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This paper is devoted to establishing new variants of some nonlin-
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1. Introduction and preliminaries

Many problems arising from various areas of natural sciences, mathematical physics, mechanics
and population dynamics are modeled by mathematical equations which involve the study of nonlin-
ear equations of the form:

Ay + B y = y, y ∈ M (1.1)
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where M is a closed, convex subset of a Banach space X , and A, B are two nonlinear operators. In
some special cases, a useful tool to solve problem (1.1) is the celebrated fixed point theorem proved
by Krasnosel’skij in 1958 (see [23,24]):

Theorem 1.1. Let M be a nonempty closed convex subset of a Banach space X and A, B two maps from M to
X such that

(a) A is compact and continuous,
(b) B is a contraction,
(c) AM + BM ⊂ M.

Then A + B has at least one fixed point in M.

Recall that A compact means that A(M) is relatively compact in the space X . The proof of Theo-
rem 1.1 combines the Banach contraction mapping principle both with Schauder’s fixed point theorem
[21] and uses the following auxiliary lemma the proof of which is direct. The Schauder fixed point
theorem is then applied to the mapping (I − B)−1 ◦ A on the set M.

Lemma 1.1. Let E be a linear vector space and F ⊂ E a nonempty subset. If g : F → E is a contraction, then
the mapping I − g : F → (I − g)(F ) is a homeomorphism.

In 1998, Burton [12] noticed that the Krasnosel’skij fixed point theorem remains valid if the con-
dition (a) is replaced by the following less restrictive one:

∀y ∈ M (x = Ay + Bx �⇒ x ∈ M).

His result applies to a problem from stability theory and covers cases where Theorem 1.1 does not
work. Subsequently, the following refinement was introduced in [8]:

If λ ∈ (0,1) and u = λBu + Av for some v ∈ M, then u ∈ M.

A is assumed weakly continuous and weakly compact while B is a contraction.
However, the mappings A and B do not in general satisfy the hypothesis of Theorem 1.1 (see for

instance [9,26,27]). So, in the last couple of years, much attention has been paid to this theorem
and some extensions have been obtained in many directions; we quote for instance the works [6,8,9,
12,32]. In [9], new versions of the Krasnosel’skij fixed point theorem were obtained for sequentially
weakly continuous mappings (i.e. operators which map weakly convergent sequences into weakly
convergent sequences) (see also [33]). Since infinite dimensional Banach spaces are not locally com-
pact, the authors suggest a locally convex topology approach which is a weak topology of Banach
spaces. One of the advantages of this locally convex topology is the fact that if a set M is weakly
compact, then every sequentially weakly continuous map T : M → X is weakly continuous. This is an
immediate consequence of the fact that the weak sequential compactness is equivalent to the weak
compactness (Eberlein–Šmulian Theorem). As a consequence, many applications to problems with lack
of compactness are solved, mainly those posed in L1 spaces.

More recently, the Krasnosel’skij fixed point theorem is proved in the framework of Fréchet spaces
in [30] with application to a general equation involving the sum of two nonlinear integrals.

In [8], Barroso established another version of Theorem 1.1 using the weak topology of a Banach
space. His result only requires the weak continuity and weak compactness of A while B is a linear
operator satisfying the estimate ‖B p‖ � 1 for some integer p � 1. Indeed, such an assumption insures
the invertibility of I − B and the weak continuity of (I − B)−1. However, when B is no longer linear,
the map (I − B)−1, which plays a key role, need not be weakly continuous.
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Agarwal et al. [2] established a number of fixed point theorems and nonlinear alternatives for
weakly–strongly sequentially continuous weakly compact maps in angelic spaces (a Hausdorff topo-
logical space X is said to be angelic if for every relatively countably compact set C ⊂ X, C is relatively
compact and for each x ∈ C, there exists a sequence (xn)n�1 ⊂ C such that xn → x). Some applica-
tions to boundary value problems with nonlinear L p-Carathéodory nonlinearities (p > 1) are given.
Note that in practice, the weak sequential continuity is easier to be verified than the weak conti-
nuity. A map A : X → Y is said to be weakly–strongly sequentially continuous if for every sequence
(xn)n∈N , xn ⇀ x implies A(xn) → A(x). For instance, compact linear operators on a Banach space X
are weakly–strongly sequentially continuous; the converse is true if X is reflexive (see [17]).

In [14,15,31] some nonlinear alternatives are obtained for the strong topology of Banach spaces,
the mappings A, B being assumed continuous and compact. Applications to nonlinear functional inte-
gral equations are discussed in [15,16].

When the mapping A is compact while B is nonexpansive with respect to the Kuratowski measure
of noncompactness [7], a fixed point theory for the sum A + B is developed in [32].

