
Alexandria Engineering Journal (2013) 52, 531–541

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
ORIGINAL ARTICLE
Computing multiple zeros using a class

of quartically convergent methods
F. Soleymani a,*, D.K.R. Babajee b
a Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
b Scientific & Academic Research Council, African Network for Policy Research & Advocacy for Sustainability, Mauritius
Received 6 December 2012; revised 30 April 2013; accepted 5 May 2013
Available online 2 June 2013
*

E-

Pe

U

11

ht
KEYWORDS

Multiplicity

Two-step methods

Mathematica

All the real solutions

Finitely many zeros
Corresponding author. Tel.:
mail address: fazl_soley_bsb

er review under responsibility

niversity.

Production an

10-0168 ª 2013 Production

tp://dx.doi.org/10.1016/j.aej.2
+98 915
@yahoo.

of Facu

d hostin

and hosti

013.05.0
Abstract Targeting a new multiple zero finder, in this paper, we suggest an efficient two-point class

of methods, when the multiplicity of the root is known. The theoretical aspects are investigated and

show that each member of the contributed class achieves fourth-order convergence by using three

functional evaluations per full cycle. We also employ numerical examples to evaluate the accuracy

of the proposed methods by comparison with other existing methods.

For functions with finitely many real roots in an interval, relatively little literature is known,

while in applications, the users wish to find all the real zeros at the same time. Hence, the second

aim of this paper will be presented by designing a fourth-order algorithm, based on the developed

methods, to find all the real solutions of a nonlinear equation in an interval using the programming

package MATHEMATICA 8.
ª 2013 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Preliminaries

Many methods have been developed for solving nonlinear
equations or systems using different methodology, see [2]

and the references therein. On the other hand, solutions them-
selves, can be divided into the simple or the multiple cases.
That is to say, a function might have finitely many zeros in
1401695.
com (F. Soleymani).

lty of Engineering, Alexandria

g by Elsevier

ng by Elsevier B.V. on behalf of F

01
an interval which some of them are simple while the other ones
could be multiple.

A multiple zero is a root with multiplicity m P 2, also
called a multiple point or repeated root. Clearly, working

and developing on multiple roots of a nonlinear equation is
not an easy task in numerical analysis. Herein, we develop iter-
ative methods to find the multiple root x* with multiplicity m

of a nonlinear equation f(x) = 0, i.e., f(i)(x*) = 0,
i= 0, 1, � � � , m � 1, and f(m)(x*) „ 0. We will also discuss on
finding simple zeros and also multiple zeros when the multi-

plicity of the roots are unknown.
When searching for multiple roots, there are some prob-

lems, which need special attention. The first one is that there

is a neighborhood of x*, here called the error ball, where the
accurate computation of f(x) is not possible because of
aculty of Engineering, Alexandria University.

https://core.ac.uk/display/82639637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:fazl_soley_bsb@yahoo.com
http://dx.doi.org/10.1016/j.aej.2013.05.001
http://www.sciencedirect.com/science/journal/11100168
http://dx.doi.org/10.1016/j.aej.2013.05.001

Þ

532 F. Soleymani, D.K.R. Babajee
computational (cancelation) errors, actually the errors are big-
ger than function values.

As a result, an in-appropriate iterative method returns an

entirely erroneous root estimate such that it may break down.
Even if having some methods to recognize error ball, we can
only hope a result of lower accuracy [5]. A less severe-problem

is slow convergence. Thus, it is more important if we can devise
methods that ensure computation of the multiple roots at high
precision.

Along with the main above questions, the most important
problem will be remained in implementation. In fact, in appli-
cations, one might to find all the (real) critical points of a non-
linear function in a given interval, while such iterative methods

are sensitive upon the initial points!
All of such needs and questions will be answered and solved

in the following sections. It is assumed in the following that the

derivatives of the function exist and are easily computable.
The remainder sections of this paper unfold the contents in

what follows. In Section 2, a brief discussion on the existing

methods in the literature will be given. In order to contribute,
we first in Section 3 present a two-step method for finding sim-
ple zeros of nonlinear equations. Theoretical aspects support

the quartical convergence. Then, we extend the scheme for
approximating multiple zeros when the multiplicity of the zero
is known. Section 4 dedicates to remind some of the ways of
approximating the order of multiplicity. Next, in Section 5,

we extend one of the methods from the suggested class of Sec-
tion 3 to find multiple zeros when the multiplicity of the zeros
is unknown. In Section 6, some tests will be given to show the

numerical behavior of the attained iterative methods for find-
ing multiple roots by comparison with the existing methods.
Since all the obtained iteration functions up to this point,

are locally fourth-order convergent, and in applications we
need to have the convergence to be guaranteed alongside find-
ing all the real zeros in an interval, in Section 7, we design an

efficient hybrid algorithm to capture all the real solutions by
applying our high-order optimal methods using the efficient
programming package MATHEMATICA. Finally, Section 8 will
be drawn the conclusion of this study with some outlines for

future works.
2. Brief review

It is well-known that when the multiplicity m of the root is gi-
ven then the modified Newton’s method converges quadrati-
cally and can be defined in the following form

xnþ1 ¼ xn �m fðxnÞ
f0ðxnÞ. According to the definition of efficiency in-

dex (defined in [27]), it has 21/2 � 1.414 as its index of effi-
ciency. In fact, we considered that all function and derivative

evaluations per computing step have the same computational
cost. In order to provide better orders and efficiencies many
developments have been given to the literature, see e.g. [22,26].

A third-order Chebyshev’s method [27] for finding multiple
roots is given by
xnþ1 ¼ xn �
mð3�mÞ

2

fðxnÞ
f0ðxnÞ

�m2

2

f2ðxnÞf00ðxnÞ
f03ðxnÞ

: ð1Þ

A note on this scheme is that it needs the computation of the
second derivative along the knowledge of multiplicity to be
implemented, which is costly in many problems. Scheme (2)

has the efficiency index 1.442.
Now, we recall an important finding in this topic regarding

the optimal relation between the number of evaluations and

the local order of convergence. The upper bound for order
of multi-step methods was discussed in [12] by Kung and
Traub, who conjectured that the order of convergence of any
multipoint method without memory, consuming n+ 1, (func-

tional) evaluations per iteration, cannot exceed the bound 2n

(called optimal order). This hypothesis has not been proved
yet but it turned out that all existing methods constructed at

present support it. Another interesting point is that this conjec-
ture is valid for iterative methods, which are designed for sim-
ple zeros; or for multiple zeros with the known multiplicity.

That is to say, if the multiplicity be unknown, then the conjec-
ture is not anymore supported.

