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In this paper we establish the topological regularity of the solution set of difleren-
tial inclusions with constraints, defined in R”. The result is then extended to systems
defined in Banach spaces. Our proof makes use of an approximation result by
Lipschitz functions of Caratheodory functions, which we also prove in this paper.
i€ 1994 Academic Press, Inc.

1. INTRODUCTION

It 1s known that the solution set of the Cauchy problem x(¢) = f(z, x())
ae., x(0)=x,, with te T=1[0, r}, f(-,-) a bounded, continuous vector field
on T'xR" is an R;-set (see Yorke [15]). Recall that a subset of a metric
space is called an R;-set if it is the intersection of a decreasing sequence of
nonempty, compact absolute retracts. So every Ry-set is acyclic and, in
particular, nonempty, compact, and connected. This result was extended
recently to multivalued differential equations (differential inclusions), by
Himmelberg and Van Vleck [7] and DeBlasi and Myjak [2] for differen-
tial inclusions in R” and by Papageorgiou [11] and Deimling and Rao [4]
for differential inclusions in Banach spaces. However, none of the above
works considered systems with constraints (viability problems). The pur-
pose of this note is to derive such a topological regularity result for the
solution set of differential inclusions with constraints.
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2. PRELIMINARIES

Let (2, 2) be a measurable space and X a separable Banach space.
Throughout this note, we use the following notation: P, ,(X)={4< X:
nonempty, closed, (and convex)}. A multifunction F: 2 — P,(X) is said to
be measurable if, for all xe X, the R -valued function w — d{x, F(w)) is
measurable (note that Himmelberg [6] calls such a multifunction weakly
measurable).

Let ¥, Z be Hausdorff topological spaces and G: Y — 27\ {gf}. We say
that G(-) is upper semicontinuous (us.c.) (resp. lower semicontinuous
(Ls.c.)) if, for al USZ nonempty, open, G*(U)={yeY:G(y)sU}
(resp. G (U)={yeY:G(y)nU# J}) is open in Y.

On P,(X) we can define a generalized metric, known in the literature as
the Hausdorff metric, by

h{A, B) = max[sup d(a, B), sup d(b, A)].

ae A beB

The metric space (P,(X),h) is complete and a multifunction
G: X - P,(X) is said to be Hausdorff continuous (4-continuous) if it is
continuous from X into (P(X), h).

If Ke P, (X) and x € K, the tangent cone to K at x is defined by

d iv, K
TK(x)={veX: li_m~(-)—c—_—*_~f—v’——)=0}.
ilo

This is a closed and convex cone. If int K is nonempty, then so is
int Tx(x). The normal cone to K at x is defined by

Ne(x)={x*eX*: (x* x)=0(x* K)=sup (x* y)}.

rek

It is well known (see for example, Aubin and Cellina [1]) that the
normal cone is the negative polar cone Ty (x) ={x*e X: (x*, v)<0 for
all ve Te(x)}.

Recall that a set A= X is said to be contractible if there exist a
continuous #:[0,1]x A4 — A4 and xoe4 st A0, x)=x and A(l, x)=x,
on 4. A set C< X is said to be an absolute retract if it can replace R in
Tietze’s theorem; i.e., for every metric space Y and closed A< Y, each
continuous f: A — C has an extension f: Y — C. Evidently, an absolute
retract C is contractible. Let Y=[0,1]xC, A={0,1}xC<Y and
S0, x)=x, f(l,x)=x, on C. Hence, an Rsset is the intersection of
compact, contractible sets. The converse is also true and this is a result of
Hyman [8] (see the equivalence of statements (j) and (k) in the theorem
of Hyman).
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Let T=[0,r] and K be a nonempty, closed, and convex subset of X.
We say that f/: Tx K— X i1s a Caratheodory function if ¢— f(t, x) is
measurable, x — f(t, x) is continuous, and there exists ¢(-)eL', s.t.
Lf(t, x) < (1) ae. for all xeX. In the sequel we need the following
approximation result concerning Caratheodory functions.