The Schauder and the Krasnosel’skij fixed point theorems are extended to the class of weakly
compact linear operators in Dunford–Pettis spaces in [10] with application to a transport equation
from Kinetic theory. The obtained Schauder fixed point theorem version relies on the fact that the
closed convex hull of a weakly compact set is a convex, weakly compact set (Krein–Šmulian Theorem
[17], p. 234); this property always holds true in a Banach space (see [17], p. 434). Recall that a Banach
space X is said to have the Dunford–Pettis property if for each Banach space Y every weakly compact
operator A : X → Y takes weakly compact sets in X into norm compact sets of Y . For instance, L1

spaces have the Dunford–Pettis property.
Motivated by a nonlinear equation arising in transport theory, Latrach et al. [26,27] established

generalizations of the Schauder, Darbo and Krasnosel’skij fixed point theorems for the weak topology.
Their analysis uses the concept of the Blasi measure of weak noncompactness [13]. Moreover and in
contrast to previous works, to prove a new version of the Krasnosel’skij fixed point theorem (Theo-
rem 2.3 in [27]), they neither assume the weak continuity nor the sequentially weak continuity of the
operators A and B.

However in order to use all of these results, one should find a self-mapped closed convex set, i.e.
to check the condition AM + BM ⊂ M or the weaker one (x = Ax + B y, y ∈ M) ⇒ u ∈ M. From an
application point of view, this condition is in general quite restrictive and rather hard to come by.
To avoid such a condition, we are interested in this work with fixed point theory for nonself maps.
More precisely, our aim is to establish new variants of some nonlinear alternatives of Leray–Schauder
and Krasnosel’skij types involving the sum of two operators A and B for the weak topology of Banach
spaces. Our results rely on Theorems 2.1, 2.4 from [27] and complement them. To prove some of our
results, the main tool used is again the De Blasi measure of weak noncompactness [13]. Theorem 3.1
is then applied to the following generalized Hammerstein integral equation, also discussed in [26] and
in [19] when g(t, .) = g(t):

y(t) = g
(
t, y(t)

) + λ

∫
Ω

k(t, s) f
(
s, y(s)

)
ds, t ∈ Ω (1.2)

and posed in L1(Ω, X), the space of Lebesgue integrable functions on a measurable domain Ω of R
n

with values in a finite dimensional Banach space X . Note that in L1 spaces, the weak convergence im-
plies the strong convergence ([17], Corollary 13, p. 295). Here g is a function satisfying a contraction
condition with respect to the second variable while f is a nonlinear function. k is strongly measurable
and k(s, t) is linear, continuous. In transport equation, k stands for an anisotropic scattering kernel;
λ is a real parameter. For boundary value problems associated with ordinary differential equations,
k may refer to Green’s function. Our result extends previous ones and covers the cases considered
in [26] and in [19] (see Corollaries 3.2, 3.3). Notice that many equations in applications fit into the
general class of Eq. (1.2).

This paper is organized as follows. In Section 2, we develop abstract existence theorems of Non-
linear Alternative type; this is the content of Theorems 2.2, 2.3 and 2.5. An existence principle is
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then derived for the nonlinear integral equation (1.2) in Section 3 (Theorem 3.1) with applications to
some particular cases (Corollaries 3.1, 3.2, 3.3). The paper ends with some comments on the obtained
results and discussion on the methods used.

Throughout, the notation := means to be defined equal to. U and ∂U denote respectively the
closure and the boundary of the open set U in a topological Hausdorff space (for the strong topology).
Finally if Ω is an open subset of a Banach space X, M(Ω, X) will refer to the set of all measurable
functions ψ : Ω → X .

Let (X,‖.‖) be a Banach space and let T be the family of semi-norms

{
ρ f (x) = ∣∣〈 f , x〉∣∣: f ∈ X∗ and ‖ f ‖X∗ � 1

}
.

The topology generated by T and denoted by σ(X, X∗) is called the weak topology (see e.g., [11]);
here X∗ refers to the topological dual of X . A map A : X → X is said to be weakly continuous if for
every ϕ ∈ X∗, the map ϕ ◦ A : X → R is continuous. Finally recall that A ∈ L(X) is said to be weakly
compact if A(B) is relatively weakly compact for every bounded subset B ⊂ X, where L(X) stands
for the space of continuous linear functionals on X . If X is a reflexive Banach space, then weakly
compact is equivalent to closed (for the weak topology) and bounded (for the norm topology); then
every bounded sequence has a weakly converging sub-sequence and the converse is nothing but the
Eberlein–Šmulian Theorem (see [11], Thm. III.28 or [20]). Moreover, the same holds true for a weakly
closed subset of an arbitrary Banach space. Finally, a convex subset of a normed space is closed if and
only if it is weakly closed.

2. Nonlinear alternatives

2.1. The weak MNC

Throughout this section, X denotes a Banach space; B(X) is the collection of all nonempty
bounded subsets of X and W (X) is the subset of B(X) consisting of all weakly compact subsets
of X . Let Br denote the closed ball in X centered at 0 with radius r > 0. In [13], De Blasi introduced
the map ω : B(X) → [0,+∞) defined, for all M ∈ B(X) by

ω(M) = inf
{

r > 0, ∃N ∈ W(X): M ⊆ N + Br
}
.