In case of multiple root solvers which are optimal, we can
name the following schemes. Sharifi et al. in [18] proposed

the following optimal fourth-order method

yn ¼ xn � 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn þ 1
4
mðm2 þ 2m� 4Þun � 1

4
mðmþ 2Þ2pmvn

� �
� 1þ m4

8ðmþ2Þp2m ðwnÞ2 � 69
64
ðwnÞ3 þ v4n

� �
:

8>>>><
>>>>:

ð2Þ

wherein un ¼ fðxnÞ
f0ðxnÞ, vn ¼

fðxnÞ
f0ðynÞ

, wn ¼ f0ðynÞ
f0ðxnÞ � pm�1 and p ¼ m

mþ2.

Sharma and Sharma in [19] suggested the following quartic-
ally technique

yn ¼ xn � 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn � m
8
ððm3 � 4mþ 8Þ � ðmþ 2Þ2 m

mþ2

� �m
f0ðxnÞ
f0ðynÞ
ð2ðm� 1

�ðmþ 2Þ m
mþ2

� �m
f0 ðxnÞ
f0ðynÞ
ÞÞ fðxnÞ

f0 ðxnÞ ;

8>>>><
>>>>:

ð3Þ

and Zhou et al. in [30] presented the following scheme with the

same order as (2), (3)

yn ¼ xn � 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn � m
8
ððm3 þ 6m2 þ 8mþ 8Þ þm3 mþ2

m

� �2m f0ðynÞ
f0ðxnÞ

� �2
�2m2ðmþ 3Þ mþ2

m

� �m f0ðynÞ
f0 ðxnÞÞ

fðxnÞ
f0 ðxnÞ :

8>>><
>>>:

ð4Þ

The techniques (2)–(4) approximate the multiple roots, when
the multiplicity of the root is available by consuming three

(functional) evaluations. They also possess the optimal order
four and the optimal efficiency index 1.587 in the sense of
Kung–Traub.

For further related developments and applications, see
[16,20,21,23–25], where some other aspects of nonlinear equa-
tion solving by iterative methods have been discussed.

Inspired by these new optimal developments and also by
the use of weight function, we present in the next section, a
general technique for solving nonlinear scalar equations.

3. Construction of the new technique

In this section, we derive a new technique of two-point meth-
ods of order four, requiring three (functional) evaluations per

Computing multiple zeros using a class of quartically convergent methods 533
iteration. This means that the proposed technique supports the
Kung–Traub conjecture. Besides, this technique will be ex-
tended for finding multiple roots of nonlinear equations, when

the multiplicity of the root is available.
Let us consider third-order Halley-like methods with one f

and two f0 evaluations as comes next

yn ¼ xn � b fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn � 2bfðxnÞ
ð2b�1Þf0 ðxnÞþf0 ðynÞ

; b–0:

8<
: ð5Þ

The member b ¼ 2
3
was recently rediscovered in [1] using the

Closed-Open quadrature formula and is given by

yn ¼ xn � 2
3

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn � 4fðxnÞ
f0 ðxnÞþ3f0ðynÞ

:

8<
: ð6Þ

We obtain a new class of fourth-order methods from this mem-
ber. We build our class according to (6) without any additional
evaluations of the function or its derivatives.

Let us consider the following class of methods by the use of
weight function:

yn ¼ xn � 2
3

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn � 4fðxnÞ
f0 ðxnÞþ3f0ðynÞ

½HðsnÞ�;

8<
: ð7Þ

wherein sn ¼ f0 ðynÞ
f0ðxnÞ. We prove that the class (7) is of local fourth-

order for simple roots.

Theorem 1. Let a sufficiently smooth function f:D � R fi R has

a simple root x* in the open interval D. Then, the class of
methods without memory (7) is of local fourth-order conver-
gence, when Hð1Þ ¼ 1; H0ð1Þ ¼ 0; H00ð1Þ ¼ 9

8 ; jH
ð3Þð1Þj <1

and it satisfies the error equation

enþ1 ¼ 3þ 32

81
Hð3Þð1Þ

� �
c32 � c2c3 þ

c4
9

� 	
e4n þO e5n

� �
: ð8Þ

Proof. Using Taylor series and symbolic computations in the

programming package MATHEMATICA 8, we can determine the
asymptotic error constant of the two-step class (7). We now
assume that ck = f(k)(x*)/(k!f0(x*)), k P 2 and en = xn � x*.

Therefore fðxnÞ ¼ f0ðx�Þ en þ c2e
2
n þ c3e

3
n þ c4e

4
n þO e5n

� �
 �
, and

f0ðxnÞ ¼ f0ðx�Þ 1þ 2c2en þ 3c3e
2
n þ 4c4e

3
n þO e4n

� �
 �
. Dividing

these two relations on one another gives us

fðxnÞ
f0ðxnÞ

¼ en � c2e
2
n þ 2 c22 � c3

� �
e3n þ 7c2c3 � 4c32 � 3c4

� �
e4n

þO e5n
� �

: ð9Þ

Now we have yn ¼ x� þ en
3
þ 2c2e

2
n

3
� 4

3
c22 � c3
� �

e3n þO e4n
� �

. Fur-
thermore, using again the Taylor expansion, we will have

4fðxÞ
f0ðxÞþ3f0ðyÞ ¼ en � c22e

3
n þ 3c32 � 3c2c3 � c4

9

� �
e4n þO e5n

� �
; and also

xn �
4fðxnÞ

f0ðxnÞ þ 3f0ðynÞ
� x� ¼ c22e

3
n

þ �3c32 þ 3c2c3 þ c4=9
� �

e4n

þO e5n
� �

: ð10Þ

We now by using (10) in (7) and considering the weight func-

tion, obtain that xnþ1 � x� ¼ ð1�Hð1ÞÞen þ 4
3
c2H

0ð1Þe2n
þ 8
3
c3H

0ð1Þ þ c22ðHð1Þ � 4H0ð1Þ � 8H00 ð1Þ
9
Þ

� �
e3n

þ 1
81
ðc4ð9Hð1Þ þ 312H0ð1Þ

þ9c2c3ð27Hð1Þ � 8ð15H0ð1Þ þ 4H00ð1ÞÞÞ
þc32ð�243Hð1Þ þ 756H0ð1Þ þ 432H00ð1Þ
þ32Hð3Þð1ÞÞÞe4n þO e5n

� �
. This completely reveals that the

weight function in (7) must satisfy Hð1Þ ¼ 1; H0ð1Þ ¼ 0;

H00ð1Þ ¼ 9
8
; jHð3Þð1Þj <1 to let the local order arrives at four.

