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Abstract

Recently Dabholkar and Vafa proposed that closed string tachyon potential for non-supersymmetric orbifoldC/Z3 in terms of
the solution of at t∗ equation. We extend this result toC

2/Zn for n = 3,4,5. Interestingly, the tachyon potentials forn = 3 and 4
are still given in terms of the solutions of Painlevé III type equation that appeared in the study ofC

1/Z3 with different boundary
conditions. ForC2/Z5 case, governing equations are of generalized Toda type. The potential is monotonically dec
function of RG flow.
 2005 Elsevier B.V.

PACS: 11.25.Mj

1. Introduction

The study of localized tachyon condensation[1–5] has been considered with many interesting developm
The basic picture is that tachyon condensation induces cascade of decays of the orbifolds to less singular
the spacetime supersymmetry is restored. Therefore the localized tachyon condensation has a geometric d
as the resolution of the spacetime singularities.

Following the line of Vafa’s reformulation of the problem in terms of mirror Landau–Ginzburg theory
worked out the detailed analysis on the fate of spectrum and the background geometry under the tachyon
sation as well as the question of what is the analogue of c-theorem with the GSO-projection in a series o
[6–8]. In all these works, super-conformal invariance was used very heavily so that we were working at th
theory on-shell level.

On the other hand, recently, Dabholkar and Vafa[4] proposed that the tachyon potential is given by the maxi
charge. Strictly speaking, theU(1) charge in the question is defined only on the conformal point not on the
shell. On the other hand, the decay process considered as a renormalization group flow is an off-shell pro
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one needs to extend the concept of charge in order to define the tachyon potential. The way to extend the
to consider it as a semi-index which is contributed by BPS objects only[9]. These are not just topological since
has antiholomorphic dependence as well as holomorphic dependence on the deformation parameters. T
calculate this quantity is to show that it satisfiest t∗ equations[11] and solve it if possible. In[4], the process wher
C/Z3 decays toC1 was discussed.

In this Letter we extend the result of[4] to C
2/Zn for n = 3,4,5. Interestingly, the tachyon potential forn = 3

and 4 is still given in terms of the solutions of Painlevé III type that appeared in the study ofC
1/Z3 with dif-

ferent boundary conditions. ForC2/Z5 the governing equation is that of generalized Toda type. The potent
monotonically decreasing function of RG flow, therefore expected so as function of real time as well. F
model associated toC2/Z5 without orbifold projection,t t∗ equation contains the Bullough–Dodd equation, wh
solution is known[13].

In this Letter, we do not attempt to give all necessary background. For the set up of tachyon condens
terms of mirror symmetry, see[2,6]. For the application oft t∗ to the tachyon condensation, see[4].

2. C
2/Z3

In this section we study the tachyon condensation inC
2/Zn with Landau–Ginzburg (LG) description by calc

lating and solving the correspondingt t∗ equations. First we consider the simplest of allC
2/Zn, namelyn = 3. The

mirror of this is a LG whose superpotential is given by

(2.1)W = x3

3
+ y3

3
− txy,

with an imposition of an orbifold constraint.
Before we consider the orbifolded LG theory, we work out thet t∗ equations for LG theory without orbifoldin

for later interests. The fundamental variables are notx, y but logx, logy [4,10] so that the chiral ring consists of

(2.2)
{
xy, x2y, xy2, x2y2}

from which charges of the elements can be read off to give NS-charges

(2.3)

{
2

3
,1,1,

4

3

}
.

The R-charges in the topological strings are related to those in NS by the spectral flow

(2.4)qR = qNS − n

2
.

For C2/Z3, we haven = 2 so we get

(2.5)

{
−1

3
,0,0,

1

3

}
.

