the best m-term approximation for a given function
class with regard to orthogonal dictionaries.

Denote by D a dictionary in a Banach space X and by

σm( f,D)X := inf
gi ∈D,ci ,i=1,...,m

 f −

m−
i=1

ci gi


X

the best m-term approximation of f with regard to D. For a function class F ⊂ X and a collection
D of dictionaries we consider

σm(F,D)X := sup
f ∈F

σm( f,D)X ,

σm(F,D)X := inf
D∈D

σm(F,D)X .

Thus the quantity σm(F,D)X gives the sharp lower bound for the best m-term approximation of
a given function class F with regard to any dictionary D ∈ D.

Denote by O the set of all orthonormal dictionaries defined on a given domain. Kashin [5]
proved that for the class H r,α , r = 0, 1, . . . , α ∈ (0, 1], of univariate functions such that

‖ f ‖∞ + ‖ f (r)‖∞ ≤ 1 and | f (r)(x)− f (r)(y)| ≤ |x − y|
α, x, y ∈ [0, 1],

we have

σm(H
r,α,O)L2 ≥ C(r, α)m−r−α. (1)

It is interesting to remark that estimates like (1) with L2 replaced by L p, p < 2, cannot
be obtained. Kashin and Temlyakov in [6] proved that there exists Φ ∈ O such that for any
f ∈ L1(0, 1) one can obtain σ1( f,Φ)L1 = 0. The proof from [6] also works for L p, p < 2,
instead of L1. This remark means that to obtain nontrivial lower bounds for σm( f,Φ)L p , p < 2,
we need to impose additional restrictions on Φ ∈ O. In [14] Temlyakov considered the best
m-term approximation of classes of functions with bounded mixed derivative MW r

q and classes
with a restriction of Lipschitz type on the mixed difference M H r

q with regard to orthogonal
dictionaries and obtained the following results:

σm(M H r
q ,O)L2 ≫ m−r (log m)(d−1)(r+1/2), 1 ≤ q < ∞, (2)

σm(MW r
q ,O)L2 ≫ m−r (log m)(d−1)r , 1 ≤ q < ∞. (3)

He also proved that the orthogonal basis U d provides optimal upper estimates (like (2) and (3))
in the best m-term approximation of the classes M H r

q and MW r
q in the L p-norm, 2 ≤ p < ∞.

Moreover, he proved that for all 1 < q, p < ∞ the order of the best m-term approximation
σm(M H r

q ,U
d)L p and σm(MW r

q ,U
d)L p can be achieved by a greedy-type algorithm G p(·,U d).

In [15], he also studied universal bases and greedy algorithms for anisotropic function classes.
Moreover, some authors also investigated the best m-term approximation of classes of functions
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with regard to the dictionaries with special structure. In [16], Wang studied the greedy algorithm
for functions with low mixed smoothness with respect to the wavelet-type basis.

Temlyakov gave the definition of the greedy algorithm G p(·,Ψ) as follows (see [14]). Assume
that a given system Ψ of functions ψI indexed by dyadic intervals can be enumerated in such a
way that {ψI j }

∞

j=1 is a basis for L p. Let

f =

∞−
j=1

cI j ( f,Ψ)ψI j

and

cI ( f, p,Ψ) := ‖cI ( f,Ψ)ψI ‖p.

Then cI ( f, p,Ψ) → 0 as |I | → 0. Denote Λm as a set of m dyadic intervals I such that

min
I∈Λm

cI ( f, p,Ψ) ≥ max
J ∉Λm

cJ ( f, p,Ψ).

Define G p(·,Ψ) by the formula

G p
m( f,Ψ) :=

−
I∈Λm

cI ( f,Ψ)ψI .

The above defined “greedy algorithm” G p
m( f,Ψ) gives a procedure for constructing an

approximant which turns out to be a good approximant, while the procedure for constructing
G p

m( f,Ψ) is not a numerical algorithm ready for computational implementation. Therefore it
would be more precise to call this procedure a “theoretical greedy algorithm” or “stepwise
optimizing process”. In [14], Temlyakov also obtained the following results: for 1 < q, p < ∞

and big enough r ,

sup
f ∈M H r

q

‖ f − G p
m( f,U d)‖p ≍ σm(M H r

q ,U
d)p ≍ m−r (log m)(d−1)(r+1/2), (4)

sup
f ∈MW r

q

‖ f − G p
m( f,U d)‖p ≍ σm(MW r

q ,U
d)p ≍ m−r (log m)(d−1)r , (5)

where ‖ · ‖p := ‖ · ‖L p .
Comparing (4) with (2) and (5) with (3), it can be concluded that the dictionary U d is the

best (in the sense of order) among all orthogonal dictionaries for m-term approximation of the
classes M H r

q and MW r
q in L p where 1 < q < ∞ and 2 ≤ p < ∞. The near-best m-term

approximation of functions from M H r
q and MW r

q in the L p-norm can be realized by the simple
greedy-type algorithm G p(·,U d) for all 1 < q, p < ∞.