This completes the proof and shows the contributed class (7)
arrives at quartical local order of convergence using two eval-
uations of the first-order derivative and one evaluation of the

function, and read the error Eq. (8). h

A simple choice for H(sn) satisfying Theorem 1, is

HðsnÞ ¼ 1þ 9
16
ðsn � 1Þ2, so that we get the following fourth-or-

der method:

yn ¼ xn � 2
3

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn � 4fðxnÞ
f0ðxnÞþ3f0ðynÞ

1þ 9
16

f0ðynÞ
f0 ðxnÞ � 1
� �2� �

;

8><
>: ð11Þ

with error equation

enþ1 ¼ 3c32 � c2c3 þ
c4
9

� �
e4n þO e5n

� �
: ð12Þ

Remark 1. It could be shown that some of the existing
methods are the special cases of (7). For example, rearrange

the term from (7) as follows

4fðxnÞ
f0ðxnÞ þ 3f0ðynÞ

½HðsnÞ� ¼ uðxnÞ
4

1þ 3sn
HðsnÞ; ð13Þ

wherein sn = f0(yn)/f
0(xn), and u(xn) = f(xn)/f

0(xn). Substituting

the conditions H(1) = 1, H0(1) = 0, and H
00
(1) = 9/8 from the

proposed class (7) gives directly the family

yn ¼ xn � 2
3

fðxnÞ
f0 ðxnÞ ;

xnþ1 ¼ xn � uðxnÞGðsnÞ;

(
ð14Þ

where sn = (3/2)(1 � sn), and presented recently in the paper

[3] with the conditions G(0) = 1, G0(0) = 1/2, G
00
(0) = 1 of

the weight function G(sn). This simply shows the generality
of the scheme (7).

Choosing different suitable weight functions in (7) accord-

ing to Theorem 1 can provide more optimal two-point
methods. We here note that such iterations without memory
in which the order four can be attained by using two

evaluations of the first-order derivative and one function
evaluation are called in the literature as Jarratt-type schemes.

As another example from the class, we produce the
following uni-parametric family

yn¼ xn� 2
3

fðxnÞ
f0ðxnÞ ;

xnþ1¼ xn� 4fðxnÞ
f0 ðxnÞþ3f0ðynÞ

1þ 9
16
ðf0ðynÞ
f0ðxnÞ�1Þ2þh f0ðynÞ

f0ðxnÞ�1
� �3� �

;h2R;

8><
>:

ð15Þ

with error equation enþ1 ¼ �c2c3 þ c4
9

�
þc32 3þ 64h

27

� �
Þe4n þO e5n

� �
.

Now, we aim at extending the class (7) for multiple roots
and to obtain one of the main aims in this article by giving a

534 F. Soleymani, D.K.R. Babajee
new general two-point multiple zero-finder. Li et al. in [14]

developed the multiple root version of the third-order Halley-
like family (5) as follows

yn ¼ xn � b fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn �
mbðmbþb�2mÞ m�b

mð ÞmfðxnÞ
ððm�bÞ2�mbþmb2Þ m�b

mð Þmf0ðxnÞ�ðm�bÞ2f0ðynÞ
; b–0:

8><
>: ð16Þ

Let us consider the case b ¼ 2m
mþ2. Then, we obtain the multiple

version of the method (6)

yn ¼ xn � 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn þ 4mpmfðxnÞ
pmðm2þ2m�4Þf0ðxnÞ�m2f0ðynÞ

;

8<
: ð17Þ

where p ¼ m
mþ2. Let us further take into account the following

class for multiple roots using again weight function approach

yn ¼ xn � 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn þ 4mpmfðxnÞ
pmðm2þ2m�4Þf0ðxnÞ�m2f0ðynÞ

½HðsnÞ�; sn ¼ f0ðynÞ
f0ðxnÞ :

8<
: ð18Þ

We show in what follows that this class is of fourth-order for

multiple roots.

Theorem 2. Let x* 2 D be a multiple zero of a sufficiently differ-
entiable function f:D � R fi R for an open interval D with the
multiplicity m, which includes x0 as an initial approximation of

x*. Then, the family of methods without memory (18) is of opti-

mal local order four, when Hðpm�1Þ ¼ 1; H0ðpm�1Þ ¼ 0;
H00ðpm�1Þ ¼ � m3ðm�2Þ

8p2m
; jHð3Þðpm�1Þj <1.

Proof. To find the asymptotic error constant of (18) where

Cj ¼ ðmÞ!
ðmþjÞ!�

fðmþjÞðx�Þ
fðmÞðx�Þ ; j P 1, we expand any terms of (18)

around the multiple root x* in the nth iterate whence
en = xn � x*. A Taylor expansion around x* yields

fðxnÞ ¼
fðmÞðx�Þ

m!
emn 1þ

X1
j¼1

Cje
j
n

 !
; ð19Þ

and

f0ðxnÞ ¼
fðmÞ x�n
� �

ðm� 1Þ! e
m�1
n 1þ

X1
j¼1

mþ j

m
Cje

j
n

 !
; ð20Þ

so that using algebraic software,

xn�
2m

mþ2

fðxnÞ
f0ðxnÞ

¼x� þ m

mþ2
enþ

2C1

mðmþ2Þe
2
n

�ððmþ1ÞC2
1�2mC2Þ

m2ðmþ2Þ e3n

þ2ðð�3m2�4mÞC1C2þðm2þ2mþ1ÞC3
1þ3m2C3Þ

m3ðmþ2Þ e4nþO e5n
� �

:

ð21Þ

We similarly have
xn þ
4m pmfðxnÞ

pmðm2 þ 2m� 4Þf0ðxnÞ �m2f0ðynÞ
¼ x� �m� 2

m3
C2

1e
3
n

þ �m2 þ 4m� 8

m3

� 	
C1C2

m3
þ ðm4 þ 8m3 � 10m2

�

þ 4m� 12Þ C
3
1

3m5
þ mC3

ðmþ 2Þ2

!
e4n þO e5n

� �
: ð22Þ
Furthermore, we have by Taylor expansion

sn ¼
f0ðynÞ
f0ðxnÞ

¼ pm�1 � 4pm

m3
C1en þ

4ðm2 þ 2Þpm
m5

C2
1 �

8pm

m3
C2

� 	
e2n

þ � � � þO e5n
� �

: ð23Þ

Thus, it would be easy to obtain

HðsnÞ ¼ Hðpm�1Þ þH0ðpm�1Þðsn � pm�1Þ

þH00ðpm�1Þ
2

ðsn � pm�1Þ2 þHð3Þðpm�1Þ
6

ðsn � pm�1Þ3

þO e4n
� �
¼ 1� ðm� 2ÞC2

1

m3
e2n

þ �4ðm� 2ÞC1C2

m3
� ð16p3mHð3Þðpm�1Þ � 6m5 þ 6m6

�

� 3m7 þ 12m4Þ 2C
3
1

3m9

	
e3n þO e4n

� �
: ð24Þ

Substituting Eqs. (21) and (23) into Eq. (18), and again using
algebraic software, we have

Hðpm�1Þ ¼ 1; H0ðpm�1Þ ¼ 0; H00ðpm�1Þ

¼ �m3ðm� 2Þ
8p2m

; jHð3Þðpm�1Þj <1; ð25Þ

to let the order arrive at four. By applying (25), the class (18)

satisfies the error equation

enþ1 ¼
�
½m8 þ 2m7 þ 2m6 � 8m5 þ 12 m4

þ 32p3mHð3Þðpm�1Þ� C
3
1

3m9
� C1C2

m
þ m C3

ðmþ 2Þ2

!
e4n þO e5n

� �
:

ð26Þ

This shows that the suggested class reaches the local quartical-

ly convergence using three evaluations, i.e. the same to (1)–(4),
but it is more general. The proof is complete. h

A simple choice for H(s) in (18) satisfying Eq. (25) is
HðsnÞ ¼ 1þ 9

16
ðsn � pm�1Þ2 so that we get the multiple root ver-

sion of the method (11):

yn¼ xn� 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1¼ xnþ 4m pmfðxnÞ
pmðm2þ2m�4Þf0ðxnÞ�m2f0ðynÞ

1�m3ðm�2Þ
16p2m

ðf0ðynÞ
f0ðxnÞ�pm�1Þ2

h i
;

8<
:

ð27Þ

with error equation

enþ1¼
ðm4þ2m3þ2m2�8mþ12ÞC3

1

3m5
�C1C2

m
þ mC3

ðmþ2Þ2

 !
e4n

þO e5n
� �

:

ð28Þ

Clearly, each member from the new class (18) for multiple
zeros comprises three evaluations per full cycle, i.e. two deriv-
ative and one function evaluations. Accordingly, the derived

methods and the classes are consistent with optimality hypoth-
esis of Kung–Traub for construction optimal multi-point iter-
ations without memory. They possess the optimal efficiency

index 41/3 � 1.587.

Computing multiple zeros using a class of quartically convergent methods 535
Another example from the proposed class of iterations can
be

yn ¼ xn � 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn þ 4m pmfðxnÞ
pmðm2þ2m�4Þf0ðxnÞ�m2f0 ðynÞ

� 1� m3ðm�2Þ
16p2m

f0ðynÞ
f0 ðxnÞ � pm�1
� �2

� 1000 f0ðynÞ
f0ðxnÞ � pm�1
� �3� �

:

8>>>><
>>>>:

ð29Þ

Remark 2. Some well-known multiple zero finders belong to

our class. For example, a slight transformation of (18),

4mpmfðxnÞ
pmðm2 þ 2m� 4Þf0ðxnÞ �m2f0ðynÞ

HðsnÞ

¼ �uðxnÞ:
4mpm

m2sn � pmðm2 þ 2m� 4ÞHðsnÞ; ð30Þ

and the substitution of the conditions H(pm�1) = 1,
H0(pm�1) = 0, H

00
(pm�1) = � m3(m � 2)/(8p2m), lead to the

family of two-point methods for multiple roots presented by

Zhou et al. in [30].
Table 1 Approximate multiplicity.

Iterative methods Newton (6) (11)

Multiplicity method (i)

Number of iterations 70 45 40

Computational time 0.1 0.07 0.06

Multiplicity method (ii)

Number of iterations 17 12 11

Computational time 0.03 0.03 0.03
4. Finding the order of multiplicity

An important challenge in the iterative methods based on the

known multiplicity is to find the order of multiplicity correctly.
However, most algorithms to determine the order of multiplic-
ity may lead to mutually opposite requirements. In what fol-
lows, three multiplicity-finding methods are reminded:

(i) Traub in [27] showed that

m � log jfðxÞj
log jfðxÞ=f0ðxÞj ; ð31Þ

when x is very close to the multiple root of f.

(ii) Lagouanelle in [13] proposed the following approximate
formula

m � f0ðxÞ2

f0ðxÞ2 � fðxÞf00ðxÞ
; ð32Þ

when once again x is very close to the multiple root of f.

(iii) A two-point way for finding the multiplicity has been
given in [11] as

m � 1

f½x; y� ; ð33Þ

wherein f½x; y� ¼ fðxÞ�fðyÞ
x�y and also by assuming that x and y

are very close to the multiple root of f. Therefore, m is approx-
imately the reciprocal of the divided difference of f for succes-
sive iteration x and y. It may be computed, and displayed at

each step along with the current iteration.
All of the above-mentioned ways demand a very close

approximation to calculate a multiplicity of high accuracy. On

the other hand, to find a very close approximation to a multiple
root, it is necessary to use precise multiplicity. However, both of
the requirements cannot be attained at the same time. Taking

into account the opposite demands mentioned and additional
calculations to find multiplicity, in those cases where we cannot
provide an accurate multiplicity, it is sometimes better to apply
a method which does not explicitly require the order of multiplic-
ity (the aim of the next section), in spite of its lower computa-
tional efficiency arising from additional functional evaluations

per iteration. For further discussion, see [9].
Note that the method (iii), is un-stable due to the use of di-

vided difference. We need to use large number of floating point

arithmetics, which increase the computational time. To clearly
observe the above methods (i) and (ii), for finding the multi-
plicity-order, we provide the following illustration.

Illustration 1. We applied the three above-mentioned methods

to find improved approximations to the root x* = 0 of the
multiplicity m= 6 for the nonlinear function fðxÞ ¼ x sinðxÞ
�2 sin x=

ffiffiffi
2
p� �� �2

. We chose x0 = 1.6 as the initial approxima-

tion. Results are given in Table 1. The results show that the
combination of the method (ii) and the scheme (11) (though it is
of order one for multiple zeros) performs really well in terms of

the number of evaluations alongside the CPU running time.

All computations have been done in MATHEMATICA 8 [6,7].

For example, the scheme (11) by using (ii) could be coded in
what follows in which 32 digits has been used with the stopping
criterion 0.001 on the two successive approximations of the

multiplicity order.

ClearAll[n, x, f1x, f1y, m]

f[x_] :¼ x \ Sin[x] � 2 (Sin[x/Sqrt[2]])
�
2;

n = 0; m = 1; x = 1.6;

While[Abs[(f0[x]�2)/(f0[x]�2 � f[x] \ f
00
[x])-

m]> 0.001,

m = SetAccuracy[(f0[x]�2)/(f0 [x]�
2 � f[x] \ f

00
[x]), 32];

fx = f[x]; f1x = f0[x];
y = SetAccuracy[x � (2/3)*(fx/f1x), 32];

f1y = f0[y];
x = SetAccuracy[x � ((4 fx)/(f1x +3 f1y)) \ (1 + (9/

16) \ (f1y/f1x � 1)�2), 32];
n++]; // AbsoluteTiming

Print[n]

Print[Round[m]]
5. Unknown multiplicity

We now consider the application of iteration function (11)

to the case when the order of multiplicity is unknown. Let
x* be a multiple root of a function f(x), then x* is a simple
root of the function h(x):¼f(x)/f0(x). In this way, the order

of convergence will be preserved by costing more functional
evaluations.

Table 2 The considered test functions in this paper.