This superpotential has symmetries

(2.6)x → ωx, y → ω2y; and x → ω2x, y → ωy,

whereω = e
2
3πi , which constrains the metricgj̄i := 〈φj̄φi〉 (φis are chiral fields) to be of the form

(2.7)g =




a11 0 0 b̄

0 a21 0 0

0 0 a12 0


 .
b 0 0 a22
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The topological metricηij is given by residue paring

ηij = 〈φiφj 〉 = 1

(2πi)n

∫
Γ

φi(X)φj (X)dX1 ∧ · · · ∧ dXn

∂1W∂2W · · ·∂nW

with superpotentialW , which in this case is calculated to be

(2.8)η =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 t2


 .

From the reality constraint

(2.9)η−1g
(
η−1g

)∗ = I,

we have

(2.10)b = t2

2
a11, a12 = 1

a21
, a22 = 1

a11
+ |t |2

4
a11.

The chiral ring coefficient are defined byφiφj = Ck
ijφk and if we denote the matrix for the multiplication byxy by

Ct , then

(2.11)Ct =



0 0 0 1
0 t2 0 0
0 0 t2 0
0 0 0 t2


 .

Putting all these intot t∗ equation

(2.12)∂t̄

(
g∂tg

−1) = [
Ct , g(Ct )

†g−1],
we get

(2.13)∂t̄ ∂t loga11 = − 1

a2
11

+ |t |8
16

a2
11, ∂t̄ ∂t loga12 = 0.

The exchange symmetryx � y due to the special form of perturbation, together with the reality condition(2.10),
determines

(2.14)a12 = a21 = 1,

which is consistent with the second equation of Eq.(2.13). By changes of variables

(2.15)y = a−1
11 , ζ = 1

3
t3 and y = 1

2
|t |2Y,

the first equation of Eq.(2.13)can be transformed into

(2.16)∂ζ̄ ∂ζ logY = 1

4

(
Y 2 − Y−2).

In terms ofY andz = |ζ | the last equation can be written as

(2.17)Y ′′ = (Y ′)2

Y
− Y ′

z
+ Y 3 − 1

Y
,
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which is already known as Painlevé III equation. We can further rewrite Eq.(2.16)as the sinh-Gordon equation

(2.18)∂ζ̄ ∂ζ u = sinhu,

by introducingu by u = 2 logy. Now, since we are interested in the scaling behavior of the solutions, we lo
the dependence onz = |ζ | of Eq.(2.18),

(2.19)u′′ + u′/z = 4 sinhu,

where the prime denote the derivative inz. The solution to this is well known[12]. The real solutions are classifie
by their asymptotic behavior inz → 0

(2.20)u(z) � r logz + O
(
z2−|r|) for |r| < 2.

In our case, the regularity ofa11 requires

(2.21)u(z) ∼ −4

3
logz.

Therefore this fixesr = −4/3. Forz → ∞

(2.22)u(z) ∼
√

3

π

e−2z

√
z

, z → ∞.

The precise form of regular solution can be written in terms of a convergent expansion

(2.23)u(z; r) = −4
∞∑

n=0

[2 cos((2− r)π/4)]2n+1

2n+ 1

∞∫
−∞

2n+1∏
i=1

dθi

4π

e−2zcoshθi

cosh[(θi − θi+1)/2]
with θ2n+1 ≡ θ1 andr = −4/3.

In order to define the charge matrix, we need to look at the scaling behavior of the system. The scalingz → λz

induces
∫

d2z d2θ → λ
∫

d2z d2θ , which is equivalent to the field redefinition and coupling change such thatW →
λW . For the given superpotential

(2.24)W = x3

3
+ y3

3
− txy,

we can identify the necessary field redefinitions and coupling change as

(2.25)x = λ1/3x̃, y = λ1/3ỹ and t = λ1/3t0,

by whichW can be written as

(2.26)W = λ

(
x̃3

3
+ ỹ3

3
− t0x̃ỹ

)
.

