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Abstract

We study the homotopical and homological properties of the attractors evolving from a generalized Hopf
bifurcation. We consider the Lorenz equations for parameter values near the Hopf bifurcation and study
a natural Morse decomposition of the global attractor, calculating the Čech homotopy type of the Lorenz
attractor, the shape indexes of the Morse sets and the Morse equation of the decomposition.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is devoted to the study of some properties of the generalized Poincaré–Andronov–
Hopf bifurcation for dynamical systems from a topological point of view. We consider a situation
related to the transition from asymptotic stability to complete instability, not only in the case
of equilibrium points or periodic orbits but also in the case of general attractors of flows in
manifolds. We show that this kind of bifurcations produces families of attractors whose properties
can be examined using those parts of topology designed to study spaces from a global point of
view, in particular Borsuk’s shape theory, Čech cohomology and the classical duality theory of
manifolds.

We also study some properties of the Lorenz equations for parameter values near the Hopf
bifurcation. We calculate the Čech homotopy type (or shape) of the Lorenz attractor, which gives
information about its global topological structure, and consider some natural Morse decompo-
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sitions of the global attractor induced by the non-wandering set. We find the cohomological
Conley index of the Morse sets (including the Lorenz attractor) and calculate the corresponding
Morse equations. We also see how these equations change when the parameter crosses the value
corresponding to the Hopf bifurcation.

This paper illustrates the fact, already noticed by Kennedy and Yorke in [21], that “bizarre
Topology is natural in Dynamical Systems.” In fact, the most natural formulation of the topo-
logical ideas related to dynamics is very often achieved through Čech theory, which provides
deeper insight when applied to objects with complicated properties, like many attractors. Stan-
dard notions and techniques would produce unsatisfactory results in this context, since most of
the theorems proved in the paper do not hold when classical homotopy theory or singular ho-
mology replace the corresponding Čech notions. We assume as known some elementary facts
on shape theory, algebraic topology and the theory of the Conley index of isolated invariant
compacta. Some familiarity with the most topological parts of the theory of dynamical systems
would be a helpful prerequisite for the reading of this paper. We use, in particular, some well-
known facts related to properties of stability and attraction of flows. For information about the
topological and the dynamical aspects of these theories we refer the reader to the papers and
books [2,4,6,7,14,24,27,28,32,34,35,40] (see also [3,11–13,20,30,31,36–38] for applications of
the theory of shape to dynamical systems). The paper [44] by Viana explores the relations be-
tween the study of attractors and that of main bifurcation mechanisms. We also recommend the
book [41] by Sparrow and the survey article [45] by Viana for general information about the
Lorenz attractor.

2. Notation and terminology

We shall consider continuous dynamical systems (or flows) ϕ :W × R → W , where W is
a (metrizable) topological manifold. On some occasions W will be required to be differentiable
and we use the term “smooth manifold” to refer to a Cr manifold with r � 2. We always consider
a fixed metric d defined in W . Suppose K is an isolated invariant set of W and (N,L) is an index
pair for K . If we take the quotient N/L then the point corresponding to the equivalence class
of L will be denoted by ∗ (note that N/∅ is obtained from N by adjoining the isolated point ∗, i.e.
N/∅ = N ∪ {∗}). The (pointed) homotopy class of (N/L,∗) is the homotopy index (or Conley
index) of K and will be denoted by h(K) and the (pointed) shape of (N/L,∗) is the shape index
and will be denoted by s(K). The shape index has been defined by Robbin and Salamon [30].

We shall consider parametrized families of flows ϕλ :W × R → W with λ ∈ I (the unit in-
terval). We shall assume that the map ϕ̂ :W × R × I → W defined by ϕ̂(x, t , λ) = ϕλ(x, t) is
continuous. Our notation is the usual one in dynamical systems and the Conley index theory.
In particular, the unstable manifold of K is the set Wu(K) = {x ∈ W | ∅ �= ω∗(x) ⊂ K} (the
notation α(x) is often used in the literature for the α-limit of x, that we denote by ω∗(x)).

We use in the paper some of the most elementary notions of Borsuk’s theory of shape (also
called Čech homotopy theory), as can be found in [4,7,10,24] and [27]. Shape can be under-
stood as a generalized homotopy type which agrees with the usual one in spaces with good local
topological behaviour, such as polyhedra or manifolds, but which provides more geometrical
and topological insight in the case of spaces with complicated topological properties such as
attractors or other kinds of isolated invariant compacta.
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3. Bifurcations of flows in manifolds

The study of the Hopf bifurcation had its origins in the works of Poincaré at the end of the
nineteenth century and was later continued by A.A. Andronov. E. Hopf started his research on
this subject [15,18] in the decade of the forties of the twentieth century. Although the term “Hopf
bifurcation” is commonly used, the name “Poincaré–Andronov–Hopf bifurcation” is more re-
spectful towards the historical origins. We recommend the book [23] by Marsden and McCracken
for information about this topic. The authors follow in the book the methods used by Ruelle and
Takens in their fundamental paper [33]. A useful reference for the study of the foundations of
bifurcation theory, in particular bifurcations from general attractors, is the paper [39] by Seibert
and Florio.