Before we launch into the details, we recall for the sake of completeness, some important properties
of ω needed hereafter; for further details and proofs, we refer to [13].

Lemma 2.1. Let M1, M2 ∈ B(X); we have

(a) ω(M1) � ω(M2) whenever M1 ⊆ M2.

(b) ω(M) = 0 if and only if M is relatively weakly compact.
(c) ω(M w) = ω(M) where M w is the weak closure of M.

(d) ω(co(M)) = ω(M) where co(M) refers to the convex hull of M.

(e) ω(M1 + M2) � ω(M1) + ω(M2).

(f) ω(M1 ∪ M2) = max(ω(M1),ω(M2)).

The map ω is called the De Blasi measure of weak noncompactness. In [5], Appel and De Pascale
gave to ω the following simple form in L1 spaces, also called measure of nonequiabsolute continuity:

ω(M) = lim sup
ε→0

{
sup
ψ∈M

[∫ ∥∥ψ(t)
∥∥

X dt, D ⊂ Ω, meas(D) � ε

]}
(2.1)
D
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for all bounded M ⊂ L1(Ω, X) where X is a finite dimensional Banach space, Ω ⊂ R
n and meas(.)

denotes the Lebesgue measure.

Definition 2.1. A map f : M ⊂ X → X is said to be ω-contractive (or an ω-contraction) if it maps
bounded sets into bounded sets, and there exists some β ∈ [0,1) such that ω( f (V )) � βω(V ) for all
bounded subsets V ⊆ M.

Let N be a nonlinear operator from X into itself. Following Latrach et al. [26,27], we introduce the
following conditions:

(A1)

{
If (xn)n∈N is a weakly convergent sequence in X, then
(Nxn)n∈N has a strongly convergent subsequence in X .

(A2)

{
If (xn)n∈N is a weakly convergent sequence in X, then
(Nxn)n∈N has a weakly convergent subsequence in X .

Regarding these two conditions, Latrach et al. noticed that (see [27], Remark 2.1):

Remark 2.1.

(a) Operators satisfying either (A1) or (A2) are not necessarily weakly continuous.
(b) Every ω-contractive map satisfies (A2).
(c) A map N satisfies (A2) if and only if it maps relatively weakly compact sets into relatively weakly

compact ones (Eberlein–Šmulian Theorem).
(d) A map N satisfies (A1) if and only if it maps relatively weakly compact sets into relatively com-

pact ones.
(e) The condition (A2) holds true for every bounded linear operator.

Moreover notice that (A1) is weaker than the weakly–strongly sequentially continuity of the op-
erator N (see [2], Thm. 2.12). Regarding (A2), we have

Lemma 2.2. Let X be a Banach space. Assume that a mapping B : X → X is a contraction and satisfies (A2);
then B is ω-contractive.

Proof. Let B be a contraction with some positive constant α ∈ (0,1); then it maps bounded sets into
bounded sets. Let A be a bounded subset of X . Let t > 0 and N ∈ W (X) be such that A ⊂ N + Bt . It
is clear that

B(A) ⊆ B(N) + Bαt ⊆ B(N)ω + Bαt .

Since in addition B satisfies (A2), B(N) is relatively weakly compact and thus ω(B(A)) � αt for
all t > 0 such that B ⊆ N + Bt with some N ⊆ W (X). Therefore ω(B(A)) � αω(A), proving the
lemma. �
2.2. The case C is unbounded

We will use the following variant of the Schauder fixed point theorem for weak topology to prove
our first existence result which is a new version of a Leray–Schauder nonlinear alternative for the
weak topology.

Theorem 2.1. (See [27], Thm. 2.1.) Let C be a nonempty closed convex subset of a Banach space X . Assume that
F : C → C is a continuous map which satisfies (A1). If F (C) is relatively weakly compact, then there exists
x ∈ C such that F x = x.
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Remark 2.2. It is easy to see that the weak relative compactness of F (C) both with (A1) imply that F
is condensing for some α (strong) measure of noncompactness. Recall that F is said to be condensing
relatively to a measure of noncompactness α whenever α(F (M)) � α(M) for some bounded subset M
implies α(M) = 0, i.e. M is relatively compact. Hence Theorem 2.1 follows directly from the Darbo–
Sadovskij fixed point theorem [3]. However, in [27] the authors rather used the Schauder fixed point
theorem after proving that F |C is even compact where C = co(F C); the latter set is then proved to be
weakly compact by applying the Krein–Šmulian theorem ([17], p. 434). Moreover, we point out that
the weak measure of noncompactness is neither used in Theorem 2.1 nor in proving the following
one.

Theorem 2.2. Let C be a nonempty closed convex set in a Banach space X and U ⊂ C an open subset with some
p ∈ U . Let F : U → C be a continuous map which satisfies the condition (A1). If F (U ) is relatively weakly
compact, then

(i) either the equation F u = u has a solution in U ,

(ii) or there exists an element u ∈ ∂U such that u = λF u + (1 − λ)p for some λ ∈ (0,1).