In this way changingt is equivalent to the changing the scale. The metric components in old and new ba
related by

(2.27)aij = 〈
xīyj̄

∣∣xiyj
〉 = |λ| (i+j)

n
〈
x̃ ī ỹ j̄

∣∣x̃i ỹj
〉 := |λ| (i+j)

n bij

with n = 3. The off-shell ‘charge’ of the system was defined[11] as

(2.28)Q = g∂τ g
−1 − ĉ

2
,

whereτ = logλ and the metric components in use are inx̃, ỹ basis, namelybij ’s. From the regularity condition o
the metric inx, y basis att = 0, one can verify that the charge at the starting pointt = λ = 0 is encoded correctl
to give the result listed in Eq.(2.5).
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Orbifolded LG model: {W = x3 + y3 − txy}//Z3

In this case, the chiral ring generated byxy: {xy, x2y2} and NS-charges are{2
3, 4

3}. The metric and charges ca
be obtained from the previous subsection by simply discardinga12 anda21. Following[4], the tachyon potential is
proposed to be

(2.29)V (t, t̄ ) = 2 max
∣∣Q(t, t̄ )

∣∣ = −1

2
z
du

dz
,

where we identifiedζ = λ by Eqs.(2.15), (2.25)after settingt0 = 31/3. The factor 2 in the above equation
from the asymptotic form ofu is given by Eqs.(2.22), (2.21). Its exact form can be written in terms ofu given
in Eq. (2.23)with r = −4/3. The potential vanishes exponentially ast → ∞. As a consequence of the tachy
condensation, the fate of theC2/Z3 is justC2 as expected.

3. C
2/Z4

Let us now considern = 4. Working in the basis with definite ordering the chiral ring consists of

(3.1)
{
xy, x2y, x3y, xy2, x2y2, x3y2, xy3, x2y3, x3y3}.

The topological metric and metric are given by

(3.2)ηxi1yj1,xi2yj2 = 1, if i1 + i2 = j1 + j2 = 4, ηx3y3,x3y3 = t

and

(3.3)gij̄ =




a11 0 0 0 0 0 0 0 b̄

0 a21 0 0 0 0 0 0 0
0 0 a31 0 0 0 0 0 0
0 0 0 a12 0 0 0 0 0
0 0 0 0 a22 0 0 0 0
0 0 0 0 0 a32 0 0 0
0 0 0 0 0 0 a13 0 0
0 0 0 0 0 0 0 a23 0
b 0 0 0 0 0 0 0 a33




.

Then, the reality condition gives

a22 = 1, a32 = 1/a12, a13 = 1/a31, a23 = 1/a21, a33 = 1/a11 + |t |4a11/4,

(3.4)b = t2a11/4.

Ct can also be calculated easily and given by

(3.5)Ct =




0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 t 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 t2 0 0 0 0 0 0 0
0 0 t 0 0 0 0 0 0
0 0 0 t2 0 0 0 0 0
0 0 0 0 t2 0 0 0 0




.
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Then thet t∗ equation becomes

(3.6)−∂t̄ ∂t loga11 = 1/a11 − |t |4a11/4,

(3.7)−∂t̄ ∂t loga21 = 1/(a21a12) − |t |4a21a12,

(3.8)−∂t̄ ∂t loga31 = |t |2/a2
31 − |t |2a2

31,

(3.9)−∂t̄ ∂t loga12 = 1/(a21a12) − |t |4a21a12.

Most of the equations are of the form

(3.10)∂t̄ ∂t logy = y2 − |t |2k

m2
y−2.

By introducing change of variables

(3.11)ζ = (
1/(1+ k/2)

)(
16/m2)1/(2k+4)

t1+k/2, y = √
1/m|t |k/2eu/2,

above equation lead us to the sinh-Gordon equation(2.18). The value of ther in the solution of sinh-Gordon
equation can be obtained from the regularity of the metric component neart = 0. Sincey ∼ zk/k+2eu/2, we have

(3.12)u ∼ − 2k

k + 2
logz + · · · ,

which determines the valuer = − 2k
k+2.

Now from Eq.(2.28)the components of charge matrix is given by

(3.13)qij = bij ∂τ b
−1
ij − 1.