We discuss in this section a generalized form of the Poincaré–Andronov–Hopf bifurcation for
flows defined on manifolds. We consider the supercritical case, in which the bifurcation results
from the transition of asymptotic stability to instability in such a way that the attractor expels a
family of new attractors that are created in the bifurcation and whose global topological proper-
ties we study. The subcritical case can be studied in a similar way. The properties that we consider
are of homotopical and homological nature. In the first case we express them in the language of
Borsuk’s shape theory and in the second one we use Čech cohomology. We distinguish three
different situations. First we consider the case in which the bifurcation evolves from an equilib-
rium, in the second place we study bifurcations from periodic orbits and, finally, we consider the
general case of bifurcations evolving from attractors.

Theorem 1 (Bifurcations from equilibrium points). Let W be an n-dimensional manifold. Let
ϕλ :W × R → W be a parametrized family of flows with λ ∈ I (the unit interval) and such that
the point p ∈ W is an attractor of the flow ϕ0. Then the two following statements hold:

(1) If p is a repeller of ϕλ for every λ > 0, then for every compact neighborhood V of p con-
tained in the basin of attraction of p for the flow ϕ0, there exists λ0 such that for every λ,
with 0 < λ � λ0, there exists an attractor Kλ of ϕλ with the shape (and hence with the
Čech homology and cohomology) of Sn−1, the attractor Kλ is contained in V − {p} and
attracts all points in V − {p}. Moreover, the multivalued function Θ : [0, λ0] → W defined
by Θ(0) = {p} and Θ(λ) = Kλ (when λ �= 0) is upper semi-continuous.

(2) If the following conditions hold for λ > 0:
(a) there exists a k-dimensional submanifold W0 of W such that W0 is invariant by ϕλ,
(b) there exists a neighborhood U of p (the same for all λ) such that the maximal invariant

set of ϕλ inside U is contained in W0,
(c) p is a repeller of the restriction flow ϕλ|W0 :W0 × R → W0,
then there is λ0 such that for every λ, with 0 < λ � λ0, there is an attractor Kλ ⊂ U of the
unrestricted flow ϕλ :W × R → W with the shape (and hence with the Čech homology and
cohomology) of Sk−1. In particular, Kλ has the shape of S1 when W0 is of dimension 2. The
attractors Kλ are contained in arbitrarily small neighborhoods of p for values of λ close
to 0.

Proof. Let B0 be the basin of attraction of p for the flow ϕ0 and consider a compact neighbor-
hood V of p contained in B0. Let N be a neighborhood of p contained in V and homeomorphic
to a closed n-cell. Choose an ε > 0 such that the closed ball B[p, ε] ⊂ intN . By using the stabil-
ity of {p}, we select δ > 0 such that ϕ0(x, t) is in the open ball B(p, ε/2) for every x ∈ B[p, δ]
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and every t � 0. By the definition of attractor there exists T > 0 such that ϕ0(V , t) ⊂ B(p, δ/2)

for t � T . We choose λ0 such that ϕλ(x, t) and ϕ0(x, t) are δ/2-close for every x ∈ V , every t

with 0 � t � T and every λ � λ0. Define Aλ as the set of all points y ∈ W such that there exist a
sequence of points xn ∈ V and a sequence of times tn → ∞ with y = limn→∞ ϕλ(xn, tn). Using
standard arguments in topological dynamics, it is easy to see that Aλ is a compact invariant set
contained in the interior of N . Moreover, V is uniformly attracted by Aλ and, hence, Aλ is an
attractor of ϕλ and it is also the maximal invariant set in V . Since p is a repeller of ϕλ, p must
be contained in Aλ and the basin of repulsion of p, Rλ, is an open set of W contained in Aλ.
In fact, the flow ϕλ restricted to Aλ defines a repeller–attractor decomposition of Aλ. We denote
by Kλ the corresponding attractor

Kλ = Aλ −Rλ.

We remark that Kλ is an attractor, not only for the restricted flow ϕλ|Aλ, but also for the unre-
stricted flow ϕλ :W × R → W . Consider now an open neighborhood N0 of p in Rλ contained
in N and such that N − N0 is homeomorphic to Sn−1 × I . Obviously, the compact set N − N0
is contained in the region of attraction of Kλ for the flow ϕλ. We define a sequence of maps

rk :N − N0 → W

by the expression

rk(x) = ϕλ(x, k).

If U is a neighborhood of Kλ in W , there is an index k0 such that the image of rk is contained
in U for every k � k0. This is a consequence of the fact that N −N0 is contained in the region of
attraction of Kλ. Moreover, k0 can be chosen in such a way that the homotopy between rk and
rk+1

Hk(x, t) = ϕλ(x, k + t), t ∈ [0,1],

induced by the flow takes place in U . This means that the sequence of maps rk defines an ap-
proximative sequence

r = {rk,N − N0 → Kλ}

in the sense of Borsuk [4] and, hence, a shape morphism from N − N0 to Kλ. This morphism is
a left inverse of the shape morphism induced by the inclusion

i :Kλ → N − N0

since rk|Kλ is homotopic to the identity i :Kλ → Kλ for every k. In other words, r induces a
shape domination and, since N −N0 has the homotopy type of Sn−1, we deduce that Kλ is shape
dominated by Sn−1.