Lemma a. If /1 Tx K— X is a Caratheodory function, then given any
£> 0, there exists a jointly locally Lipschitz function

fiTxK—Xst. f sup | /{6, x)— £.(t, x)|| dr <.
0 xekK

Proof. From the absolute continuity of the Lebesgue integral, we know
that given >0 we can find 6>0 s.t. |, @(¢)di<6 for all A< T with
i{A)< o (here A(-) denotes the Lebesgue measure on 7). Also, from the
Scorza-Dragoni theorem, we know that there exists B< T closed with
AT\BY<d s.t. flg.x and @]y are both continuous. Let m =max, 5 ¢(1)
and choose a closed set C<T\B s.t. A{T\(Bu C))<8/m. Then define
fi:(BuC)x K- X by

f, x) teB

Sl ’“z{o teC.

Thus f,(-,-) is continuous. Invoking Dugundji’s extension theorem,
we know that f,(.,-) has a continuous extension f,:TxX— X s.t.
[ />(t, x)|| €m for all (1,x)e TxX. Now from Lasota and Yorke [10],
we know that there exists a locally Lipschitz function f3: Tx X — X s.t.
1 f5(t, x)— f5(t, )| < 8/r for all (1, x)e T x X. Hence we have

[“sup 17t )= a3

0 xek

<[ sup 1701, x) = fa(t, )] e

0 xek

+ [ sup 121, %) = f2(6, )1

0 xek

< L sup | f(t, x)— f>(t, x)| dr

xe kK

+ [ sup lf(t, %)= fule, x)| dr

Cxek

H W) = Ll ) de 0.
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Recall that on Bx K f=/f, and on Cx K f,=0. So we get

[ sup 1712, x) = f2(t, )1 de

0 xek

<J owa+| s

(B

[ Xt
T (Bu ()
)
<O0+60+m—+0=40.
m

Take ¢ =¢/4 and let f, = f5| 7, x- Then the proof is finished. Q.E.D.

Remark. This lemma is an improvement and generalization of
Theorem 2.3 of Kisielewicz e al. [9], since their approximation is
Lipschitz only in x and they had to assume that K< X is compact. Also,
it generalizes Lemma 4 of DeBlasi and Myjak [2], where X' =R"

We also need the following extension of Michael’s selection theorem due
to Rybinski [13, Theorem 27].

LemMa B If G: Tx K— P, (X) is a measurable multifunction and for
every teT, G(1,-) is ls.c., then there exists g: Tx K— X st t— g(t, x)
is measurable, x — g(t,x) is continuous, and for all (t,x)eTxK,
g(t, x)e G(t, x).

3. MAIN RESULTS

Let T=[0,r] and X =R". We consider the following Cauchy problem:

x(1)e F(1, x(1)) ae. (%)
{ x(0)=x,eK }

Let S(x,)<= C(T, R") denote the solution set of (x). Note that by a
solution of (*) we mean an absolutely continuous function x: T — R" such
that x(¢)e F(t, x(1)) a.e. and x(0)=x, (i.e., solution in the Caratheodory
sense). We need the following hypotheses on the data of (x):

H(F) F:TxK~- P,(R") is a multifunction s.t.
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(1) ¢— F(t, x) is measurable,
(2) x— F(t, x) is usc.

(3) |F(r,x)| = sup{llyll: ye F(t,x)} < k(1)1 +x|) ae. with
k(-)eL' .

H(K) K< RY is nonemply, compact, convex.
H, Flt,x)nTg(x)# ¢ for all (1, x)e Tx K.

Then we have the following theorem on the topological regularity of the
solution set S(x).

THeEOREM 1. If hypotheses H(F), H(K), and H_ hold, then S(x,) is an
Rs-set in C(T, R™).

Proof. Without any loss of generality, we may assume that |F(z, x)| =
sup{ [ ¥i: ye F(1, x)} <1 (see Deimling [3] for the reduction). In addition,
since K is bounded, we can assume that |K|=sup{|z||:zeK}<1. We
also claim that we have int K# . Indeed, if this is not the case, let
X, =span K. This is a subspace of X and clearly K has a nonempty interior
in X,. Furthermore, it is easy to see that T (x)< X, for all xe K and the
orientor field F(z, x) n X, satisfies hypothesis H(F). Hence we can consider
the following Cauchy problem, which is equivalent to (*):

x(H)e F(t, x(1))n X, a.e. ,
{ x(0)=x,€ K } (*)

Thus there is no loss of generality in assuming that int K # . Finally,
by translation, we can always have that Oeint K. This then means that
there exists & > 0 s.t. for all x*e RY we have

O ||x* <o(x*, K)=sup{(x*, x):xeK}. (1)