Proof. We will follow a standard method to prove this theorem using an Urysohn function going back
to Cech. Most of the proofs of nonlinear alternatives use this auxiliary function (see [1,2,14]). Suppose
(ii) does not hold true and F has no fixed point on ∂U otherwise we are finished. Then

u �= λF u + (1 − λ)p, for all u ∈ ∂U and λ ∈ [0,1].
Since p ∈ U , the set

A := {
u ∈ U , u = t F u + (1 − t)p, t ∈ [0,1]}

is nonempty. Moreover, A ∩ ∂U = ∅ and the continuity of F implies that A is closed. Therefore, by
Urysohn’s lemma (see [21], p. 592), there exists a continuous function μ : U → [0,1] with μ(A) = 1
and μ(∂U ) = 0 (take for instance μ(u) = d(x,∂U )

d(x,∂U )−d(x,A)
). Proceeding as in [1], let N be the mapping

defined by

Nu =
{

μ(u)F u + (1 − μ(u))p, if u ∈ ∂U ,

p, if u ∈ C \ U .
(2.2)

It is immediate that N : C → C is a continuous map. By Theorem 2.1, it suffices to show that the
operator N verifies (A1) and that N(C) is relatively weakly compact. To this end, let (xn)n∈N be a
weakly convergent sequence in C . According to either or neither (xn)n∈N lies in U for n large enough,
we distinguish between two cases:

(a) There exists some n0 ∈ N such that for all n ∈ N, (n � n0 ⇒ xn ∈ U ). In this case, the sequence
(xn)n∈N lies in U and converges weakly in U . Since F satisfies (A1), the sequence (F xn)n�n0 has
a strongly convergent subsequence, say (F xkn )n, F xkn → y in C . Using the compactness of [0,1],
we can extract from (μ(xkn ))n a convergent subsequence, say (μ(xln ))n . As a result, the sequence
(μ(xln ))n verifies Nxln = μ(xln )F xln + (1 − μ(xln ))p and thus the limit ty + (1 − t)p lies in C .

(b) If (xn)n is such that for all n ∈ N, there exists m ∈ N such that xmn /∈ U , then we may consider
a subsequence (xmn )n ⊂ C \ U such that Nxmn = p → p in C . From (a) and (b), N verifies (A1).
To see the weak compactness of the set N(C), we use the fact that F (U ) is relatively weakly
compact, both with an argument similar to the one used to get that N verifies (A1). Theorem 2.1
then guarantees the existence of some u ∈ C with u = Nu. Since p ∈ U , then u ∈ U ; hence
u = μ(u)F u + (1 − μ(u))p. As a result, u ∈ A and so μ(u) = 1; this implies that u = F u, ending
the proof of the theorem. �
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2.3. The case C is bounded

Notice that, in Theorem 2.2, the set C is not necessarily bounded. In case it is bounded, we obtain
a more precise result:

Theorem 2.3. Let C be a nonempty closed, convex and bounded set in a Banach space X and U ⊂ C an open
subset with some p ∈ U . Let F : U → C be a continuous map which satisfies the condition (A1). If F is an
ω-contraction, then

(i) either the equation F u = u has a solution in U ,

(ii) or there exists an element u ∈ ∂U such that u = λF u + (1 − λ)p for some λ ∈ (0,1).

This theorem is the nonlinear alternative version of the following fixed point theorem due to
Latrach et al. ([27], Thm. 2.2):

Theorem 2.4. Let C be a nonempty bounded closed convex subset of a Banach space X . Assume that F : C → C
is a continuous map which satisfies (A1). If F is ω-contractive, then there exists x ∈ C such that F x = x.

Remark 2.3. In [27], the authors applied Theorem 2.1 to some nonempty, closed, convex, weakly
compact subset of C . To this end, the Cantor intersection condition for the weak measure of noncom-
pactness w is essential.

Proof of Theorem 2.3. Using arguments similar to those used in proving Theorem 2.2, we can see
that the operator N defined by (2.2) maps continuously C onto itself and verifies the condition (A1).
By Theorem 2.4, it is enough to check that N is an ω-contraction. To this end, let K ⊂ C; for all
u ∈ K , we either have Nu = μ(u)F u + (1 − μ(u))p, μ(u) ∈ [0,1] or Nu = p. It follows that N(K ) ⊂
co(F (K ) ∪ {p}). Making use of Lemma 2.2, we deduce that

ω
(
N(K )

)
� ω

(
co

(
F (K ) ∪ {p})) = ω

(
F (K ) ∪ {p})

= max
(
ω

(
F (K )

)
,ω({p})) = ω

(
F (K )

)
� αω(K ).

Appealing to Theorem 2.4, we conclude the proof. �
2.4. A Krasnosel’skij type nonlinear alternative

Making use of Theorem 2.2, we now prove a nonlinear alternative of Krasnosel’skij type for the
weak topology.

Theorem 2.5. Let U � 0 denote an open subset of a Banach space X and U its closure. Let A : U → X and
B : X → X be two mappings satisfying:

1. A is continuous, A(U ) is relatively weakly compact, and A verifies the condition (A1).
2. B is a contraction and verifies the condition (A2).