It is well-known that Besov classes of functions have been widely and deeply researched
by many authors. Many approximate characteristics of Besov classes have been obtained. For
more information, we can refer the reader to [7,9–11] and the references therein. In [3], Dung
considered nonlinear approximation of Besov classes with regard to the dictionary V which
consists of trigonometric polynomials (shifts of the de la Vallee Poussin kernels) and obtained
the asymptotic order of the best m-term approximation through a continuous algorithm. In
addition, Wang [17] studied the best m-term approximation on Besov classes with respect to
the tensor product periodic wavelet basis and gave the asymptotic order through a greedy-type
algorithm. For more information about nonlinear approximation, one can refer to [14–17] and the
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papers given there. In 1994, Pustovoitov [8] introduced a function class HΩ
q (T

d). He first used
a standard function Ω(t), a prototype of which is Ω(t) = tr

:= tr1
1 · · · trd

d as a majorant function
for the mixed modulus of smoothness of order l of functions f ∈ Lq instead of the standard
function tr, and obtained the estimates of best approximations of classes HΩ

q with some special

Ω(t1, . . . , td). In 1997, Sun and Wang [13] introduced the Besov classes BΩ
q,θ (T

d) by means of

Ω(t), i.e., an extension of the Besov classes Sr
q,θ (T

d), which was introduced first by Amanov [1]
and gave the asymptotic estimates for Kolmogorov n-widths of the classes under the condition
Ω(t) = ω(t1 · · · · · td), where ω(t) ∈ Ψ∗

l (i.e., a univariate function) and Ψ∗

l will be given
below. In addition, in [12,4], Stasyuk and Fedunyk studied the Kolmogorov and linear widths
of BΩ

q,θ (T
d) for some values of parameters p, q, θ , respectively. In this paper, we will consider

the best m-term approximation of generalized Besov classes M BΩ
q,θ (T

d) under the condition
Ω(t) = ω(t1 · · · · · td), where ω(t) ∈ Ψ∗

l (i.e., a univariate function) with regard to orthogonal
dictionaries and prove that the orthogonal basis U d which consists of trigonometric polynomials
(shifts of the Dirichlet kernels) is nearly optimal among orthogonal dictionaries. Moreover, we
prove that the order of best m-term approximation σm(M BΩ

q,θ ,U
d)p can be achieved by a greedy-

type algorithm G p(·,U d).
Throughout this paper, we will use the notation ≪ and ≍. For two sequences {an}n∈N and

{bn}n∈N of positive real numbers, we write an ≪ bn provided that an ≤ cbn for certain c > 0. If,
furthermore, also bn ≪ an , then we write an ≍ bn . Let a+ := max{0, a} and b− := min{0, b}.

The paper is organized as follows: In Section 2, we give the orthogonal basis U d constructed
by Temlyakov and generalized Besov classes M BΩ

q,θ (T
d) which will be studied in this paper. In

Section 3, we will give the main results and their proofs.

2. Preliminary

In this section, we start with the construction of the orthogonal basis U d and some properties.
Then we will give the definition of the generalized Besov class M BΩ

q,θ (T
d) which will be

investigated in this paper.
We first recall the system U := {UI } in the univariate case. Define

U+
n (x) :=

2n
−1−

k=0

eikx
=

ei2n x
− 1

eix − 1
, n = 0, 1, . . . ,

U+

n,k(x) := ei2n xU+
n (x − 2πk2−n), k = 0, 1, . . . , 2n

− 1,

U−

n,k(x) := e−i2n xU+
n (−x + 2πk2−n), k = 0, 1, . . . , 2n

− 1.

It will be more convenient for us to normalize in L2 the system of functions {U+

n,k,U
−

n,k} and to
enumerate it using dyadic intervals. Write U[0,1)(x) = 1,

UI (x) := 2−n/2U+

n,k(x) with I = [(k + 1/2)2−n, (k + 1)2−n
]

and

UI (x) := 2−n/2U−

n,k(x) with I = [k2−n, (k + 1/2)2−n
].

Define

D+
n := {I : I = [(k + 1/2)2−n, (k + 1)2−n

], k = 0, 1, . . . , 2n
− 1}
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and

D−
n := {I : I = [k2−n, (k + 1/2)2−n

], k = 0, 1, . . . , 2n
− 1},

D+

0 = D−

0 = D0 := [0, 1), D :=


n≥1

(D+
n ∪ D−

n ) ∪ D0.

It is easy to check that for any I, J ∈ D, I ≠ J we have

⟨UI ,UJ ⟩ = (2π)−1
∫ 2π

0
UI (x)ŪJ (x)dx = 0,

and

‖UI ‖
2
2 = 1.

We use the following notation for f ∈ L1:

f I := ⟨ f,UI ⟩ = (2π)−1
∫ 2π

0
f (x)ŪI (x)dx, f̂ (k) := (2π)−1

∫ 2π

0
f (x)e−ikx dx,

and

δ+s ( f ) :=

2s+1
−1−

k=2s

f̂ (k)eikx , δ−s ( f ) :=

−2s−
k=−2s+1+1

f̂ (k)eikx , δ0( f ) := f̂ (0).

Then, for each s and f ∈ L1, we have

δ+s ( f ) =

−
I∈D+

s

f I UI , δ−s ( f ) =

−
I∈D−

s

f I UI , δ0( f ) = f[0,1).

Moreover, the following important analog of the Marcinkiewicz theorem holds:

‖δ+s ( f )‖p
p ≍

−
I∈D+

s

‖ f I UI ‖
p
p, ‖δ−s ( f )‖p

p ≍

−
I∈D−

s

‖ f I UI ‖
p
p, (6)

for 1 < p < ∞ with the constants depending only on p.
We remark that

‖UI ‖p ≍ |I |1/p−1/2, 1 < p ≤ ∞, (7)

which implies that for any 1 < q, p < ∞

‖UI ‖p ≍ ‖UI ‖q |I |1/p−1/q . (8)

In the multivariate case of x = (x1, . . . , xd), define the system U d as the tensor product of the
univariate systems U . Let I = I1 × · · · × Id , I j ∈ D, j = 1, . . . , d; then

UI (x) :=

d∏
j=1

UI j (x j ).