Invoking Lemma 3 of DeBlasi and Myjak [2], we know that there exist
a multifunction Fy: Tx K— P, (R") and a sequence {G,},., of multi-
functions G,,: Tx K— P, (R") s.t. (i) Fo(t, x) S F(1, x) for all (1, x)e Tx K
and if 4= T is measurable and x, y: 4 > R" are measurable function
s.t. y(t)e F(t, x(¢)) ae., then p(t)e Fy(t, x(¢)) ae. on 4; (ii) G, (-, x) is
measurable for each xe K and G, (¢,-) is continuous for almost all te T;
(1) G, (1, x)2G,(t,x)=2 ---2G,(t,x)2G,, (4, x)= --- and G,(1, x)2
Fo(t,x) for all n21 and all (1, x)e Tx K; (iv) h(G, (1, x), Fo(t, x)) = 0 as
n— oo for each (1, x)e TxK; and (v) |G,(t, x)| =sup{llz|: z€ G, (2, x)}
<2 for all (¢, x)e Tx K.
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Note that because of hypothesis H(F)(1) and Proposition 2.4 of
Himmelberg [6], t— F(t, x)n Tx(x) is measurable, so by the
Kuratowski-Ryll-Nardzewski selection theorem, we can find uw:Tx X
measurable s.t. u(r) € F(1, x) n T (z) for all 1€ T and so from the properties
of multifunction Fy (¢, x), we have that u(t)e Fo(1, x) N T (x) for all teT.
Thus we deduce that F(¢, x) N Tx(x)# & for all (1, x}e T x K. Therefore
the following Cauchy problem is equivalent (i.e., has the same solution set)
to (*):

{)&(I)EFO(I, x(1)) a.e.} (%)

For ¢ >0, we define

Gi(t, x) =G, (1, x) + B(e),

where B(e)={xeR":|x| <e}. It is then obvious that for all
(t,x)eTxK, we have G.(t,x)nint T((x)# . Without loss of
generality, we assume that 0 <e<d<1, where >0 is from (1) above.
Since G,(t, x) is measurable in ¢ and A-continuous in x, from Theorem 3.3
of [12], we have that (1, x) = G, (1, x) is measurable. Hence Theorem 4.1
of Himmelberg [6] tells us that (¢, x) > G*(¢, x) N Tx(x) is measurable
(here G¥3(t, x)=G,(t, x)+ B(e/3)). Also from Propositiond, p.221 of
Aubin and Cellina [1], we know that x — int T (x) has an open graph.
Thus from Lemma f of Flytzanis and Papageorgiou [5], we get that
x> G, x)nint Tg(x) is Ls.c.=>x— G(t, x) nint Te(x) = G731, x) N
T (x) is Ls.c. Therefore Lemma 8 of this paper is applicable and so we
can find gl*: Tx K— X measurable in ¢, continuous in x s.t. for all
(t, x)eTxK

g (6 x) € G (t, x) N Tx(x). (2)

Invoking Lemma a of this paper, given any 6>0, we can find
g2°: Tx K~ X which is locally Lipschitz in both (7, x) and such that

| sup Igh(e, x) — g2, x) dr <.

0 xek

It is obvious that for each fixed n =1, by choosing 8 sufficiently small,
we can get 4, < T measurable, with A(4,) < 1/n? s.t.

e

3 (3)

g, (1, x)— gxe(t, x)ll <

505,107:2-6
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for all (¢, x)e(T\A4,)x K. Set B,=;_, A, let ¢=1/n and define

Gx(t, x)=G,(t, x)+ B(1/n) + xp,(1) B(B/3),
for (t, x)eTx K, B=m+ 1, m=sup{g:""(t, x)|: (t, x)e Tx K}.

It is clear that G}(-,-) is P, (R")-valued, 1 - G}*(t, x) is measurable, and
x — G X1, x} is h-continuous. Consider the following multivalued Cauchy
problem:

X(t)e GX(t, x{(1)) ae.
{ x(0)= x e K } (*);
Denote the solution set of (), by S¥(x,). We know that SX¥(x,)}<
C(T, R") is nonempty and compact (see for example Aubin and Cellina
[1] or Deimling [3]). Also since A(B,)<Y,*,1/k*—>0 as n— oo and
since by construction A(G, (1, x(t)), Fo(t, x(1))) > 0as n— oo forevery te T
and every x(-)e C(T, R"), we have that h(GX(¢, x(1)), Fo(t, x(¢))) =0 in
measure and thus by passing to a subsequence if necessary, we may assume
that A(GX(t, x(1)), Fy(t, x(2))) —» 0 a.e. Having that fact, it is easy to see
that S(x¢)=(1,1 S¥(x,). Therefore in order to complete the proof, we
only need to show that S¥(x,) is contractible. To this end, for each n> 1,
let g¥(t, x)=g=""(t, x) — (1/3n) x — (B/8) y 5,(1) x, where g2'"(1, x) is from
(3), and recall that B=m+1, m=sup{|g>'"(s,x)|: (s, x)e TxK}.
Consider the Cauchy problem
x(1)= gk, x(1)) a.e. on [s,r] .,
{ *(s)= ye K | )

for each se [0, r) and each ye K. We claim that for all (7, x)e Tx K
gn(t, x)e Tk(x).

Indeed let x* € Ny (x) and first assume that ¢ B,,. Then we have
* * * 2,1/n 1 *
(x ’gn([ax)):(x s 8 (t,x))—g(x 7x)
J ! / 1
= (x%, 82171, %) = g1Vt X)) + (%, g5 (0, x)) = 3= (¥, %)

o 0
<— | —— {|x*|| =
3 ¥l =5 el =0
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(recall that since x* € Ng(x), (x*, x)=o(x*, K)=sup,_,(x* ») and from
(1) we have that 8| x*|| < a(x*, K)). '

Therefore, if (1, x) e (T\B,,) X K, then g¥(¢, x) € Tx(x).
Next let re B,. Then for x* e N (x), we have

(x*, g¥(t,x))= (X*, gt x) — ~ X) - g (x* x)

3n
* .i 2,4/n ___]_ _é
< )lx*)) }g,, (¢, x) 3nx 5o(x*,K)
s p L] B
<« [’"*3,1} sl

(since we have assumed that |K] < | and using inequality (1)). Thus we get

(x*, g (1, ) < |lx*|| [+ 1] = Bllx* | = Bllx*| — Bllx*| =0

= g*(t,x)eTg(x) forall (1,x)eB,xK.

Thus we have proved that for all (£, x)e Tx K, gX(t, x)e Tg(x). Also
t — g*(1, x) is measurable and x — g¥(z, x) is Lipschitz on K. Thus ()3
has a unique solution u(r;s, y) and (s, y)—u(t;s, y) is continuous
(continuous dependence result for o.d.e’s). Also from the definitions of
GX(t,x) and gX(t,x), we have that gX(s, x)eGX(1,x) for all (1, x)e
TxK and all r>=1. Consequently we may define a homotopy
h:[0, 1] x S¥(xq) = S¥*(x,) as follows:

x(1) if te[0, ir]

h(A, x)(t) = {u(t; ar, x(Ar)) if te(ir,r).

Hence S¥(x,) is contractible and so since S(x,)=10),., S¥(x,), we
conclude that S(x,) is an R;-set. Q.E.D.

For X being a gencral separable Banach space {not necessarily finite
dimensional), we need the following hypothesis on the orientor field and
the set K:

H(F) F:TxK- P,(X)is a multifunction s.t.
(1) t— F(1, x) is measurable,

(2) x-— F(1, x) 1s us.c,

(3) |F(t,x)| = sup{llyll: yeF(t, x)} < k(¢)(1+|x|) ae. with
k(-yeL',
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(4) lim,_ o o F(T, . x B))<l{t)a(B), for te(0,r), B€ K and /(-)
in L', (here T, ,=[t—1,t+1]n T and of-) is the Kuratowski
measure of noncompactness; see for example Deimling {3]).

H(K) K< X is nonempty, closed, convex, bounded, and int K# .

THEOREM 2. If hypotheses H(F ), H(K ), and H, hold, then S(x,) is non-
empty, compact and connected.

Proof. Nonemptiness and compactness of S(x,) follows from Deimling
[3]. Also, all the arguments in the proof of Theorem 1 are also valid in this
more general situation except that S*(x,) need not be closed or compact.
Also it is clear from the proof of Lemma & that we can find #, > 0 s.t. for
all (¢, x)e TxK, |g2'"(t, x)|| <), n= 1. Q.ED.

Remark. 1If X=R" and H, is replaced by the stronger condition
F(t, x)= Tg(x)

for all (1, x)e T x K, we recover from Theorem | a result due to Deimling
[3]. Also for an analogous result for single-valued differential equation
without constraints, we refer to the work of Szufla [14].
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