On the other hand, Kλ separates the n-cell N into two disjoint non-empty open subsets,
N − Aλ and Rλ. This implies that the Čech cohomology group Ȟ n−1(Kλ) is nontrivial. To
conclude that Kλ has the shape of Sn−1 we adopt an argument used by Borsuk and Holsztyński
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in [5]. The fact, already seen, that Kλ is shape dominated by Sn−1 implies that there are two
shape morphisms

α :Kλ → Sn−1

and

β :Sn−1 → Kλ

such that βα = iKλ . Suppose that αβ �= iSn−1 . Then, if θ is a generator of Hn−1(Sn−1), θ is
mapped by the endomorphism (αβ)∗ of Hn−1(Sn−1) induced by αβ to qθ , where q ∈ Z. Hence
(αβ)∗(αβ)∗(θ) = q2θ . Since

(αβ)∗(αβ)∗ = (αβαβ)∗ = (αβ)∗

we have that q = q2. Now, Hopf’s classification theorem implies that q �= 1 and from this we
deduce that q = 0 and β∗α∗ = 0. Then

i∗Kλ
= α∗β∗ = α∗β∗α∗β∗ = α∗0β∗ = 0

and we deduce that Ȟ n−1(Kλ) is trivial in contradiction to our previous remark. We conclude
that αβ = iSn−1 and, hence, the shape of Kλ agrees with that of Sn−1.

Clearly, Kλ is the only attractor with the properties mentioned in the statement of the theorem
and, hence, the multivalued function Θ from [0, λ0] to W given by Θ(0) = {p} and Θ(λ) = Kλ

(when λ �= 0) is well defined. The argument at the beginning of the proof shows that for a given δ

the attractors Aλ (and hence the Kλ as well) are contained in B[p, δ] for λ close to 0. This
shows the upper semicontinuity at 0 of the multivalued function. On the other hand for a given
λ ∈ (0, λ0] there is an open neighborhood B of p such that B is contained in Rλ′ for all λ′ close
to λ. Indeed, if B is such that B̄ ⊂ Rλ and N is an arbitrarily small neighborhood of p, take
ε > 0 such that the open ε-ball centered at p is contained in N and consider a smaller neighbor-
hood of p, N0, with diameter less than ε/2 and such that N0 is contained in B and negatively
invariant by the flow ϕλ. Let δ < ε/2 be such that the open δ-ball centered at p is contained
in N0. Take now T < 0 such that ϕλ(B̄, t) is contained in the open δ/2-ball centered at p for
every t ∈ (−∞, T ] and select η > 0 such that if λ′ is η-close to λ we have that ϕλ(x, t) and
ϕλ′(x, t) are δ/2-close for every x ∈ B̄ and every t ∈ [T ,0]. It is easy to see that ϕλ′(B̄, t) ⊂ N

for every t ∈ (−∞, T ], which implies that B̄ (and hence B) is contained in Rλ′ . Consider now a
neighborhood U of Kλ. Since V − B is contained in the region of attraction of Kλ′ and it is also
a compact neighborhood of Kλ′ , we have that Kλ′ can be described as the set of all points y ∈ W

such that there exist a sequence of points xn in V −B and a sequence of times tn → ∞ such that
ϕλ′(xn, tn) → y. Now a standard argument shows that taking λ′ still closer to λ, if necessary, we
can guarantee that ϕλ′(xn, tn) is in a closed neighborhood U0 ⊂ U of Kλ for all tn larger than a
certain T and for every λ′ contained in a neighborhood of λ. This implies that Kλ′ is also in U

and, hence, we have upper-semicontinuity at λ. This finishes the proof of the first statement in
the theorem.

Concerning the second statement, consider a compact neighborhood V of p contained in U

and in the basin of attraction of p for ϕ0. The arguments in the first part of the proof show
that there exists λ0 such that the attractors Aλ of ϕλ are contained in V for λ � λ0, which, by
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condition (a), implies that Aλ is contained in W0. Moreover V is attracted by Aλ for λ � λ0.
Obviously Aλ is also an attractor for the restriction flow ϕλ|W0 :W0 × R → W0. Since p is a
repeller for ϕλ|W0, we have that Rλ ⊂ Aλ and

Kλ = Aλ −Rλ

(where Rλ is the basin of repulsion of p with respect to ϕλ|W0) is an attractor for the flow
ϕλ|W0. Now the repetition of the argument used in the first part of the theorem for this particular
situation shows that the shape of Kλ is that of Sk−1. Moreover, since Kλ is an attractor inside the
attractor Aλ it is also an attractor of the nonrestricted flow ϕλ :W × R → W . The last statement
in the theorem is clear from the previous discussion. �
Remark 2. It is not, in general, true that the attractors Kλ produced in the bifurcation described in
Theorem 1 have the homotopy type of Sn−1. Using ideas similar to those developed by Hastings
in [16] and [17] it is easy to define parametrized families of flows in surfaces such that the
attractors Kλ evolving from equilibria are homeomorphic to Warsaw circles (which have the
shape, but not the homotopy type, of S1).

We consider now bifurcations evolving from attracting periodic orbits or, more generally, from
attractors which are diffeomorphic to the circle.

Theorem 3 (Bifurcations from periodic orbits). Let W be an orientable n-dimensional smooth
manifold and ϕλ :W × R → W a parametrized family of smooth flows with λ ∈ I . Let S be a
1-dimensional submanifold of W such that S is a periodic orbit of ϕ0 or, more generally, such
that S is diffeomorphic to S1. Suppose that S is an attractor of the flow ϕ0. Then, if S is a repeller
of ϕλ for every λ > 0, we have that for every compact neighborhood V of S contained in the basin
of attraction of S for the flow ϕ0, there exists λ0 such that for every λ, with 0 < λ � λ0, there
exists an attractor Kλ of ϕλ with the shape (and hence with the Čech homology and cohomology)
of T = Sn−2 × S1. Moreover, the attractors Kλ are contained in V − S and attract all points in
V − S.