Usingaij = |λ|(i+j)/2bij , a−1
ij ∼ yl for somel andy ∼ zk/(k+2)eu/2 with identificationz = |λ|,

(3.14)qij (z) = l

4
z
du(z)

dz
+ lk

2(k + 2)
+ i + j

n
− 1.

Notice that(ij) is not the matrix index but the vector index. Using Eq.(3.12), the value of the charge att = 0 is

(3.15)qij (0)= i + j

n
− 1,

which confirms that we are in the right track. Now we apply this result to our system.
For a11, by change of variablesa−1

11 = 2y2 Eq.(3.6) reduces to the standard form Eq.(3.10)with k = 2,m= 4.
Thereforer = −1. This equation further can be reduced to sinh-Gordon equation∂ζ̄ ∂ζ u = sinhu by settingζ =
t2/2 andy = |t |eu/2/2. Sincel = 2 in this case, charge is given byq11(z) = 1

2z
du(z)
dz

.
Fora12 anda21, first we show they are equal. From Eqs.(3.7) and (3.9)a12 = |F(t)|2a21 for some holomorphic

function F(t). Sincea12 = a21 at t = 0 as well as att = ∞, the only nonsingular holomorphic function wi
such boundary conditions is a constant functionF(t) = 1, i.e.,a12 = a21. This supports the exchange symme
aij = aji . With this, Eqs.(3.7), (3.9)are the case ofm = 1, k = 2; by settinga−1

12 = y = |t |eu/2 andζ = t2/2, we

get sinh-Gordon equation.l = 1 lead us toq12(z) = q21(z) = 1
4z

du(z)
dz

.

For a31, by z = t2 andy = a−1
3 we get sinh-Gordon and the solution isy = eu/2. It is easy to seeq31(z) =

1
4z

du(z)
dz

. Notice thatq31(0)= q13(0)= 0. The monotonicity of the charge int suggests thatq31(z) = 0. In fact the
exchange symmetrya = a and the reality conditiona = 1/a setsa = 1.
31 31 31 31 31



S. Lee, S.-J. Sin / Physics Letters B 614 (2005) 113–123 119

ase. The

air

ch

be
Mirror of C
2/Z4

So far, we have been considering the LG model without orbifolding action. To consider the mirror ofC
2/Z4

with generatorxy, we need to consideraii i = 1,2,3. Sincea22 = 1 anda33 is given bya11, we only need to
consider the equation fora11, which is given by Eq.(3.6).

4. C
2/Z5

Here again, we first analyze the general LG model and at the end we comments on the orbifolded c
superpotential is given by

(4.1)W = x5

5
+ y5

5
− txy.

The chiral ring is given byx4 − ty = 0 andy4 − tx = 0. We order the basis by dictionary order in charge p
(i, j):

(4.2)R = {
xy, x2y, x3y, x4y, xy2, x2y2, x3y2, x4y2, xy3, x2y3, x3y3, x4y3, xy4, x2y4, x3y4, x4y4}.

Theηij can be readily written and we avoid to writing it down. The metricgij̄ has 16 diagonal components whi

we denote byaij = 〈xīyj̄ |xiyj 〉, i, j = 1,2,3,4, and two nonvanishing off diagonal elementsb, b̄ as before. The
coupling matrixCt in this basis is given by

(4.3)Ct =




0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 t 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 t 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 t2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 t 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 t 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 t2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 t2 0 0 0 0 0 0 0 0 0 0




.

By use of the reality condition, we have 8 independent variables out of 16+ 2 real variables and the rests can
written in terms of them:

a13 = 1/a42, a23 = 1/a32, a33 = 1/a22, a43 = 1/a12, a14 = 1/a41,

a24 = 1/a31, a34 = 1/a21, a44 = 1/a11 + |t |4a11/4,

(4.4)b = 1

2
t2a11.