In [14], Temlyakov proved that the system U d can be enumerated in such a way that {UI k }
∞

k=1
forms a basis for each L p, 1 < p < ∞. In fact, for any f ∈ L p, it can be uniquely represented
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as

f (x) =

∞−
k=1

f I k UI k (x), f I k :=

∫
Td

f (x)ŪI k (x)dx,

in the sense of convergence in L p.
For s = (s1, . . . , sd) and ε = (ε1, . . . , εd), ε j = + or −, define

Dεs := {I : I = I1 × · · · × Id , I j ∈ D
ε j
s j , j = 1, . . . , d}, and Dd

:=


s,ε

Dεs .

It is easy to see that (7) and (8) are also true in the multivariate case. It is not difficult to derive
from (6) that for any ε we have

‖δεs ( f )‖p
p ≍

−
I∈Dεs

‖ f I UI ‖
p
p, 1 < p < ∞, (9)

with constants depending on p and d. Here we define

δεs ( f ) :=

−
k∈ρ(s,ε)

f̂ (k)ei(k,x),

where

ρ(s, ε) := ε1[2s1 , 2s1+1
− 1] × · · · × εd [2sd , 2sd+1

− 1].

We will often use the following inequality:−
s,ε

‖δεs ( f )‖pl
p

1/pl

≪ ‖ f ‖p ≪

−
s,ε

‖δεs ( f )‖pu
p

1/pu

, 1 < p < ∞, (10)

where pl := max(2, p); pu := min(2, p).
Now we introduce the space of functions which will be studied in this paper. Let Rd be the

Euclidean space with dimension d . Denote by Lq(Td), 1 < q < ∞, the Lebesgue space of
qth-power integrable functions defined on the d-dimensional torus Td

:= [0, 2π)d , which are
2π -periodic with respect to each variable. Its norm is defined by

‖ f ‖Lq (Td ) = ‖ f ‖q :=


(2π)−d

∫
Td

| f (x)|qdx
1/q

< ∞, 1 ≤ q < ∞;

‖ f ‖L∞(Td ) = ‖ f ‖∞ := ess sup
x∈Td

| f (x)| < ∞, q = ∞.

In what follows, we assume that functions f (x) belong to the space

L0
q(T

d) =


f : f ∈ Lq(Td),

∫ π

−π

f (x)dx j = 0, j = 1, . . . , d


.

For f ∈ L0
q(T

d), we set

Ω l( f, t)q := sup
|h|≤t

‖∆l
h f (x)‖q ,
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where l ∈ Z+ is a fixed positive integer, t = (t1, . . . , td) ≥ 0 (i.e., t j ≥ 0, j = 1, . . . , d),
h = (h1, . . . , hd), |h| := (|h1|, . . . , |hd |), and |h| ≤ t means |h j | ≤ t j , j = 1, . . . , d . Finally,

∆l
h f (x) := ∆l

hd ,d(∆
l
hd−1,d−1 . . . (∆

l
h1,1 f (x)) . . .),

where

∆l
hi ,i f (x) =

l−
j=0

(−1)l− j


l
j


f (x1, . . . , xi−1, xi + jhi , xi+1, . . . , xd), i = 1, . . . , d.

As we know, Ω l( f, t)q is the order l modulus of smoothness in Lq(Td) norm (of mixed type).
In order to give the definition of the generalized Besov spaces BΩ

q,θ (T
d), we need the following

definitions.

Definition 1. Let φ : Rd
+ → R+ = [0,∞) be a non-negative function defined on Rd

+ :=

{(x1, . . . , xd)| x j ≥ 0, j = 1, . . . , d}. We say that φ(t) = φ(t1, . . . , td) ∈ Φ∗

l if it satisfies

(1) φ(0) = 0, φ(t) > 0 for any t ∈ Rd
+, t > 0 (i.e., t j > 0, j = 1, . . . , d);

(2) φ(t) is continuous;
(3) φ(t) is almost increasing, i.e., for any two points t, τ ∈ Rd

+ and 0 ≤ t ≤ τ (i.e.,
0 ≤ ti ≤ τ j , j = 1, . . . , d), we have φ(t) ≤ Cφ(τ), where C ≥ 1 is a constant independent
of t;

(4) for any n := (n1, . . . , nd) ∈ Zd
+

φ(n1t1, n2t2, . . . , nd td) ≤ C


d∏

j=1

n j

l

φ(t1, . . . , td),

where l ≥ 1 is a fixed positive integer, and C > 0 is a constant independent of n and t.

If f ∈ Lq(Td), f ≠ const, then Ω l( f, t)q ∈ Φ∗

l with both constants C = 1. Throughout this
paper, the capital letter C has different values in different places.

Definition 2. Let φ(t) be a non-negative function defined on Rd
+ which satisfies conditions (1),

(2) in Definition 1. We say that φ(t) ∈ S∗ provided that there exists a vector α = (α1, . . . , αd) >

0 such that φ(t)t−α is almost increasing (tα := tα1
1 · · · tαd

d ).