Then

(i) either the equation Au + Bu = u has a solution in U ,

(ii) or there exists an element u ∈ ∂U such that u = λAu + λB( u
λ
) for some λ ∈ (0,1).

Proof. Define the operator L : U → X by Lu = (I − B)−1 ◦ Au; L is well defined by Assumption 2.
Indeed, since B is an α-contraction, I − B is continuous. Moreover,
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∥∥(I − B)u1 − (I − B)u2
∥∥ � ‖u1 − u2‖ − ‖Bu1 − Bu2‖ > (1 − α)‖u1 − u2‖.

This shows that (I − B)−1 exists and is a Lipschitz map on (I − B)(X). Let u be fixed in U ; the map
which assigns to each v ∈ X the value Au + B v defines a contraction from X into X . Then, by the
Banach fixed point theorem, the equation v = Au + B v has a unique solution v ∈ X, which verifies
Au = (I − B)v. Therefore AU ⊂ (I − B)(X). So the composition (I − B)−1 ◦ A is well defined. It follows
from the properties of A and the continuity of (I − B)−1 that the map L is continuous and verifies
the condition (A1). By Theorem 2.2, it suffices to show that L(U ) is relatively weakly compact. Using
Lemma 2.2 and the inclusion

(I − B)−1 ◦ A(U ) ⊂ AU + B
(
(I − B)−1 ◦ A(U )

)
,

we can deduce from the properties of ω that

ω
(
(I − B)−1 ◦ A(U )

)
� ω

(
A(U )

) + αω
(
(I − B)−1 ◦ A(U )

)
.

Since A(U ) is relatively weakly compact, it follows that

(1 − α)ω
(
(I − B)−1 ◦ A(U )

)
� 0,

and so ω(L(U )) = 0. A second appeal to Theorem 2.2 yields that either the operator equation
(I − B)−1 ◦ Au = u has a solution in U or the operator equation λ((I − B)−1 ◦ Au) = u has a solution
on the boundary ∂U for some λ ∈ (0,1). This further implies that either (i) or (ii) holds true. �
3. Application to an abstract nonlinear integral equation

3.1. Preliminaries

Let Ω be a bounded domain of R
n and let X and Y be two separable spaces.

Definition 3.1. A function f : Ω × X → Y is a Carathéodory function if

(i) for all y ∈ X, the map x → f (x, y) is measurable from Ω to Y ;
(ii) for almost every x ∈ Ω, the map y → f (x, y) is continuous from X to Y .

If f is a Carathéodory function, then it defines a mapping N f : M(Ω, X) → M(Ω, Y ) by
N f (ψ)(t) = f (t,ψ(t)), called the Nemytskij operator associated to f , or the superposition operator.
Regarding its continuity, we have

Lemma 3.1. (See [28,29].) Let X and Y be two separable Banach spaces and f : X → Y a Carathéodory func-
tion. Then the Nemytskij operator N f maps L1(Ω, X) into L1(Ω, Y ) if and only if there exist a constant η > 0
and a function ξ ∈ L1+(Ω) such that ‖ f (t, x)‖Y � ξ(t) + η‖x‖X , where L1+(Ω) denotes the positive cone of
the space L1(Ω).

With the conditions of Lemma 3.1, the operator N f is obviously continuous and maps bounded
sets of L1(Ω, X) into bounded sets of L1(Ω, Y ).

Lemma 3.2. (See [26].) Let X, Y be two finite dimensional Banach spaces and let Ω be a bounded domain
in R

n. If f : Ω × X → Y is a Carathéodory function and N f maps L1(Ω, X) into L1(Ω, Y ), then N f satisfies
the condition (A2).
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Remark 3.1. As noticed in Remark 2.1, N f need not be weakly continuous. More precisely, only linear
functions generate weakly continuous Nemytskij operators in L1 spaces ([4], Thm. 2.6). The question
of considering the weak sequential continuity of the Nemytskij operator acting from L p space to Lq

space (1 � p,q < ∞) is discussed in [29] and the answer is shown to be negative at least for p = 2.

Here are some hypotheses on the nonlinear functions involved in Eq. (1.2).

3.2. Assumptions

(H1) The function g : Ω × X → X is a measurable function, g(.,0) ∈ L1(Ω, X) and g is a contraction
with respect to the second variable, i.e. there exists α ∈ (0,1) such that ‖g(t, x) − g(t, y)‖X �
α‖x − y‖X for a.e. t ∈ Ω and all x, y ∈ X .

(H2) f : Ω × X → Y is a Carathéodory function and N f acts from L1(Ω, X) into L1(Ω, Y ).

(H3) The function k : Ω × Ω → L(Y , X) is strongly measurable where L(Y , X) refers to the space of
bounded linear operators from Y to X .