Proof. Suppose that we have a submanifold S ⊂ W diffeomorphic to S1 and such that S is an
attractor of ϕ0 and a repeller of ϕλ for λ ∈ (0,1]. If the compact neighborhood V of S is contained
in the basin of attraction, B0, of S for the flow ϕ0, we can argue exactly as in Theorem 1 to show
that ϕλ has an attractor Aλ in V for all λ close to 0 and Aλ attracts V . Aλ can be described as the
set of all points y ∈ W such that there are a sequence of points xn ∈ V and a sequence of times
tn → ∞ with ϕλ(xn, tn) → y. Moreover, S is contained in Aλ. The basin of repulsion of S, Rλ,
is also contained in Aλ and we have, as before, that

Kλ = Aλ −Rλ

is an attractor of ϕλ attracting V − S. We use the tubular neighborhood theorem on manifolds to
choose a neighborhood T of S in V such that T is homeomorphic to Bn−1 × S (where Bn−1 is
the unit (n − 1)-dimensional closed ball). Then T is a neighborhood of Aλ for all λ close to 0
(for the same reasons as in Theorem 1 again). Now we claim that there is λ0 > 0 and a time
t0 � 0 such that the following condition holds:
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ϕλ(T , [0, t0]) is a positively invariant neighborhood of Aλ and it is contained in B0 for every
λ � λ0.

Indeed, take ε > 0 such that the closed ε-neighborhood of S is contained in the interior of T .
By the stability of S, there is δ > 0 such that ϕ0(x, t) belongs to the ε/2-neighborhood of S for
every x belonging to the δ-neighborhood of S and every t � 0. Moreover, since S is an attractor
of ϕ0 there exists t0 � 0 such that ϕ0(T , t) is contained in the δ/2-neighborhood of S for t � t0.
Select now γ such that 0 < γ < δ/2 and the γ -neighborhood of ϕ0(T , [0, t0]) is contained in B0.
We choose λ0 in such a way that ϕλ(x, t) and ϕ0(x, t) are γ -close for every x ∈ T , t ∈ [0, t0]
and λ � λ0. This implies that ϕλ(T , [t0,∞]) ⊂ T and ϕλ(T , [0, t0]) ⊂ B0 for λ � λ0 and from
this follows the required condition.

Consider now an arbitrary λ with 0 < λ � λ0. We define

T ′ = ϕλ

(
T , [0, t0]

)
.

Choose s0 � 0 such that ϕ0(T ′, [0, s0]) is a positively invariant neighborhood of S. Such an s0 ex-
ists because T ′ is a neighborhood of S contained in the region of attraction of S. We analogously
define

T ′′ = ϕ0
(
T ′, [0, s0]

)
.

We consider now a Lyapunov function f :Bλ → R+ defined on the basin of attraction Bλ of Aλ

for the flow ϕλ. The function f is strictly decreasing along the orbits of ϕλ and has the property
that f −1(0) = Aλ. Since T ′ is a positively invariant neighborhood of Aλ contained in Bλ there
exists c > 0 such that f −1([0, c]) ⊂ intT ′. We select a decreasing sequence of positive numbers
ck → 0, with c1 = c and a sequence of maps

αk :T ′ → R

such that αk(x) is the only number t with f [ϕλ(x, t)] = ck if f (x) � ck and αk(x) = 0 otherwise.
We define another sequence of maps

rk :T ′ → f −1([0, ck]
) ⊂ T ′

by

rk(x) = ϕλ

(
x,αk(x)

)
.

These maps are continuous and the sequence rk has the following property: for every neighbor-
hood U of Aλ there is k0 such that the image of rk is contained in U and the homotopy rk � rk+1
takes place in U for every k larger than k0. Additionally, the maps rk are all homotopic in T ′ to
the identity i :T ′ → T ′. Moreover all the points in Aλ are left invariant by the maps rk and the
mentioned homotopies.

In other words, Aλ is a strong shape deformation retract of T ′ and, consequently, the inclusion
j :Aλ → T ′ is a strong shape equivalence (we can use the same notation j :Aλ → T ′ to indicate
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the induced strong shape morphism without risk of confusion). We denote the inverse strong
shape morphism by

r :T ′ → Aλ.

Similarly, the inclusions

j :S → T ′′

and

j :S → T

are strong shape equivalences (the first one for the same reasons as before and the second one
because T =S × Bn−1 and hence a deformation can be defined at the homotopical level). From
this it follows that the inclusion

j :T → T ′′

induces also a strong shape isomorphism. We denote its inverse strong shape morphism by

r′ :T ′′ → T .

We claim that

j :T → T ′

is also a strong shape equivalence. Indeed, a left inverse is the composition of j :T ′ → T ′′
with

r′ and a right inverse is the composition of r :T ′ → Aλ with j :Aλ → T (we use again the same
notation for the inclusions j and for the strong shape morphisms induced by them). From this it
follows that

j :Aλ → T

is a strong shape equivalence and, hence, Aλ is a strong shape deformation retract of T .
Consider now

Kλ = Aλ −Rλ.

Since S and Kλ define a repeller–attractor decomposition of Aλ, we can use a Lyapunov
function in Aλ − S for the attractor Kλ to show, as we did before, that there is a compact neigh-
borhood, L, of Kλ in Aλ − S such that the inclusion

j :Kλ → L

is a strong shape equivalence and, hence, Kλ is a strong shape deformation retract of L. Moreover
L can be chosen in such a way that it is a strong deformation retract of Aλ −S (basin of attraction
of Kλ for the restriction flow ϕλ|Aλ). The proof of these facts makes use of the elementary
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properties of the Lyapunov functions and follows a pattern similar to that established in the proof
of the case considered above. For this reason we omit the details.