It is easy to see that in this definition we can always assume 0 < α < 1 (i.e., 0 < α j < 1, j =

1, . . . , d) without loss of generality.

Definition 3. Let φ(t) be a non-negative function defined on Rd
+ satisfying (1), (2) in

Definition 1. We say that φ(t) ∈ S∗

l if there exist a γ = (γ1, . . . , γd) such that 0 < γ < l · 1
(i.e., 0 < γ j < l, j = 1, . . . , d) and a constant C > 0 such that for any two points 0 < t ≤ τ it
always holds that

φ(t) · tγ−l·1
≥ Cφ(τ) · τγ−l·1

(i.e., φ(t) · tγ−l·1 is almost decreasing).

Define Ψ∗

l = Ψ∗
= Ψ∗

l ∩ S∗
∩ S∗

l . A typical example of a function of type Ψ∗

l is
Ω(t) = tr

:= tr1
1 . . . trd

d , r = (r1, . . . , rd) > 0. The generalized Besov spaces BΩ
q,θ (T

d) are
defined as follows. Let ed := {1, . . . , d}, e ⊂ ed . If e = { j1, . . . , jm}, j1 < j2 < · · · < jm ,
then we write te

:= (t j1 , . . . , t jm ), (t
e, 1e) := (t̄1, . . . , t̄d), where t̄i = ti for i ∈ e, t̄i = 1 for

i ∈e = ed \ e.
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Definition 4. For Ω(t) ∈ Ψ∗

l , we write f ∈ BΩ
q,θ (T

d) if it satisfies

(1) f ∈ L0
q(T

d);
(2) for any non-empty e ⊂ ed ,

∫ 2π

0
. . .

∫ 2π

0


Ω le

( f, te)q

Ω(te, 1e)
θ∏

j∈e

dt j

t j


1/θ

< ∞, 1 ≤ θ < ∞,

and

sup
te>0

Ω le
( f, te)q

Ω(te, 1e) < ∞, θ = ∞,

where

Ω le
( f, te)q := sup

|he|≤te
‖∆le

he ( f, x)‖q , he
:= (h j1 , . . . , h jm ),

∆le

he ( f, x) = ∆l
h jm , jm (∆

l
h jm−1 , jm−1

. . .∆l
h j1 , j1 f (. . . , x j1 , . . . , x jm , . . .) . . .).

We define

‖ f ‖BΩ
q,θ (T

d ) := ‖ f ‖q +

−
e⊂ed


∫ 2π

0
. . .

∫ 2π

0


Ω le

( f, te)q

Ω(te, 1e)
θ∏

j∈e

dt j

t j


1/θ

, 1 ≤ θ < ∞,

and

‖ f ‖BΩ
q,θ (T

d ) := ‖ f ‖HΩ
q (Td ) := ‖ f ‖q +

−
e⊂ed

sup
te>0

Ω le
( f, te)q

Ω(te, 1e) , θ = ∞.

Moreover, by the result in [13], for Ω(t) ∈ Ψ∗

l , 1 < q < ∞ and f ∈ BΩ
q,θ (T

d), we have the
following equivalent norms:

‖ f ‖BΩ
q,θ (T

d ) ≍

−
s>0

‖δs( f )‖θqΩ(2
−s)−θ

1/θ

, 1 ≤ θ < ∞,

and

‖ f ‖BΩ
q,∞(Td ) ≍ sup

s>0

‖δs( f )‖q

Ω(2−s)
, θ = ∞.

It is not difficult to verify that the generalized Besov spaces BΩ
q,θ (T

d) with the above norms are
complete. In this paper, we mainly consider the case Ω(t) = ω(t1 · · · · · td) where ω(t) ∈ Ψ∗

l
(i.e., a univariate function) for some 0 < α < 1. Denote by M BΩ

q,θ (T
d) the unit ball of space

BΩ
q,θ (T

d).

For convenience, we will suppress the domain Td in the notation below.

3. Main results and proofs

In this section, we will give the main results of this paper and their proofs. For this, we
first prove some auxiliary results. For the formulation and proofs of these lemmas, we mainly
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follow the ideas and methods given by Temlyakov in [14]. In the following, we always assume
Ω(t) = ω(t1 · · · · · td), where ω(t) ∈ Ψ∗

l (i.e., a univariate function) for some 0 < α < 1 and
l ≥ 1 is a fixed positive integer.

Lemma 1. For a fixed real number a and ω(t) ∈ Ψ∗

l for some 0 < α < 1, define

hn(s) := ω(2−n)2−n/2+a(‖s‖1−n)n−(d−1)/θ

and for f ∈ M BΩ
q,θ , q ≤ θ ≤ ∞, consider the sets

A( f, n, a) := {I : | f I | ≥ hn(s), if I ∈ Dεs }, n = 1, 2, . . . .

Then if α > 1/q − 1/2 − a we have

♯A( f, n, a) ≪ 2nnd−1

with a constant independent of n and f .

Proof. For convenience, we will omit ε in the notation δεs ( f ), Dεs , N εs (see below) meaning that
we are estimating a quantity δεs ( f ) or N εs for a fixed ε, and all the estimations that we are going
to do are the same for all ε.