(H4) For each t ∈ Ω, the function ρ(t) : Ω → L(Y , X), s �→ ρ(t)(s) = k(t, s) belongs to
L∞(Ω, L(Y , X)), and the function

ρ : Ω → L∞(
Ω, L(Y , X)

)
,

t �→ ρ(t)

belongs to L1(Ω, L∞(Ω, L(Y , X))) := L1(Ω, L∞) for short.
(H5) There exists a constant M > 0 independent of λ∗ ∈ (0,1) such that any solution of the integral

equation

y(t) = λ∗g

(
t,

1

λ∗ y(t)

)
+ λ∗

∫
Ω

k(t, s) f
(
s, y(s)

)
ds, t ∈ Ω,

satisfies ‖y‖L1(Ω,X) �= M.

3.3. A fixed point formulation

First notice that Eq. (1.2) may be written in the abstract form

y = Ay + B y

where B is the Nemytskij operator associated to the function g (i.e. B ≡ N g ):

B : L1(Ω, X) → L1(Ω, X),

y �→ B y : Ω → X; B y(t) = g
(
t, y(t)

)

and A appears as the composition of the Nemytskij operator associated to f with the linear integral
operator λC where C is the Fredholm operator defined by

C : L1(Ω, Y ) → L1(Ω, X),

ψ �→ Cψ : Ω → X; Cψ(t) =
∫

k(t, s)ψ(s)ds.
Ω
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Our aim is now to prove that the sum A + B has a fixed point in L1(Ω, X). Before starting solving
problem (1.2), we give some remarks.

Remark 3.2.

(a) Apart from (H5), assumptions (H1)–(H4) are the same as conditions (a)–(d) in [26], p. 2331.
Connection between assumption (H5) and the condition (e) in [26] ((H8) in this paper) will be
made more precise later on through Corollaries 3.2 and 3.3.

(b) It should be noted that assumptions (H3) and (H4) lead to the estimate

∀ψ ∈ L1(Ω, Y ),

∥∥∥∥
∫
Ω

k(t, s)ψ(s)ds

∥∥∥∥
X

�
∥∥ρ(t)

∥∥
L∞(Ω,L(Y ,X))

‖ψ‖L1(Ω,Y )

and so

‖Cψ‖L1(Ω,X) =
∫
Ω

∥∥∥∥
∫
Ω

k(t, s)ψ(s)ds

∥∥∥∥
X

dt � ‖ρ‖L1(Ω,L∞)‖ψ‖L1(Ω,Y ).

This shows that the linear operator C is continuous, hence weakly continuous from L1(Ω, Y ) into
L1(Ω, X) and that ‖C‖ � ‖ρ‖L1(Ω,L∞).

(c) Using assumption (H1), we get

∥∥g(t, u)
∥∥

X �
∥∥g(t,0)

∥∥ + α‖u‖X , for every u ∈ X and a.e. t ∈ Ω,

where ‖g(t,0)‖ ∈ L1+(Ω). This shows that the Nemytskij operator Ng is continuous and maps
bounded sets of L1(Ω, X) into bounded sets of L1(Ω, X). According to Lemma 3.2, the operator
B satisfies the condition (A2).

3.4. Existence results

The main result in this section is

Theorem 3.1. Let X and Y be two finite dimensional Banach spaces and let Ω be a bounded domain of R
n.

Assume that assumptions (H1)–(H5) hold true. Then, Eq. (1.2) has at least one solution in L1(Ω, X).

Proof. We apply Theorem 2.5 with

U = {
y ∈ L1(Ω, X): ‖y‖L1(Ω,X) < M

}
.

Claim 1. Let ϕ,ψ ∈ L1(Ω, X). It follows from assumption (H1) that

∥∥B(ψ) − B(ϕ)
∥∥

L1(Ω,X)
=

∫
Ω

∥∥g
(
t,ψ(t)

) − g
(
t,ϕ(t)

)∥∥
X dt

� α

∫
Ω

∥∥ψ(t) − ϕ(t)
∥∥

X dt = α‖ψ − ϕ‖L1(Ω,X).

So, B is a strict contraction mapping on L1(Ω, X) and from Remark 3.2(c), B satisfies the condition
(A2).



S. Djebali, Z. Sahnoun / J. Differential Equations 249 (2010) 2061–2075 2071
Claim 2. Clearly A is continuous (see Lemma 3.1 and Remark 3.2(a)). Now we check that A satis-
fies the condition (A1). For this, let (ψn)n be a weakly convergent sequence of L1(Ω, X). Using the
fact that N f satisfies (A2), (N f (ψn))n∈N has a weakly convergent subsequence, say (N f (ψkn ))n∈N .
Moreover, the continuity of the linear operator C implies its weak continuity on L1(Ω, Y ). Thus the
sequence ((C ◦ N f )(ψkn ))n∈N, i.e. (A(ψkn )n∈N) converges pointwisely for almost every t ∈ Ω. Using
Vitali’s Convergence Theorem, we conclude that (Aψkn )n∈N converges strongly in L1(Ω, X). Then A
satisfies (A1).