Test Functions Zeros Multiplicity

f1(x) = ((sin(x))2 + x)5 x�1 ¼ 0 5

f2ðxÞ ¼ ð1þ xþ cosðpx2 Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

Þ3
x�2 � �0:728584046444826 . . . 3

536 F. Soleymani, D.K.R. Babajee
Remark 3. Existing literature has attributed this transforma-

tion function to make the multiple root as a simple one to
various authors. However, Schroder was the first to derive this
method in his paper [17]. Note that it is also known as Traub’s

transformation [27].

Now by applying the optimal fourth-order method (11)

on the transformation h(x), we can easily extend it for
dealing with multiple roots, when high precision alongside
high order is needed. For (11), we thus obtain

yn ¼ xn þ 2fðxnÞf0 ðxnÞ
�3f0ðxnÞ2þ3fðxnÞf00 ðxnÞ

;

xnþ1 ¼ xn �
4fðxnÞ 1þ 9

16 �1þ
1�vn
1�unð Þ2

� �
f0ðxnÞð4�un�wnÞ ;

8><
>: ð34Þ

wherein

un ¼ fðxnÞf00 ðxnÞ
f0ðxnÞ2

;

vn ¼ fðynÞf00 ðynÞ
f0ðynÞ2

;

wn ¼ 3fðynÞf00ðynÞ
f0ðynÞ2

:

8>>><
>>>:

ð35Þ

Therefore, now we have an efficient method (34) of order four

for finding the multiple roots too. All the other optimal simple
root solvers can be easily constructed in this way for finding
multiple zeros, when high precision is required. Note that until

now, we have distinguished two kinds of methods; those which
deal with a known order of multiplicity and others, such as
(34), with no information on multiplicity.
Table 3 Results of comparisons for different methods after three f

Œf Œ x0 (2) (3)

Œf1(x3)Œ 0.3 1.77 · 10�170 1.80 · 10� 16

q1 3.99 3.99

Œf2(x3)Œ �0.6 1.04 · 10�153 2.87 · 10� 15

q2 3.99 3.99

Table 4 Results of comparisons for different methods after three f

Œf Œ x0 (2) (3)

Œf1(x3)Œ 0.2 1.04 · 10�153 2.87 · 10� 15

q1 3.99 3.99

Œf2(x3)Œ �0.8 3.58 · 10�143 7.94 · 10� 14

q2 3.99 3.99
Remark 4. When the multiplicity of the zeros for a nonlinear

function is quite high, for instance m > 15, then finding the
m, explicitly, in an acceptable piece of time is a hard task.
Thus, one may rely on iterative methods such as (34), in which

the multiple zeros could be found without the knowledge of
multiplicity in general. Some robust discussions for this prob-
lem and how to resolve them are given in [4].
6. Numerical testing

We have tested the class (18) of the two-point methods without
memory using the programming package MATHEMATICA 8.
Apart from this class, some two-point iterative methods (2)–

(4) of optimal order four for multiple roots, which also require
three functional evaluations and the same computational effi-
ciency, have been tested. The list of test nonlinear functions
including multiple roots with their multiplicity are presented

in Table 2.
The results of comparisons are summarized in Tables 3, 4

after three full iterations, respectively, for two different initial

guesses. As they show, novel schemes are comparable with all
of the methods. All numerical instances were performed by
using 500 digits floating point arithmetic. We have computed

the root of each test function for the initial guess x0.
It should be remarked that all of the discussed iterative

methods up to now, have the ability to find complex zeros as
well. For this aim, one may apply a complex initial guess to

find the complex solution.
As can be seen, the obtained results in Tables 3, 4 are in

harmony with the analytical procedures given in Section 3.

Although two-point method (27) produce the best approxima-
tions in the case of considered functions, we cannot claim that,
in general, they are better than other two-point methods with-

out memory for multiple roots of optimal local order four; the
tests show that the considered methods generate results of
approximately same accuracy.

An efficient way to observe the behavior of the order of
convergence is to use the (local) computational order of con-
vergence. We use the following way
ull iterations.

(4) (27) (29)

5 1.29 · 10�164 9.32 · 10�170 4.06 · 10� 170

3.99 3.99 3.99

2 4.84 · 10�152 1.39 · 10�152 2.49 · 10� 153

3.99 3.99 3.99

ull iterations.

(4) (27) (29)

2 1.77 · 10�170 1.77 · 10�170 1.77 · 10� 170

3.99 3.99 3.99

3 3.16 · 10�142 1.35 · 10�143 1.58 · 10� 145

3.99 3.99 3.99

Computing multiple zeros using a class of quartically convergent methods 537
q �
ln fðxnþ1Þ

fðxnÞ

ln fðxnÞ

fðxn�1Þ

 : ð36Þ

The computer characteristics are Microsoft Windows XP In-

tel(R), Pentium(R) 4 CPU, 3.20 GHz with 4 GB of RAM,
throughout this paper.

In this work, the computational time has been computed
using the command AbsoluteTiming[]. Note that CPU

run time is not unique and completely depends on the specifi-
cation of the Computer, but herein we present a mean over 5
performances to ensure the readers of their robustness. We

also report the computational order of convergence using

(36), and in fact based on q � ln jfðx3Þ=fðx2Þj
ln jfðx2Þ=fðx1Þj.

7. Finding all the real solutions

Knowledge of efficiency is of interest in designing a package of
root-solvers. Hopefully the schemes from the class (18) are of

optimal fourth-order. Furthermore, as given in Remark 4, and
also throughout the paper till now, the most important aspect
of iterative methods for solving nonlinear equations is to have

robust initial approximations of the solutions to start the pro-
cess. Unfortunately, an inappropriate initial guess will ruin the
whole theoretical aspects and may lead to unwanted solution

or divergency.
To remedy this, only a few well-known works are available in

the literature. For example, Johnson and Tucker [8] recently pro-
posed an efficient quadrature approach to find the number of

roots inside a given rectangle and to calculate their multiplicities.
Their method is based on the argument principle and supported
by the use of validated integration of contour integrals.

The newest way for this aim, is the work of Yun in [29]. In
fact, author solved f(x) = 0 with having finitely many roots in
a bounded interval, based on the so-called numerical integra-

tion method (Signum Based Iteration) without any initial
guess, and then he applied iterative methods to obtain all the
(real) roots of the nonlinear equations. In the result, an algo-

rithm to find all of the simple roots and the multiple ones as
1 1 2 3 4 5
x

1 1010

2 1010

3 1010

4 1010

5 1010

6 1010

7 1010

f (x)

Figure 1 The plot of the function f(x) in two d
well as the extrema of f(x) was suggested. The problem of this
technique is to compute a numerical integration on the inter-
vals, furthermore when having so many zeros in an interval

or we have root-cluster, the implementation of this technique
might be costly.

In this section, we propose an algorithm to find robust ini-

tial guesses and then correct their accuracies by the proposed
methods of this paper. Toward this goal, we pay heed to the
interval mathematics [10,15]. Using an interval scheme such

as Bisection method we provide a list of real approximations
for the given nonlinear function on a bounded domain.