Using the following two properties of the system {UI }:

‖δεs ( f )‖q
q ≍

−
I∈Dεs

‖ f I UI ‖
q
q , 1 < q < ∞, (11)

‖UI ‖q ≍ 2‖s‖1(1/2−1/q), I ∈ Dεs , (12)

we get−
I∈Dεs

| f I |
q

≪ 2−‖s‖1(q/2−1)
‖δεs ( f )‖q

q . (13)

Define N εs := ♯(A( f, n, a) ∩ Dεs ). Then (13) implies

N εs hn(s)q ≪ 2−‖s‖1(q/2−1)
‖δεs ( f )‖q

q

and −
‖s‖1=l

N εs ≪

−
‖s‖1=l

hn(s)−q2−
‖s‖1(q/2 − 1)‖δεs ( f )‖q

q

≪

−
‖s‖1=l

hn(s)−q2−
‖s‖1(q/2 − 1)‖δs( f )‖q

q . (14)

It is known that for f ∈ M BΩ
q,θ , we have

‖ f ‖BΩ
q,θ

≍

−
s>0

‖δs( f )‖θqΩ(2
−s)−θ

1/θ

≤ C, 1 ≤ θ < ∞, (15)

‖ f ‖BΩ
q,∞

≍ sup
s>0

‖δs( f )‖q

Ω(2−s)
≤ C, θ = ∞,
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where the constant C is independent of f . By the Hölder inequality and (15), it follows from
(14) that−

‖s‖1=l

N εs ≪ ω(2−n)−q2(1/2+a)nq2−l(aq+q/2−1)n(d−1)q/θ

×

 −
‖s‖1=l

‖δs( f )‖θq

q/θ  −
‖s‖1=l

1

1−q/θ

≪ ω(2−n)−q2(1/2+a)nq2−l(aq+q/2−1)n(d−1)q/θω(2−l)q l(d−1)(1−q/θ).

Using the almost increasing property of ω(t)/tα and the assumption α > 1/q − 1/2 − a, we get−
ε

−
l≥n

−
‖s‖1=l

N εs

≪ ω(2−n)−q2(1/2+a)nqn(d−1)q/θ
−
ε

−
l≥n

ω(2−l)q

2−αlq 2−l(αq+aq+q/2−1)l(d−1)(1−q/θ)

≪ 2(1/2+a+α)nqn(d−1)q/θ
−
ε

−
l≥n

2−l(αq+aq+q/2−1)l(d−1)(1−q/θ)

≪ 2nnd−1. (16)

It remains to remark that for ‖s‖1 < n we have the following trivial estimates:−
ε

−
‖s‖1<n

N εs ≤

−
ε

−
‖s‖1<n

♯Dεs ≪ 2nnd−1. (17)

Combining (16) and (17) we obtain the required estimate. �

For θ = ∞, we can finish the proof along the same lines as above. Here we omit the details.

Lemma 2. Let hn(s), A( f, n, a) be from Lemma 1 and ω(t) ∈ Ψ∗

l for some 0 < α < 1 and let
a > −1/2. For each n define

gn( f ) :=

−
I∈A( f,n,a)

f I UI , f n
:= f − gn( f ).

Then for any f ∈ M BΩ
q,θ , and p ≥ 2 satisfying 1 < q ≤ p < ∞, we have for

α > (a + 1/2)(p/q − 1), max(2, q) ≤ θ ≤ ∞,

‖ f n
‖p ≪ ω(2−n)n(d−1)(1/2−1/θ)

with a constant independent of n and f .

Proof. By the relation M BΩ
q1,θ

⊂ M BΩ
q2,θ

, for q1 > q2, it is sufficient to prove Lemma 2 for
1 < q ≤ 2.

For 2 ≤ p < ∞, we have, by a corollary to the Littlewood–Paley inequalities,

‖ f n
‖

2
p ≪

−
ε

−
s

‖δεs ( f n)‖2
p



=

−
ε

 −
‖s‖1<n

‖δεs ( f n)‖2
p +

−
‖s‖1≥n

‖δεs ( f n)‖2
p


:=

−
ε

(Σ ′
+ Σ ′′).
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We first estimate Σ ′. By the definition of A( f, n, a) we have, for all I ,

| f n
I | < hn(s), I ∈ Dεs .

Therefore,

‖δεs ( f n)‖
p
p ≪ hn(s)p

−
I∈Dεs

‖UI ‖
p
p ≪ ω(2−n)p2−np(1/2+a)n−(d−1)p/θ2‖s‖1 p(1/2+a)

and −
‖s‖1<n

‖δεs ( f n)‖2
p ≪ ω(2−n)22−n(1+2a)n−(d−1)2/θ

−
‖s‖1<n

2‖s‖1(1+2a)

≪ ω(2−n)2n(d−1)(1−2/θ). (18)

We proceed to estimate Σ ′′ now. We have

‖δεs ( f n)‖
p
p ≪

−
I∈Dεs

‖ f n
I UI ‖

p
p

≪


hn(s)2‖s‖1(1/2−1/p)

p−q −
I∈Dεs

‖ f n
I UI ‖

q
p

≪


hn(s)2‖s‖1(1/2−1/p)

p−q −
I∈Dεs

‖ f n
I UI ‖

q
q2‖s‖1(1/q−1/p)q

≪


hn(s)2‖s‖1(1/2−1/p)

p−q −
I∈Dεs

‖ f I UI ‖
q
q2‖s‖1(1/q−1/p)q .