Since the deformations involved in the strong shape deformation retractions are defined by
means of homotopies which leave all the points of Kλ invariant, we can combine them to
obtain new homotopies establishing the fact that Kλ is a strong shape deformation retract of
(T − Aλ) ∪ L. Since, in turn, (T − Aλ) ∪ L is a deformation retract of T − S and T − S has the
homotopy type of Sn−2 × S1 we conclude that Kλ has the shape of Sn−2 × S1.

The last assertion in the statement of the theorem is clear from the previous discussion. This
completes the proof of the theorem. �
Remark. It is possible to give more refined versions of Theorem 2, similar to part (2) of Theo-
rem 1, in such a way that the attractors Kλ are contained in an invariant submanifold W0 of W .
In the special case when W0 is 3-dimensional, the attractors Kλ have the shape of a torus.

When the bifurcation originates from an attractor more general than an stationary point or a
periodic orbit we still have some topological information about the attractors originated in the
bifurcation.

Theorem 4 (Bifurcations from general attractors). Let W be an orientable n-dimensional man-
ifold. Let ϕλ :W × R → W be a parametrized family of flows with λ ∈ I such that the compact
connected set A ⊂ W is an attractor of ϕ0 and a repeller of ϕλ for λ > 0. Suppose that for a
fixed k � n the reduced homology groups H̃k(B) and H̃k−1(B) are trivial, where B is the basin
of attraction of A for ϕ0. Then for every compact neighborhood V of A in B there is λ0 > 0 such
that for every λ with 0 < λ � λ0 there is an attractor Kλ of ϕλ contained in V − A, attracting

V −A and such that Ȟ n−k(Kλ) ∼= Hn−k(B) if k �= 1 and Ȟ n−1(Kλ) ∼= Z⊕Hn−1(B) if k = 1. In

particular, if B is contractible then Ȟ n−1(Kλ) ∼= Ȟ 0(Kλ) ∼= Z and Ȟ n−k(Kλ) ∼= {0} for k �= 1, n.
The attractors Kλ are in arbitrarily small neighborhoods of A for values of λ close to 0.

Proof. We can follow the same steps as in Theorems 1 and 2 to establish the following facts:
(1) There is λ0 > 0 such that for every λ � λ0 there exists an attractor Aλ ⊂ V attracting V

and such that Sh(Aλ) = Sh(A). Moreover, since the inclusion A → B is a shape equivalence, we
also have that Sh(Aλ) = Sh(B).

(2) If Rλ is the basin of repulsion of A for ϕλ then Aλ ⊂ Rλ and

Kλ = Aλ −Rλ

is an attractor and V − A is contained in its basin of attraction.
Now, by the Alexander duality theorem applied to the orientable manifold B, we have that

Ȟ n−k(Kλ) ∼= Hk(B,B − Kλ).

If we consider the long homology sequence of the pair (B,B − Kλ)

· · · → H̃k(B) →Hk(B,B − Kλ) → H̃k−1(B − Kλ) → H̃k−1(B) → ·· · ,
since H̃k(B) ∼= H̃k−1(B) ∼= {0}, we have that

Hk(B,B − Kλ) ∼= H̃k−1(B − Kλ).
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Since B − Kλ = Rλ(A) ∪ (B − Aλ) we have that

H̃k−1(B − Kλ) ∼= H̃k−1
(
Rλ(A)

) ⊕ H̃k−1
(
(B − Aλ)

)
if k �= 1.

On the other hand, from the long exact sequence for the pair (B,B − Aλ)

· · · → H̃k(B) →Hk(B,B − Aλ) → H̃k−1(B − Aλ) → H̃k−1(B) → ·· ·

we obtain that

H̃k−1(B − Aλ) ∼= Hk(B,B − Aλ).

But, using again the Alexander duality theorem for the compactum Aλ in the manifold B and
recalling that Čech homology and cohomology are shape invariants, we obtain

Hk(B,B − Aλ) ∼= Ȟ n−k(Aλ) ∼= Ȟ n−k(A) ∼= Hn−k(B).

Hence, from the fact that the inclusion A →Rλ(A) is a shape equivalence we deduce that

Ȟ n−k(Kλ) ∼= Hk−1
(
Rλ(A)

) ⊕ Hn−k(B)

∼= Ȟk−1(A) ⊕ Hn−k(B) ∼= Hk−1(B) ⊕ Ȟ n−k(B) ∼= Hn−k(B) if k �= 1.

If k = 1, the only difference from the previous argument is that

H̃0(B − Kλ) ∼= H0
(
Rλ(A)

) ⊕ H̃0
(
(B − Aλ)

)

and, since Rλ(A) is a connected open subset of W , we have that H0(Rλ(A)) ∼= Z. The rest of
the argument is exactly the same and we conclude that

Ȟ n−1(Kλ) ∼= Z ⊕ Hn−1(B) if k = 1.