Claim 3. A(U ) is relatively weakly compact. For this, we show that

ω
(

A(U )
) = lim sup

ε→0

{
sup
y∈U

[∫
D

∥∥Ay(t)
∥∥

X dt, |D| < ε

]}
= 0,

where |D| = meas(D). For all D ⊆ Ω, and every y ∈ U , we have

∫
D

∥∥Ay(t)
∥∥

X dt =
∫
D

∥∥∥∥λ

∫
Ω

k(t, s) f
(
s, y(s)

)
ds

∥∥∥∥
X

dt

� |λ|
[∫
Ω

∥∥ f
(
s, y(s)

)∥∥
Y ds

]∫
D

∥∥ρ(t)
∥∥

L∞ dt

� �

∫
D

∥∥ρ(t)
∥∥

L∞ dt,

where � := |λ|[‖ξ‖L1+(Ω) + ηM] and the function ξ is defined in Lemma 3.1. Since ρ ∈ L1(Ω,

L∞(Ω, L(Y , X))), we have that the mapping t �→ ‖ρ(t)‖L∞ lies in L1+(Ω). From Corollary 11 in [17],
p. 294, we deduce that

lim sup
ε→0

{∫
D

∥∥ρ(t)
∥∥dt, |D| < ε

}
= 0.

Therefore, A(U ) is relatively weakly compact. Thanks to assumption (H5), possibility (ii) in Theo-
rem 2.5 cannot occur, and so the sum A + B has a fixed point in U ; equivalently Eq. (1.2) has a
solution in U . �
Remark 3.3. The requirement that X and Y should be finite dimensional Banach spaces comes from
the usage of the relation (2.1) proved in [5] for bounded subsets in the space of Lebesgue integrable
functions with values in a finite dimensional Banach space.

Remark 3.4.

(a) To prove Theorem 3.1, we can use the following Dunford–Pettis theorem instead of the measure
of weak noncompactness. The proof is the same as above and is omitted.
Theorem [17,18]. Let F ⊂ L1(Ω) be a bounded subset. Then F is relatively weakly compact if and
only if

∀ε > 0, ∃δ > 0,

∫
A

∥∥ f (x)
∥∥dx < ε, ∀ f ∈ F and ∀A ⊂ Ω, |A| < δ.
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(b) If k ∈ L∞(Ω × Ω), then another alternative proof for Theorem 3.1 is to start from the estimate

∥∥Ay(t)
∥∥

X � |λ|∥∥ρ(t)
∥∥

L∞ , ∀y ∈ U .

Since ρ ∈ L1(Ω, L∞), then we deduce that the family AU = {Ay}y∈U is integrably bounded (re-
call that F ⊂ L1(Ω) is integrably bounded if there exists g ∈ L1+(Ω) such that for every f ∈ F ,

‖ f (x)‖ � g(x), for each x ∈ U ). Moreover {AU (t)}t∈Ω is relatively compact in the finite dimen-
sional space X . Therefore AU is semi-compact, hence weakly relatively compact by the Dunford–
Pettis theorem (see [22], Proposition 4.2.1).

Remark 3.5. As mentioned in the introduction, Eq. (1.2) was motivated by the transport equation from
Rotenberg’s model in [25] where the authors first considered the problem in L p-spaces (1 < p < +∞).

Now, the closed, bounded, convex ball U in the proof of Theorem 3.1 is weakly closed. Since L p spaces
are reflexive for 1 < p < +∞, then U is weakly compact. Finally, A satisfies (A1), then A is relatively
compact and hence the classical Krasnosel’skij theorem applies. Unfortunately, this does no longer
hold true in L1-spaces. However, since A = λC ◦ N f , A is relatively compact whenever either one of
the Fredholm operator C or the Nemytskij operator is relatively compact.

Our existence principle, namely Theorem 2.2 is now used to get another existence criteria for
Eq. (1.2). Similar assumptions to (H6) and (H7) were given in [1].

Corollary 3.1. Let X and Y be two finite dimensional Banach spaces and let Ω be a bounded domain of R
n.

Assume that in addition to (H1)–(H4), the following assumptions hold true:

(H6) There exists a continuous function h : [0,+∞) → [0,+∞) such that h(u) > 0 whenever u > 0 and

|λ|
∫
Ω

∥∥∥∥
∫
Ω

k(t, s) f
(
s, y(s)

)
ds

∥∥∥∥
X

dt � h
(‖y‖L1(Ω,X)

)
, ∀y ∈ L1(Ω, X).

(H7)

sup
θ∈[0,+∞)

(
(1 − α)θ

‖ζ‖L1+ + h(θ)

)
> 1,

where ζ(t) := ‖g(t,0)‖X and α is the contraction constant of g.

Then, Eq. (1.2) has a solution in L1(Ω, X).