Note that, by using the computer algebra software MATH-

EMATICA 8 [28], we are able to work on a list very easily. In this

case, and for having accuracy along with simplicity we code
our algorithm in this programming package.

Therefore, in our hybrid algorithm, we first provide a se-

quence of starting points based on interval bisection method
which could have some flexibility to find all the intervals (up
to any pre-desired accuracy) and then in the second step, we

apply the iterative methods given in Sections 3 and 5 to boost
up their accuracies.

We now first set up the primitive requirements for the inter-

val bisection method as follows

ClearAll[f, x, y, fx, fy, f1x, f2x, fy, f1y, f2y,

setInitial, u, v, w, j, NumberOfGuesses, nMax]

intervalbisection::rec = "MaxRecursion exceeded.";

split[f_, x_, int_Interval, eps_, n_] :¼
Block[{a=int[[1, 1]], b=int[[1, 2]], c},

If[! IntervalMemberQ[f /. x fi int, 0],

Return[{}]];

If[b � a< eps, Return[int]];

If[n==0, Message[intervalbisection::rec];

Return[int]];

c = (a + b)/2;

split[f, x, #, eps, n � 1] & /@ {Interval[{a, c}],

Interval[{c, b}]}];

Options[intervalbisection]

= {MaxRecursion fi 1000};
1.

if
0 0.5 0.5 1.0 1.5
x

2

4

6

f (x)

ferent views (intervals) including the zeros.

538 F. Soleymani, D.K.R. Babajee
In the above piece of code, the mid-point (i.e. c) of the inter-
val [a,b] including a zero, is calculated until all real zeros are
detected (up to the machine precision). The note is that we

considered the maximum recursion to be 1000. Clearly, if
one knows that the interval has a few zeros then, this could
also be changed to some lower value, while if we have a root

cluster in which there are so many zeros, then to capture all
of them, this setting must be considered tighter. Note that
one reason for choosing interval bisection method as the pre-

dictor is that, it is totally based on having an interval in each
iteration containing a zero. That is to say, no matter we have
simple or multiple zero, and how the function is so much ill-
conditioned, it mostly successfully finds intervals with roughly

a same convergence rate.

We are now able to apply the interval bisection method to
capture all the intervals having one unique solution in them-
selves by

intervalbisection[f_, x_, intab_, eps_, opts___] :¼
Block[{int, n,}

n = MaxRecursion /. opts /.

Options[intervalbisection];

int = Interval /@ (List @@ intab);

IntervalUnion @@ Flatten[split[f, x, #, eps, n] & /@

int]];
In the above lines eps is the tolerance. We also may note

that we are working with double precision in the first step of
the hybrid algorithm to rapidly obtain a list of robust initial
intervals. In most practical problem eps= 10�4 is enough,

but in some cases it would be necessary to increase this toler-
ance to capture all the solutions in a root cluster.

At this time, we have a list of intervals each including a
zero. Thus, now we pick out the mid point of each interval

as the robust initial approximation for the zeros. We now keep
going by considering an oscillatory function in an interval. We
consider the nonlinear function f(x) = sin(20x) + exp(x2) � 1,

on the interval D= [�1.,5.]. The tolerance is chosen to be
0.0001. The last line in the following piece of code extract all
the mid-points of the intervals (including a zero), and provide

our robust list of starting points.

f[x_] :¼ Sin[20 x] + Exp[x�2] � 1;

IntervalSol = intervalbisection[f[x], x,

Interval[�1.,5.], 0.0001];
setInitial=Mean /@ List @@ IntervalSol
The graph of the function f has been portrayed in Fig. 1.
One may observe that in the considered interval, there are
some roots next to each other. The number of zeros can now

be obtained as follows:

NumberOfGuesses = Length[setInitial]

nMax = 2;
The nMax is the number of full cycles, we are going to let
the iteration functions take to correct the accuracy of the ini-

tial points. In this example, we have 10 simple zeros in the
given interval, i.e. {�0.74379, �0.656815, �0.459335,
�0.319534, �0.155838, �0.0000152588, 0.158371, 0.309158,
0.484665, 0.605423}. The second step of our hybrid algorithm

now could be written as comes next:

digits = 528;

For[j = 1, j <= NumberOfGuesses, j++,

{x = setInitial[[j]],

If[Round[f0[x]]==0,
{Do[

fx = SetAccuracy[f[x], 528];

f1x = SetAccuracy[f0[x], digits];
f2x = SetAccuracy[f00[x], digits];
y = SetAccuracy[x + (2 fx \ f1x)/

(�3 \ f1x�2+3 \ fx \ f2x), digits];

fy = SetAccuracy[f[y], digits];

f1y = SetAccuracy[f0[y], digits];
f2y = SetAccuracy[f00[y], digits];
u = SetAccuracy[(fx \ f2x)/(f1x�2), digits];
v = SetAccuracy[(fy \ f2y)/(f1y�2), digits];
w = SetAccuracy[(3 \ fy \ f2y)/(f1y�2),

digits];

x = SetAccuracy[x � (4 fx (1 + (9/16) \ (�1
+ (1 � v)/(1 � u))�2))/(f1x \ (4 � u � w)),

digits]; , n, nMax];

Print[Column[

{"The zero is multiple=’’ x,

‘‘The zero is multiple and its function

value is =’’ N[f[x]]}, Frame fi All]];},

{Do[

fx = SetAccuracy[f[x], digits]; f1x = SetAccuracy[f0[x],
digits];

y = SetAccuracy[x � (2/3) \ (fx/f1x), digits];

f1y = SetAccuracy[f0[y], digits];
x = SetAccuracy[x � ((4 fx)/(f1x + 3 f1y)) \ (1 + (9/

16) \ (f1y/f1x � 1)�2), digits];
, {n, nMax}];

Print[Column[

{"The zero is simple=’’ x,

‘‘The zero is simple and its function

value is =’’ N[f[x]]}, Frame fi All]];}];};];
We provided the test If[Round[f0[x]]== 0, . . ., . . .], to
distinguish that the zero is simple or multiple. In the above

piece of code, 528 digits floating point has been used, this
could be changed according the aims of the users as well. Note
that in the following first and third example we considered

nMax= 3 while for the second example we have chosen
nMax= 1 because of having multiple zeros. Thus, the number
of digits must be enough high when dealing with multiple zeros

along the fact that the considered stopping criterion might be
replaced with another one. The final results for this problem
and the solutions that we have obtained are reported in Table
5. Note that the whole computational time is 0.12 s.

In the suggested way, all the real solutions of the nonlinear
(twice differentiable) function in a bounded domain can be
easily attained simultaneously up to any number of decimal

places. We are able now to find all the critical points in an
interval without the difficulty in computing numerical integra-
tion based scheme of Yun in [29]. An important attention

should be paid to the options we have taken into account. In
some situations, some tighter conditions on the first step must
be taken to capture all the real solutions. It should be re-

Table 5 Results of applying the hybrid algorithm for

f(x) = sin(20 x) + exp(x2) � 1.