The last sentence in the statement of the theorem is proved just like in Theorem 1. This
completes the proof of the theorem. �

Alexander and Yorke proved in [1] global versions of results about bifurcation of periodic
orbits from an equilibrium point. In particular, they proved that, under suitable hypotheses, the
family of periodic orbits satisfies one of the three following conditions: (i) the family of orbits
contains elements for λ arbitrarily close to the boundary of the interval, (ii) the family contains
elements of arbitrarily large period, or (iii) the family contains orbits which do not lie in any
preassigned compact subset of the manifold. It would be interesting to study properties of this
kind in the more general context of the present paper.
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4. The Lorenz attractor near the Hopf bifurcation

We shall consider an example related to the Lorenz attractor. This attractor has been studied
for a long time by many authors since E. Lorenz introduced his famous equations [22], but only
recently has its existence been rigorously proved by W. Tucker [42,43]. We recommend the book
by C. Sparrow [41] and the expository paper [45] by M. Viana for information about this subject.
The results of C. Morales, M.J. Pacifico and E. Pujals [25] provide a unified framework for robust
strange attractors in dimension 3 of which the Lorenz attractor is a particular case. See also the
paper [9] by L. Díaz, E. Pujals and R. Ures for related results about discrete-time systems. The
topological classification of the Lorenz attractors (for different parameter values) can be found
in the paper [29] by D. Rand. More general results about the classification of Lorenz maps are
due to J.H. Hubbard and C.T. Sparrow [19].

The Lorenz equations provide an example of a Hopf bifurcation which takes place at para-
meter values very close to those which correspond to the creation of the Lorenz attractor. The
equations are

dx/dt = σ(y − x),

dy/dt = rx − y − xz,

dz/dt = xy − bz,

where σ , r and b are three real positive parameters. As we vary the parameters, we change the
behaviour of the flow determined by the equations in R

3. The values σ = 10 and b = 8/3 have
deserved special attention in the literature. We shall fix them from now on, and we shall consider
the family of flows obtained when we vary the remaining parameter, r . In the sequel we follow
Sparrow [41] for the presentation of all the aspects concerning the basic properties of the Lorenz
equations. Sparrow’s book was written long before Tucker’s work was available and some of
the global statements made in it are only tentative. However, except for a few details, they have
proved to agree with Tucker’s results.

The origin is a stationary point for all the parameter values. If 0 < r < 1, it is a global attractor.
At r = 1 there is a bifurcation of a simple kind, and for r > 1 the origin is non-stable and there
are two other stationary points,

C1 = (−√
b(r − 1),−√

b(r − 1), (r − 1)
)

and

C2 = (+√
b(r − 1),+√

b(r − 1), (r − 1)
)

both of them attractors in the parameter range 1 < r < 470
19 ≈ 24.74. When r is slightly larger

than one, the unstable manifold of the origin is a one-dimensional manifold composed of the
origin and two trajectories α1 and α2 spiraling towards C1 and C2, respectively. For a larger
value of r , approximately equal to 13.926 . . . , the behaviour of the flow changes in an important
way: the trajectories started on the unstable manifold of the origin will also lie in the stable
manifold of the origin producing two homoclinic orbits. For values of r larger than the critical
value r0 = 13.926 . . . the trajectories are again attracted by the stationary points but α1 is now
spiraling towards C2 and α2 is spiraling towards C1. We say that a homoclinic explosion has
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taken place at this critical value of the parameter. As a consequence, a “strange invariant set” has
been created. This set consists of a countable infinity of periodic orbits, an uncountable infinity
of aperiodic orbits, and an uncountable infinity of trajectories which terminate in the origin. For
values of r close to r0 the strange invariant set is non-stable: trajectories of many points close to it
escape, spiraling towards C1 or C2. However, at the critical r-value rA ≈ 24.06 this set becomes
attracting. The resulting attractor, called the Lorenz attractor, coexists with the two attracting
points C1 and C2 until the r-value rH ≈ 24.74, when a Hopf bifurcation takes place and C1
and C2 lose their stability. This bifurcation is subcritical, i.e. C1 and C2 lose their stability by
absorbing a non-stable periodic orbit.

The numerically computed solutions to the Lorenz equations projected onto the xz plane give
a visual image of the attractor with its characteristic butterfly aspect. In fact, the stable manifold
of the origin divides the phase space into points that first go to one wing of the butterfly and
those that first go to the other wing when approaching the attractor. See [26] for very suggestive
computer images.

4.1. The global attractor E∞

Lorenz [22] proved that for every value of r there is an ellipsoid E in R
3 which all trajectories

eventually enter. Sparrow [41] describes the situation in this way:
“At times 1,2,3, . . . the surface of the ellipsoid E is taken by the flow into surfaces

S1, S2, S3, . . . which enclose regions E1,E2,E3, . . . such that the volumes of Ei decrease ex-
ponentially to zero as i increases. Because all trajectories cross the boundary inwards we know
that

E ⊃ E1 ⊃ E2 ⊃ · · · ⊃ Ei ⊃ · · ·
and hence every trajectory is ultimately trapped in a region, E∞, of zero volume given by

E∞ =
⋂

i∈Z+
Ei.”

E∞ is therefore a global attractor.
By using elementary notions of shape theory we infer from this that the flow ϕ : R3 ×R → R

3

induces, in a natural way, maps

rk :E → Ek,

x → ϕ(x, k)

that define an approximative sequence

r = {rk, E → E∞}
in the sense of K. Borsuk [4]. This means that for every neighborhood V of E∞ in R

3 there is k0
such that rk � rk+1 in V for k � k0. The approximative sequence r induces a shape isomorphism
whose inverse is induced by the inclusion i :E∞ → E. This proves that E∞ has trivial shape.
This is also a consequence of the fact that the shape of a global attractor agrees with that of
the phase space [3,13,20,36]. We remark that, at least for some values of the parameter r , E∞
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is not homotopically trivial since there are trajectories spiraling into C1 (as well as trajectories
spiraling into C2) which lie in a path-component of E∞ not containing C1 (respectively C2).