Proof. Thanks to Theorem 3.1, it suffices to show that (H6) and (H7) imply (H5). Let M > 0 satisfy

(1 − α)M

‖ζ‖L1+ + h(M)
> 1. (3.1)

Assumption (H7) both with the property of the supremum ensure the existence of such an M. Let
y ∈ L1(Ω, X) be any solution of the operator equation

y = λ∗ Ay + λ∗B

(
y

λ∗

)
, λ∗ ∈ (0,1). (3.2)

Then, for t ∈ Ω, we have the estimates
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∥∥y(t)
∥∥

X � α
∥∥y(t)

∥∥
X + λ∗∥∥g(t,0)

∥∥
X + λ∗|λ|

∥∥∥∥
∫
Ω

k(t, s) f
(
s, y(s)

)
ds

∥∥∥∥
X

and so

(1 − α)

∫
Ω

∥∥y(t)
∥∥

X dt � ‖ζ‖L1+ + h
(‖y‖L1(Ω,X)

)
.

Therefore

(1 − α)‖y‖L1(Ω,X)

‖ζ‖L1+ + h(‖y‖L1(Ω,X))
� 1. (3.3)

Assuming ‖y‖L1(Ω,X) = M, (3.3) implies (1−α)M
‖ζ‖

L1+
+h(M)

� 1, contradicting (3.1). Finally, every solu-

tion of (3.2) satisfies ‖y‖L1+ �= M. Therefore Theorem 3.1 guarantees that Eq. (1.2) has a solution

y ∈ L1(Ω, X). �
As a consequence of Theorem 3.1, we also recover the following two existence results obtained

by Latrach and Taoudi (see [26], Thm. 3.1 and Cor. 3.1). The second corollary is also the main result
obtained in [19], p. 609.

Corollary 3.2. Let X and Y be two finite dimensional Banach spaces, and let Ω be a bounded domain of R
n.

Assume assumptions (H1)–(H4) hold together with

(H8) α + η|λ|‖C‖ < 1

(the constant η was introduced in Lemma 3.1 and ‖C‖ denotes the norm of the operator C ). Then Eq. (1.2) has
a solution y ∈ L1(Ω, X) for every λ ∈ R.

Corollary 3.3. Let X and Y be two finite dimensional Banach spaces, and let Ω be a bounded domain of R
n.

Assume assumptions (H2)–(H4) hold true together with (H8) and let g ∈ L1(Ω, X). Then the equation

y(t) = g(t) + λ

∫
Ω

k(t, s) f
(
s, y(s)

)
ds

has a solution y ∈ L1(Ω, X).

Proof of Corollary 3.2. Let y ∈ L1(Ω, X). From (H3) and (H4), we have

|λ|
∫
Ω

∥∥∥∥
∫
Ω

k(t, s) f
(
s, y(s)

)
ds

∥∥∥∥
X

dt = |λ|∥∥C ◦ N f (y)
∥∥

L1(Ω,X)

� |λ|‖C‖∥∥N f (y)
∥∥

L1(Ω,X)

� |λ|‖C‖(‖ξ‖L1+ + η‖y‖L1(Ω,X)

)
.

On the other hand, arguing as in the proof of Corollary 3.1, we get the estimate

‖y‖L1(Ω,X) � α‖y‖L1(Ω,X) + λ∗‖ζ‖L1 + λ∗k
(‖y‖L1(Ω,X)

)
,
+
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where k(θ) := |λ|‖C‖(‖ξ‖L1+ + ηθ). Hence

(1 − α)‖y‖L1(Ω,X) � ‖ζ‖L1+ + |λ|‖C‖(‖ξ‖L1+ + η‖y‖L1(Ω,X)

)
. (3.4)

Let

M >
‖ζ‖L1+ + |λ|‖C‖‖ξ‖L1+

1 − α − |λ|‖C‖η ·

If ‖y‖L1(Ω,X) = M, then (3.4) implies that

M �
‖ζ‖L1+ + |λ|‖C‖‖ξ‖L1+

1 − α − |λ|‖C‖η ,

which is a contradiction. Assumption (H5) is then satisfied and the result follows from Theo-
rem 3.1. �
4. Concluding remarks

(a) In addition to Ref. [26], Eq. (1.2) was treated in [19] in the particular case g(t, y(t)) = g(t). An
existence result was obtained under assumptions (H1)–(H4) together with the condition (H8).

(b) The particular case of the model integral equation

y(t) = g
(

y(t)
) +

t∫
0

f
(
s, y(s)

)
ds, y ∈ C

([0, T ], E
)
,

where E is a reflexive Banach space is widely considered in the literature (see also Corollary 3.3).
Obviously this equation falls into the class covered by Eq. (1.2). In [9], the function f and g(t, .)
are sequentially weakly continuous. The existence of a solution is then proved under a Nagumo-
type growth condition on the nonlinearity g.

(c) It should be emphasized that one of the advantage of working with nonlinear alternatives rather
than with fixed points is not to check an operator maps a closed convex subset onto itself. In
this paper, this is illustrated by the fact that the constraint (H8) is removed in Theorem 3.1 and
replaced by assumption (H5) which deals with a priori estimates of the sought solutions. We
believe that this work could make a contribution in fixed point theory for the sum of nonlinear
operators, which is well developed in the literature (see for instance [1,34,21] and the references
therein).
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