Initial point Absolute value of f(x3)

�0.74379 (Simple) 1.65 · 10�212

�0.656815 (Simple) 3.23 · 10�243

�0.459335 (Simple) 3.97 · 10�230

�0.319534 (Simple) 9.24 · 10�272

�0.155838 (Simple) 3.59 · 10�262

�0.0000152588 (Simple) 4.98 · 10�281

0.158371 (Simple) 2.69 · 10�258

0.309158 (Simple) 5.19 · 10�251

0.484665 (Simple) 4.99 · 10�238

0.605423 (Simple) 1.69 · 10�228

Table 6 Results of applying the hybrid algorithm for

illustration 2.

Initial point Absolute value of g(x1)

0.333319 (Simple) 5.46 · 10�14

0.666672 (Multiple) 1.52 · 10�61

1.24999 (Simple) 1.14 · 10�13

1.49998 (Multiple) 0

1.87498 (Simple) 9.97 · 10�12

Computing multiple zeros using a class of quartically convergent methods 539
marked that for very oscillatory functions in an interval, or
when the considered interval is too large, we recommend the

users to first divide the main interval into some sub-intervals
and then apply the above-mentioned algorithm to capture all
the real roots properly. Applying the hybrid algorithm on

f0(x), will produce the extrema of f(x) as well.
In what follows, we give two more examples to clearly ob-

serve the efficiency of the new algorithm in solving nonlinear

equations.

Illustration 2. Let us find the zeros of the nonlinear function
g(x) = (2x � 3)2(3x � 2)4(96x3 � 332x2 + 325x � 75), on the
bounded domain D = [0.2,2.]. The results for solving this

problem are listed in Table 6. The plot of g(x) is given in Fig. 2.
1.0 1.5 2.0
x

1000

2000

3000

g (x)

Figure 2 The plot of the function g(x) in two d
Clearly, the first part of the above code, will produce the

following list of initial approximations for the zeros in the
interval: {0.333319,0.666672,1.24999,1.49998,1.87498} with
accuracy up to 4 decimal places at least. Now, we have a

sequence of initial points, which guarantee the convergence
order. The second part of our code will correct the accuracies
and also distinguish that which zero is simple and which one is
multiple. In this test, there are three simple and two multiple

zeros.

The whole computational time for obtaining the results in

Table 5 is only 0.25 s.

Remark 5. In case of having multiple zero in the interval, and
though the algorithm is of fourth order, we cannot attain the

rate of fourth order convergence in correcting the starting
points per full cycle. Note that in the error ball, the accurate
computation of f(x) is not possible and that is why the rate
of correcting the number of decimal places is lower than that

of simple zeros.

Illustration 3. In this test, we try to find all the solutions of the

function hðxÞ ¼ � 100x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10000x4þ1
p þ sinð10xÞ þ 1

2
, on the interval

D= [0,30]. The plot of h(x) is given in Fig. 3.

The sequence of initial approximations would be {0.262985,
0.680637, 0.890121, 1.309, 1.51843, 1.93731, 2.14677, 2.56562,
2.77508, 3.19396, 3.40339, 3.82227, 4.03172, 4.45058, 4.66001,

5.07892, 5.28834, 5.70723, 5.91668, 6.33554, 6.54496, 6.96387,
7.1733, 7.59218, 7.80164, 8.22049, 8.42992, 8.84883, 9.05826,
9.47714, 9.68659, 10.1054, 10.3149, 10.7338, 10.9432, 11.3621,

11.5716, 11.9904, 12.1998, 12.6187, 12.8282, 13.247, 13.4565,
13.8754, 14.0848, 14.5037, 14.7131, 15.132, 15.3415, 15.7603,
15.9697, 16.3887, 16.5981, 17.0169, 17.2264, 17.6453, 17.8547,

18.2736, 18.483, 18.9019, 19.1114, 19.5302, 19.7397, 20.1586,
20.368, 20.7868, 20.9963, 21.4152, 21.6246, 22.0435, 22.253,
22.6718, 22.8813, 23.3001, 23.5096, 23.9285, 24.1379, 24.5568,
24.7662, 25.1851, 25.3945, 25.8134, 26.0229, 26.4417, 26.6512,

27.0701, 27.2795, 27.6984, 27.9078, 28.3267, 28.5362, 28.955,
29.1644, 29.5833, 29.7928}. In this test, as could be observed
by running the above code, there would be 95 simple zeros in

the considered interval. This reveals the difficulty of solving
0.5 1.0 1.5
x

250

200

150

100

50

50

g (x)

ifferent views (intervals) including the zeros.

5 10 15 20 25 30
x

1.5

1.0

0.5

0.5

1 2 3 4 5
x

1.5

1.0

0.5

0.5

h (x)h (x)

Figure 3 The plot of the function h(x) in two different views (intervals) including the zeros.

540 F. Soleymani, D.K.R. Babajee
nonlinear equations with finitely many roots in an interval,

however the above algorithm could fulfill this need.

Due to page limitations, we do not provide the corrected
values of the zeros after three full iterations. But the interesting
point is that using the above algorithm and without any guess,
we could find the zeros with at least 200 correct decimal places,

in only 1.82 s which clearly manifest the applicability of the
new hybrid algorithm.
8. Concluding remarks

The behavior of root-finding algorithms is studied in numerical
analysis. Algorithms perform best when they take advantage
of known characteristics of the given function. Besides, further
attention for multiple root solvers need to be done along to

write general codes to capture all the real solutions of nonlin-
ear equations in an interval, since for this purpose only a few
literature is available.

Hence, this paper has contributed a general way for solving
nonlinear equations using two-point root solvers. Discussion
on multiple roots have been done and it was observed that

any derived method from the classes (7) and (18) comprises
three functional evaluations, which shows their optimality in
the sense of Kung–Traub. We have also extended one method
for finding multiple zeros when the multiplicity is unknown.

Some methods from the class of multiple root solvers were
tested through numerical examples. From Tables 2, 3 and the
tested examples, we can conclude that all implemented meth-

ods for multiple roots converge fast, when the multiplicity of
the root is available and the initial guesses are in the vicinity
of the multiple zeros.

Fulfilling these two needs have also been discussed fully in
the work. We also used the programming package MATHEMAT-

ICA 8 in our calculations and gave the necessary cautions and

pieces of codes for the users to implement them in their own
problems as easily as possible. The second aim of this paper
was achieved by designing a hybrid algorithm to capture all
the solutions of nonlinear equations as rapidly as possible.

The algorithms worked efficiently in hard test problems. And
thus, the proposed algorithm could be easily used in practical
problems.