For r-values r < rH close to the Hopf bifurcation, the non-wandering set of the flow, Ω , is the
union of the Lorenz attractor L, the stationary points C1 and C2 and two periodic orbits γ1 and
γ2 which are responsible for the Hopf bifurcation at the critical value rH . The non-wandering
set defines in a natural way a Morse decomposition of the global attractor E∞, and we are
interested in studying this decomposition. Before that we study the global topological structure
of the Lorenz attractor.

4.2. The shape of the Lorenz attractor

In this section we calculate the Čech homotopy type (or shape) of the Lorenz attractor. For
this we need to know the evolution of the flow inside the ellipsoid E. At r = rH the periodic
orbits γ1 and γ2 are absorbed by the stationary points C1 and C2 and for r � rH the points C1
and C2 lose their stability. The non-wandering set becomes simpler. In fact, Ω is

Ω = L ∪ {C1} ∪ {C2}.
For r-values r � rH near the Hopf bifurcation the flow defines a semi-dynamical system

in the ellipsoid E whose trajectories are all attracted by L except those which compose the
stable manifolds of C1 and C2. These are one-dimensional manifolds whose intersection with E

consists of closed arcs, l1 and l2, respectively, with their ends in the boundary of E and such that
l1 ∩ l2 = ∅. In other words, the Lorenz attractor L is an attractor of a semi-dynamical system
in E whose basin of attraction is E − (l1 ∪ l2). We shall now make use of the following result of
Kapitanski and Rodnianski [20].

Theorem 5. Let U be a global attractor of a semi-dynamical system defined in the metric
space X. Then the inclusion map i :U → X is a shape equivalence.

The notion of attractor used by Kapitanski and Rodnianski requires attraction of all bounded
sets. However, there are versions of this result that only require attraction of compact sets when,
for instance, X is a metric ANR [11]. If we apply this result to the semi-dynamical system
induced by the Lorenz flow in X = E− (l1 ∪ l2) we deduce that the inclusion i :L → E− (l1 ∪ l2)

is a shape equivalence and, therefore, the shape of the Lorenz attractor is that of a disc with two
holes or, equivalently, that of a wedge of two circles. We have only considered r-values r � rH ,
hence our conclusion is limited, for the moment, to those r-values. We now apply the following
result that we have proved in [37].

Theorem 6. Let ϕλ :X × R → X, λ ∈ I , be a parametrized family of flows defined on a locally
compact ANR, X. If K is an attractor of ϕ0 then for every neighborhood V of K contained in the
basin of attraction of K there exists λ0, with 0 < λ0 � 1, such that for every λ � λ0 there exists
an attractor Kλ ⊂ V of the flow ϕλ with Sh(Kλ) = Sh(K). Moreover V is contained in the basin
of attraction of Kλ.

It follows from Theorem 5 that the shape of attractors is preserved by continuation and, hence,
the shape of the Lorenz attractor for r-values r < rH is the same as the one at rH . Moreover, the
cohomology Conley index of an attractor is also determined by its shape. In conclusion we have
the following result.
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Theorem 7. The Lorenz attractor, L, has the shape of S1 ∨ S1 (a wedge of two circles) for
r-values close to rH (the critical value of the Hopf bifurcation). As a consequence, the cohomol-
ogy Conley indexes of L are CH 0(L) ∼= Z, CH 1(L) ∼= Z ⊕ Z and CHq(L) ∼= 0 for q > 1.

4.3. The Morse decomposition of E∞

If (M1,M2, . . . ,Mn) is a Morse decomposition of an isolated invariant set K of a flow
ϕ :X × R → X, we can define the associated sequence of attractors (for the flow restricted to K)

A1 = M1 ⊂ A2 ⊂ · · · ⊂ An = K

where

Aj = {
x ∈ K

∣∣ ∃i � j with ω∗(x) ⊂ Mi

}
.

Conley and Zehnder [8] proved that there is a filtration N0 ⊂ N1 ⊂ · · · ⊂ Nn of compact sets
in X such that (Nj ,Nj−1) is an index pair for Mj and (Nj ,N0) is an index pair for Aj . They
introduced the notation

p(t,Nj ,Nj−1) =
∑

k�0

rk(Nj ,Nj−1)t
k

and

q(t,Nj ,Nj−1,N0) =
∑

k�0

dk(Nj ,Nj−1,N0)t
k

where

rk(Nj ,Nj−1) = rank of Hk(Nj ,Nj−1) (Čech cohomology)

and

dk(Nj ,Nj−1,N0) = rank of the image of the coboundary operator

δk :Hk(Nj−1,N0) → Hk+1(Nj ,Nj−1) in the long

cohomology sequence of the triple (Nj ,Nj−1,N0).

All the cohomology groups are assumed to be of finite rank in the former expressions. These
groups are the cohomology Conley indexes of the Morse sets Mj and the attractors Aj .

In these conditions, Conley and Zehnder proved that the following equation holds

n∑
p(t,Nj ,Nj−1) = p(t,Nn,N0) + (1 + t)Q(t)
j=1
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where

Q(t) =
n∑

j=2

q(t,Nj ,Nj−1,N0).