Like in the treatment of Lemma 1, by virtue of the Hölder inequality and f ∈ M BΩ
q,θ , we get−

‖s‖1=l

‖δεs ( f n)‖2
p ≪ ω(2−n)2(p−q)/p2−2n(1/2+a)(p−q)/pn−2(d−1)(p−q)/pθ22l(p−q)(1/2+a)/p

×

−
‖s‖1=l

‖δs( f )‖2q/p
q

≪ ω(2−n)2(p−q)/p2−2n(1/2+a)(p−q)/pn−2(d−1)(p−q)/pθ

× 22l(p−q)(1/2+a)/pω(2−l)2q/pl(d−1)(1−2q/pθ).

Using the almost increasing property of ω(t)/tα and the assumption α > (a + 1/2)(p/q − 1),
we get−

l≥n

−
‖s‖1=l

‖δεs ( f n)‖2
p ≪ ω(2−n)22n[2αq/p−(1/2+a)(2−2q/p)]n−2(d−1)(p−q)/pθ

×

−
l≥n

2−l[2αq/p−(2−2q/p)(1/2+a)]l(d−1)(1−2q/pθ)

≪ ω(2−n)2n(d−1)(1−2/θ). (19)

Combining (18) and (19) we finish the estimates for max(2, q) ≤ θ < ∞.
For θ = ∞, we can compute the estimate along the same lines as above with slight

modification. Thus we finish the proof of Lemma 2. �

It is clear from the proof of Lemma 2 that the following statement holds:
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Lemma 3. Let hn(s) be from Lemma 1 and ω(t) ∈ Ψ∗

l for some 0 < α < 1 and let a > −1/2.
Assume that a function f satisfies the restrictions −

‖s‖1=l

‖δεs ( f )‖θq

1/θ

≪ ω(2−l), 1 < θ < ∞,

‖δεs ( f )‖q ≪ ω(2−l), θ = ∞,

| f I | ≪ hn(s), I ∈ Dεs ,

with constants independent of f, n and s for 1 < q < ∞. Then for max(2, q) ≤ p < ∞ and
α > (a + 1/2)(p/q − 1), max(2, q) ≤ θ ≤ ∞ we have

‖ f ‖p ≪ ω(2−n)n(d−1)(1/2−1/θ)

with a constant independent of n and f .

Consider the following greedy-type algorithm Gc,a . Take a real number a and rearrange the
sequence | f I | |I |a in the decreasing order

| f I 1 | |I 1
|
a

≥ | f I 2 | |I 2
|
a

≥ · · · .

Define

Gc,a
m ( f,U d) :=

m−
k=1

f I k UI k .

Theorem 1. Let Ω(t) = ω(t1 · · · · · td), where ω(t) ∈ Ψ∗

l for some 0 < α < 1 and let
1 < q < ∞, max(2, q) ≤ p < ∞ and max(2, q) ≤ θ ≤ ∞. Then for any a > −1/2,
α > max{(a + 1/2)(p/q − 1), 1/q − a − 1/2} and any natural numbers m and n such that
m ≍ 2nnd−1, we have

sup
f ∈M BΩ

q,θ

‖ f − Gc,a
m ( f,U d)‖p ≍ σm(M BΩ

q,θ ,U
d)p ≍ ω(2−n)n(d−1)(1/2−1/θ).

Proof. Let m be given. We can choose the biggest n satisfying

sup
f ∈M BΩ

q,θ

♯A( f, n, a) ≤ m.

For f ∈ M BΩ
q,θ , let

g := f − Gc,a
m ( f,U d).

It is not difficult to see that g satisfies

|gI | ≤ hn(s), I ∈ Dεs ,

and  −
‖s‖1=l

‖δεs (g)‖
θ
q

1/θ

≪ ω(2−l), or ‖δεs (g)‖q ≪ ω(2−l),
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with a constant independent of s and g. Applying Lemma 3 to g we get

‖g‖p ≪ ω(2−n)n(d−1)(1/2−1/θ),

which proves the upper estimate in Theorem 1

sup
f ∈M BΩ

q,θ

‖ f − Gc,a
m ( f,U d)‖p ≪ ω(2−n)n(d−1)(1/2−1/θ).

The lower estimate

σm(M BΩ
q,θ ,U

d)p ≫ ω(2−n)n(d−1)(1/2−1/θ)

follows from Theorem 4. The proof of Theorem 1 is complete. �

Consider now the Lb-greedy algorithm Gb(·,U d). Take a number 1 ≤ b ≤ ∞ and rearrange
the sequence {‖ f I UI ‖b} in decreasing order:

‖ f I1UI1‖b ≥ ‖ f I2UI2‖b ≥ · · · .

Define

Gb
m( f,U d) :=

m−
k=1

f Ik UIk .

It is clear from the relation

‖ f I UI ‖b ≍ | f I | |I |
1/b−1/2

that the algorithm Gb and Gc,a with a = 1/b−1/2 are closely connected. The following theorem
can be proved similarly to Theorem 1.

Theorem 2. Let Ω(t) = ω(t1 · · · · · td), where ω(t) ∈ Ψ∗

l for some 0 < α < 1 and let
1 < q < ∞ and max(2, q) ≤ p < ∞, max(2, q) ≤ θ ≤ ∞. Then for any 1 < b < ∞,
α > max{(p/q − 1)/b, 1/q − 1/b} and any natural numbers m and n such that m ≍ 2nnd−1,
we have

sup
f ∈M BΩ

q,θ

‖ f − Gb
m( f,U d)‖p ≍ σm(M BΩ

q,θ ,U
d)p ≍ ω(2−n)n(d−1)(1/2−1/θ).