We end the paper by furnishing the outlines for future studies.
We worked on all the aspects of the iterative methods to capture
all the real solutions. Thus, the future work could focus on finding

a robust way to find accurate complex initial guesses to find the
complex zeros in a rectangle using optimal methods as well. Fur-
thermore, the new quartcially convergent algorithm requires the
functions to be twice differentiable in the interval, and in case of

finding exterma, one needs the 3rd order derivative as well. Hence,
it will be appropriate if the hybrid algorithm could have an opti-
mal high-order Steffensen-type corrector, to resolve this problem

(only once differentiable) in finding the critical points. This imple-
mentation could be one of the next aims.
References

[1] M. Aslam Noor, M. Waseem, Some iterative methods for

solving a system of nonlinear equations, Comput. Math. Appl.

57 (2009) 101–106.

[2] D.K.R. Babajee, Analysis of Higher Order Variants of Newton’s

Method and their Applications to Differential and Integral

Equations and in Ocean Acidification, Ph.D. thesis, University

of Mauritius, December 2010.

[3] C. Chun, M.Y. Lee, B. Neta, J. Dzunic, On optimal fourth-

order iterative methods free from second derivative and their

dynamics, Appl. Math. Comput. 218 (2012) 6427–6438.

[4] B.H. Dayton, T.-Y. Li, Z. Zeng, Multiple zeros of nonlinear

systems, Math. Comput. 80 (2011) 2143–2168.

[5] A. Galantai, C.J. Hegedus, A study of accelerated Newton

methods for multiple polynomial roots, Numer. Algor. 54 (2010)

219–243.

[6] R. Hazrat, Mathematica: A Problem-Centered Approach,

Springer-Verlag, 2010.

[7] J. Hoste, Mathematica Demystified, the McGraw-Hill

Companies, Inc., 2009.

[8] T. Johnson, W. Tucker, Enclosing all zeros of an analytic

function–a rigorous approach, J. Comput. Appl. Math. 228

(2009) 418–423.

[9] N.N. Kalitkin, I.P. Poshivailo, Determining the multiplicity of a

root of a nonlinear algebraic equation, Comput. Math. Math.

Phys. 48 (2008) 1113–1118.

http://refhub.elsevier.com/S1110-0168(13)00047-1/h0005
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0005
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0005
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0010
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0010
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0010
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0015
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0015
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0020
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0020
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0020
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0025
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0025
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0025
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0030
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0030
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0030
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0035
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0035
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0035
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0040
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0040
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0040

Computing multiple zeros using a class of quartically convergent methods 541
[10] J.B. Keiper, Interval arithmetic in mathematica, Math. J. 5

(1995) 66–71.

[11] R.F. King, A secant method for multiple roots, BIT 17 (1977)

321–328.

[12] H.T. Kung, J.F. Traub, Optimal order of one-point and

multipoint iteration, J. ACM 21 (1974) 643–651.

[13] J.L. Lagouanelle, Sur une mtode de calcul de l’ordre de

multiplicit des zros d’un polynme, C.R. Acad. Sci. Paris Sr. A

262 (1966) 626–627.

[14] S.G. Li, H. Li, L.Z. Cheng, Some second-derivative-free variants

of Halley’s method for multiple roots, Appl. Math. Comput. 215

(2009) 2192–2198.

[15] R.E. Moore, R.B. Kearfott, M.J. Cloud, Introduction to

Interval Analysis, SIAM, 2009.

[16] H. Saberi Nik, F. Soleymani, A Taylor-type numerical method

for solving nonlinear ordinary differential equations, Alexandria

Eng. J. (2013), http://dx.doi.org/10.1016/j.aej.2013.02.006.

[17] E. Schroder, Uber unendlich viele algorithmen zur Auflsung der

Gleichungen, Math. Ann. 2 (1870) 317–365.

[18] M. Sharifi, D.K.R. Babajee, F. Soleymani, Finding the solution

of nonlinear equations by a class of optimal methods, Comput.

Math. Appl. 63 (2012) 764–774.

[19] J.R. Sharma, R. Sharma, Modified Jarratt method for computing

multiple roots, Appl. Math. Comput. 217 (2010) 878–881.

[20] F. Soleymani, F. Soleimani, Novel computational derivative-

free methods for simple roots, Fixed Point Theory 13 (2012)

247–258.
[21] F. Soleimani, F. Soleymani, S. Shateyi, Some iterative methods free

from derivatives and their basins of attraction, Discrete Dynamics in

Nature and Society, vol. 2013, Article ID 301718, 11 pages

[22] F. Soleymani, D.K.R. Babajee, T. Lotfi, On a numerical technique

for finding multiple zeros and its dynamic, J. Egypt. Math. Soc.

(2013), http://dx.doi.org/10.1016/j.joems. 2013.03.011.

[23] F. Soleymani, Some optimal iterative methods and their with

memory variants, J. Egypt. Math. Soc. (2013), doi:/10.1016/

j.joems.2013.01.002.

[24] F. Soleymani, Some efficient seventh-order derivative-free

families in root-finding, Opuscula Math. 33 (2013) 163–173.

[25] M.D. Stuber, V. Kumar, P.I. Barton, Nonsmooth exclusion test

for finding all solutions of nonlinear equations, BIT 50 (2010)

885–917.

[26] R. Thukral, New sixteenth-order derivative-free methods for

solving nonlinear equations, Am. J. Comput. Appl. Math. 2

(2012) 112–118.

[27] J.F. Traub, Iterative Methods for the Solution of Equations,

Prentice Hall, New York, 1964.

[28] S. Wagon, Mathematica in Action, Third edition., Springer,

2010.

[29] B.I. Yun, Iterative methods for solving nonlinear equations with

finitely many roots in an interval, J. Comput. Appl. Math. 236

(2012) 3308–3318.

[30] X. Zhou, X. Chen, Y. Song, Constructing higher-order methods

for obtaining the multiple roots of nonlinear equations, J.

Comput. Appl. Math. 235 (2011) 4199–4206.

http://refhub.elsevier.com/S1110-0168(13)00047-1/h0045
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0045
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0050
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0050
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0055
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0055
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0060
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0060
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0060
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0065
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0065
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0065
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0070
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0070
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0070
http://dx.doi.org/10.1016/j.aej.2013.02.006
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0080
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0080
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0085
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0085
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0085
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0090
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0090
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0095
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0095
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0095
http://dx.doi.org/10.1016/j.joems.2013.03.011
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0105
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0105
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0105
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0110
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0110
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0115
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0115
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0115
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0120
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0120
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0120
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0125
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0125
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0125
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0130
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0130
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0130
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0135
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0135
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0135
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0140
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0140
http://refhub.elsevier.com/S1110-0168(13)00047-1/h0140

	Computing multiple zeros using a class of quartically convergent methods
	1 Preliminaries
	2 Brief review
	3 Construction of the new technique
	4 Finding the order of multiplicity
	5 Unknown multiplicity
	6 Numerical testing
	7 Finding all the real solutions
	8 Concluding remarks
	References