This is the Morse equation of the decomposition (M1,M2, . . . ,Mn).
The non-wandering set Ω of the flow defined in R

3 by the Lorenz equations induces the
following Morse decomposition of the global attractor E∞ for values of the parameter r < rH
close to the Hopf bifurcation

M1 = L (the Lorenz attractor), M2 = {C1} ∪ {C2}, M3 = γ1 ∪ γ2. (1)

We are interested in studying the shape indexes of the Morse sets [30,38] and the Morse
equation of this decomposition. The finer decomposition

M ′
1 = L, M ′

2 = {C1}, M ′
3 = {C2}, M ′

4 = γ1, M5′ = γ2 (2)

is only slightly different and its Morse equation is the same.
Concerning the Morse decomposition (1), we can choose N3 to be a positively invariant com-

pact neighborhood of E∞ in R
3 and N2 a compact subset in the interior of N3 consisting of three

connected components N1
2 , N2

2 and N3
2 which are positively invariant neighborhoods of the at-

tractors C1, C2 and L, respectively, and contained in their corresponding basins of attraction. We
choose N1 = N3

2 and N0 = ∅. We can assume that N3, N1
2 and N2

2 are topological 3-cells but we
do not know all the details about the topological structure of N1. However, this is not a problem
since we can use other methods to calculate the indexes and the Morse equation.

From Theorem 6 we have that the ranks of the cohomology indices of the Lorenz attractor are

r0(N1,N0) = rankH 0(N1,N0) = rankH 0(S1 ∨ S1 ∪ {∗}, {∗}) = 1,

r1(N1,N0) = rankH 1(N1,N0) = rankH 1(S1 ∨ S1 ∪ {∗}, {∗}) = 2,

rq(N1,N0) = 0 for q � 2,

since Hq(N1,N0) is the cohomology index of L, which agrees with the cohomology of the shape
index.

The discussion for the pair (N2,N1) is trivial since it is an index pair for the attractor M2 =
{C1} ∪ {C2}. We obviously have

r0(N2,N1) = 2

and

rq(N2,N1) = 0 for q � 1.

The pair (N3,N2) corresponds to the repeller M3 = γ1 ∪ γ2. By a result in [38] the shape
index can be calculated considering the unstable manifold Wu(M3) and “truncating” it. This
idea was originally used by Kapitanski and Rodnianski [20] to calculate the cohomology index.
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The truncated unstable manifold of the union of the periodic orbits γ1 and γ2 is, topologically,
the disjoint union of two planar annuli

W ∗ = A1 ∪ A2

and the shape index is

Sh
(
W ∗/∂W ∗,∗)

,

where ∂W ∗ is the union of the four circles in the boundary of W ∗ and ∗ is obtained after collaps-
ing ∂W ∗ to a point. We conclude that the shape index of M3 is

Sh
(
S2 ∨ S2 ∨ S1 ∨ S1,∗)

,

where ∗ is the base point of the wedge S2 ∨ S2 ∨ S1 ∨ S1.
Once we know the shape index we immediately calculate the cohomology index Hk(N3,N2)

of M3, obtaining the polynomial

p(t,N3,N2) =
∑

k�0

rk(N3,N2)t
k.

It is possible, however, to calculate the coefficients rk(N3,N2) without making use of the
mentioned result. We can apply standard methods of algebraic topology to calculate the right-
hand side of the Morse equation and from that and the rest of results previously obtained we can
deduce the expression of the polynomial p(t,N3,N2). We indicate how this can be done.

We must first consider the coboundary operator

δk :Hk(N2,N0) → Hk+1(N3,N2).

Since (N2,N0) is an index pair for the attractor A2 = L ∪ {C1} ∪ {C2} we have that
Hk(N2,N0) ∼= {0} for k � 2, H 1(N2,N0) ∼= Z ⊕ Z and H 0(N2,N0) ∼= Z ⊕ Z ⊕ Z. Consider-
ing now the relevant part of the long cohomology sequence

· · · → H 1(N3,N0) → H 1(N2,N0) → H 2(N3,N2) → ·· · ,
since H 1(N3,N0) (cohomology index of the global attractor) is zero we have that the rank of the
image of δ1 is 2. Moreover, from the exactness of

· · · → H 0(N3,N0) ∼= Z → H 0(N2,N0) ∼= Z ⊕ Z ⊕ Z → H 1(N3,N2) → ·· · ,
we easily deduce that the rank of the image of δ0 is also 2. On the other hand, we readily see
that the contribution of the triple (N2,N1,N0) is trivial and that p(N3,N0) (corresponding to the
global attractor) is 1.

Summing up, we conclude that the Morse equation of the decomposition (M1,M2,M3) is

1 + 2t + 2 +
∑

k�0

rk(N3,N2)t
k = 1 + (1 + t)(2 + 2t)

and, hence, r0(N3,N2) = 0, r1(N3,N2) = 2, r2(N3,N2) = 2, rk(N3,N2) = 0 for k � 0.
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The Morse equation undergoes a change after the Hopf bifurcation takes place. For r-values
r � rH the non-wandering set Ω consists of the Lorenz attractor together with the (now non-
stable) stationary points. If we consider the natural decomposition of E∞ induced by Ω

M1 = L, M2 = {C1}, M3 = {C2}

a similar (but easier) calculation shows that the corresponding Morse equation takes the form

1 + 2t + 2t2 = 1 + (1 + t)2t.
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