We formulate now the corollary of Theorem 2 in the most interesting case b = p.

Theorem 3. Let Ω(t) = ω(t1 · · · · · td), where ω(t) ∈ Ψ∗

l for some 0 < α < 1 and let
1 < q, p < ∞. Then for all α > α(q, p), max(2, q) ≤ θ ≤ ∞ and any natural numbers
m and n such that m ≍ 2nnd−1, we have

sup
f ∈M BΩ

q,θ

‖ f − G p
m( f,U d)‖p ≍ σm(M BΩ

q,θ ,U
d)p ≍ ω(2−n)n(d−1)(1/2−1/θ),

with

α(q, p) :=


(1/q − 1/p)+, for p ≥ 2
(max(2/q, 2/p)− 1)/p, otherwise.
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Proof. We first prove the upper estimates. Consider the case 2 ≤ p < ∞. If 1 < q ≤ p we use
Theorem 2 with b = p and get a restriction α > 1/q −1/p. If p < q < ∞ we use the inequality

sup
f ∈M BΩ

q,θ

‖ f − G p
m( f,U d)‖p ≤ sup

f ∈M BΩ
p,θ

‖ f − G p
m( f,U d)‖p (20)

and reduce this case to the case q = p which has already been considered. It remains to consider
the case 1 < p < 2. If 1 < q ≤ p we use Theorem 2 with p = 2 and b = p and get

sup
f ∈M BΩ

q,θ

‖ f − G p
m( f,U d)‖p ≤ sup

f ∈M BΩ
q,θ

‖ f − G p
m( f,U d)‖2 ≪ ω(2−n)n(d−1)(1/2−1/θ)

provided α > (2/q − 1)/p. If p < q < ∞, using the following inequality and Theorem 2 with
p = 2 and b = p, we obtain

sup
f ∈M BΩ

q,θ

‖ f − G p
m( f,U d)‖p ≤ sup

f ∈M BΩ
p,θ

‖ f − G p
m( f,U d)‖p

≤ sup
f ∈M BΩ

p,θ

‖ f − G p
m( f,U d)‖2

≪ ω(2−n)n(d−1)(1/2−1/θ).

In this case, we get a restriction α > (2/p − 1)/p.
The lower estimates follow from Theorem 4. The proof of Theorem 3 is complete. �

In what follows, we will give the lower estimates of the best m-term approximation
σm(M BΩ

q,θ ,U
d)p with the orthogonal basis U d and σm(M BΩ

q,θ ,O)p with regard to all
orthogonal dictionaries, i.e., O. To deal with the lower estimates, we will adopt different methods.
For the lower estimates of σm(M BΩ

q,θ ,U
d)p, i.e., Theorem 4 below, we mainly follow the idea

given by Wang in [17], while for the lower estimates of σm(M BΩ
q,θ ,O)p, i.e., Theorem 5, we

will use the idea given by Temlyakov in [14] and the following auxiliary lemma.

Lemma 4 ([5]). There exists an absolute constant c0 > 0 such that for any orthonormal basis
Φ and any N-dimensional cube

BN (Ψ) :=


N−

j=1

a jψ j , |a j | ≤ 1, j = 1, . . . , N ; Ψ := {ψ j }
N
j=1 an orthonormal system


we have

σm(BN ,Φ)2 ≥ 3N 1/2/4

if m ≤ c0 N.

Theorem 4. Let Ω(t) = ω(t1 · · · · · td), where ω(t) ∈ Ψ∗

l for some 0 < α < 1 and let
1 < q, p < ∞, 2 ≤ θ ≤ ∞. Then for α > (1/q − 1/p)+ and any natural numbers m
and n such that m ≍ 2nnd−1, we have

σm(M BΩ
q,θ ,U

d)p ≫ ω(2−n)n(d−1)(1/2−1/θ).

Proof. By the monotonicity of the L p-norm, it is sufficient to estimate the lower bounds for
1 < p ≤ 2.
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For any natural number m, we can choose a natural number n such that−
‖s‖1=n

♯D+
s ≥ 2m, and

−
‖s‖1=n

♯D+
s ≍ 2nnd−1

≍ m,

where D+
s := {I : I = I1 × · · · × Id , I j ∈ D+

s j
, j = 1, . . . , d}.

Consider the function

ψn(x) =

−
‖s‖1=n

−
I∈D+

s

UI (x).

Noting that
−

I∈D+
s

UI


q

≍

−
I∈D+

s

‖UI ‖
q
q

1/q

≍ 2‖s‖1/2,

we have

‖ψn‖BΩ
q,θ

≍

 −
‖s‖1=n


−

I∈D+
s

UI


θ

q

Ω(2−s)−θ


1/θ

≪

 −
‖s‖1=n

2‖s‖1θ/2ω(2−n)−θ

1/θ

≪ ω(2−n)−12n/2n(d−1)/θ .

Therefore, there exists a positive constant c > 0 such that

c · ω(2−n)2−n/2n−(d−1)/θψn ∈ M BΩ
q,θ . (21)

For any set Im ⊂ Dd satisfying ♯Im ≤ m, let Ms := ♯(D+
s \ Im) and then we have−

‖s‖1=n

Ms ≥

−
‖s‖1=n

♯D+
s − m ≥ 2m − m = m.

For any cI , I ∈ Im , by (10) and (12) we getψn −

−
I∈Im

cI UI


p

≫


−

‖s‖1=n

−
I∈D+

s \Im

UI


p

≫

 −
‖s‖1=n


−

I∈D+
s \Im

UI


2

p


1/2

≫

 −
‖s‖1=n

 −
I∈D+

s \Im

‖UI ‖
p
p

2/p


1/2

≫

 −
‖s‖1=n

M2/p
s 2‖s‖1(1−2/p)

1/2

≫ 2n(1/2−1/p)

 −
‖s‖1=n

M2/p
s

1/2

. (22)

By virtue of

2nnd−1
≪

−
‖s‖1=n

Ms ≤

 −
‖s‖1=n

M2/p
s

p/2  −
‖s‖1=n

1

1−p/2
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≪ n(d−1)(1−p/2)

 −
‖s‖1=n

M2/p
s

p/2

,

it follows from (22) that

σm(ψn,U
d)p = inf

Im ,cI

ψn −

−
I∈Im

cI UI


p

≫ 2n/2n(d−1)/2. (23)

From (21) and (23), we obtain

σm(M BΩ
q,θ ,U

d)p ≫ ω(2−n)2−n/2n−(d−1)/θ
· σm(ψn,U

d)p ≫ ω(2−n)n(d−1)(1/2−1/θ).

The proof of Theorem 4 is complete. �

Theorem 5. Let Ω(t) = ω(t1 · · · · · td), where ω(t) ∈ Ψ∗

l for some 0 < α < 1 and 2 ≤ θ ≤ ∞.
For any orthonormal basis Φ, we have for α > (1/q − 1/2)+ and any natural numbers m and n
such that m ≍ 2nnd−1,

σm(M BΩ
q,θ ,Φ)2 ≫ ω(2−n)n(d−1)(1/2−1/θ), 1 < q < ∞,

and

σm(M BΩ
q,θ ,O)2 ≫ ω(2−n)n(d−1)(1/2−1/θ), 1 < q < ∞.

Proof. For 1 < q < ∞, let m be given. Define

D(n) =


‖s‖1=n

D+
s

and choose a minimal n such that

m ≤ c0♯D(n), and m ≍ 2nnd−1.

We set N := ♯D(n) and choose the system U (n) := {UI }I∈D(n). Then for any f ∈ BN (U (n))
we have

‖δs( f )‖q
q ≍

−
I∈D+

s

‖ f I UI ‖
q
q ≤

−
I∈D+

s

‖UI ‖
q
q ≪ 2nq/2, (24)

and

‖ f ‖BΩ
q,θ

≍

 −
‖s‖1=n

‖δs( f )‖θqΩ(2
−s)−θ

1/θ

≪ ω(2−n)−12n/2n(d−1)/θ . (25)

According to (24) and (25) we have for some positive C(q, d),

C(q, d)ω(2−n)2−n/2n−(d−1)/θ BN (U (n)) ⊂ M BΩ
q,θ .

Therefore, by Lemma 4, we obtain

σm(M BΩ
q,θ ,Φ)2 ≫ ω(2−n)n(d−1)(1/2−1/θ).

Further, we have

σm(M BΩ
q,θ ,O)2 ≫ ω(2−n)n(d−1)(1/2−1/θ).
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The proof of Theorem 5 is complete. �

Combining Theorems 3 and 5, we can obtain the following result:

Theorem 6. Let Ω(t) = ω(t1 · · · · · td), where ω(t) ∈ Ψ∗

l for some 0 < α < 1. For
1 < q < ∞, 2 ≤ p < ∞, max(2, q) ≤ θ ≤ ∞, α > (1/q − 1/p)+, and any natural
numbers m and n such that m ≍ 2nnd−1, we have

σm(M BΩ
q,θ ,O)p ≍ ω(2−n)n(d−1)(1/2−1/θ).

From Theorems 3 and 6, we can see that the orthogonal basis U d is nearly optimal among
orthogonal dictionaries. Moreover, it is established that for these classes the near-best m-term
approximation, with regard to U d , can be achieved by simple greedy-type algorithms. The best
m-term approximation considered in this paper is a nonlinear analog of the Kolmogorov n-width.
In [13] Sun and Wang obtained the following results on the Kolmogorov n-width of generalized
Besov classes M BΩ

q,θ :
Suppose Ω(t) = ω(t1 · · · · · td), ω(t) ∈ Ψ∗

l , ω(t)t
−α is almost increasing; then

(1) if 1 < q < 2 ≤ p < ∞, α > 1/q, 1 ≤ θ ≤ ∞,

dN (M BΩ
q,θ , L p) ≍ ω(2−n)2n(1/q−1/2)n(d−1)(1/2−1/θ)+;

(2) if 2 ≤ q ≤ p < ∞, α > 1/2, 1 ≤ θ ≤ ∞, then

dN (M BΩ
q,θ , L p) ≍ ω(2−n)n(d−1)(1/2−1/θ)+ ,

where N ≍ 2nn(d−1).
From the above results and the results obtained in this paper, we can see that the best m-term

approximation is better in approximate order than the Kolmogorov n-width for the values of
parameters 1 < q < 2 ≤ p < ∞ and 2 ≤ θ ≤ ∞. In addition, according to the definitions
of Kolmogorov width and linear width, we know that Kolmogorov width gives a lower bound
for linear width. Therefore, the nonlinear approximation, i.e., best m-term approximation is also
superior to the linear approximation in approximate order for some certain values of parameters.
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