Then thet t∗ equation becomes

−∂ ∂ loga = a−1a − 1|t |4a a ,
t̄ t 11 11 22
4

11 22
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esults
−∂t̄ ∂t loga22 = a−2
22 − a−1

11 a22 − 1

4
|t |4a11a22,

−∂t̄ ∂t loga21 = −|t |4a21a12 + a−1
21 a32,

−∂t̄ ∂t loga12 = −|t |4a21a12 + a−1
12 a−1

32 ,

−∂t̄ ∂t loga32 = a−1
12 a−1

32 − a−1
21 a32,

−∂t̄ ∂t loga31 = −|t |2a31a41 + a−1
31 a42,

−∂t̄ ∂t loga41 = −|t |2a31a41 + |t |2a−1
41 a−1

42 ,

(4.5)−∂t̄ ∂t loga42 = |t |2a−1
41 a−1

42 − a−1
31 a42.

The reality condition together with exchange symmetry gives us only 4 independent equations

(4.6)−∂t̄ ∂t loga11 = a22/a11 − a11a22|t |4/4,

(4.7)−∂t̄ ∂t loga22 = a−2
22 − a22/a11 − |t |4a11a22/4,

(4.8)−∂t̄ ∂t loga21 = −|t |4a2
21 + a−1

21 ,

(4.9)−∂t̄ ∂t loga31 = −|t |2a31 + a−2
31 ,

as well as the predetermined values of some of them

(4.10)a32 = a23 = 1, a41 = a14 = 1.

Notice that all monomialsx2y, xy2, x3, y3 have NS-charge 1 and these are the marginal operators. Above r
show that the marginal operators do not evolve under the condensation of tachyon represented byxy.

To eliminatet from above equations, let

(4.11)aij := |t |cij bij , ζ := atb.

Then by using∂t̄ ∂t = (ab)2|t |2b−2∂ζ̄ ∂ζ , and by requiring that Eqs.(4.6), (4.7)are homogeneous int ,

(4.12)2b− 2= c22 − c11 = 4+ c22 + c11 = −2c22 = −c11 + c22,

which givec22 = −2/3,c11 = −2 andb = 5/3 withab = 1. Based on this, we introduceq11, q22 by

(4.13)a11 = 2(3/5)2|ζ |−6/5e−q11, a22 = 21/3(3/5)2/3|ζ |−2/5e−q22,

and rescale byζ → 21/3ζ to get

∂ζ̄ ∂ζ q11 = eq11−q22 − e−(q11+q22),

(4.14)∂ζ̄ ∂ζ q22 = e2q22 − eq11−q22 − e−(q11+q22).

For Eqs.(4.8) and (4.9),

(4.15)4+ 2c21 = −c21 = 2b− 2= 2+ c31 = −2c31.

Then we havec31 = −2/3,c21 = −4/3 andb = 5/3. We introduceτ andY(τ),Z(τ) by

(4.16)τ = |ζ |2, a21 = (5/3)−4/5τ−2/5e−Y and a31 = (5/3)−2/5τ−1/5eZ.

Then, both Eqs.(4.8), (4.9)are reduced to

(4.17)∂τ (τ∂τ Y ) = eY − e−2Y ,

(4.18)∂τ (τ∂τZ) = eZ − e−2Z,
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the case
which are known as Bullough–Dodd equation which is a degenerate Painlevé III, which also appears in
C

1/Z4 → C
1 transition withW = x4 − tx.

The Bullough–Dodd equation

(4.19)∂τ (τ∂τ u) = eu − e−2u

has been studied extensively and the properties of the asymptotically regular solutions were given in[13]. The
solutions are parametrized by four complex numbersg1, g2, g3, ands satisfying

(4.20)g1 + g2(1− s) + g3 = 1, g2
2 − g1g3 = g2.

The asymptotic forms are given by

τ → ∞: eu ∼ 1+
√

3

π

s

2
(3τ)−

1
4 e−2

√
3τ , g1 = g2 = 0, g3 = 1,

τ → 0: eu = − µ2

2τ sin2{ i
2[µ ln τ + ln(r1

C2
C0

)]} ∼ 2µ2r1
C2

C0
τµ−1,

s = 1+ cos

[
2πµ

3

]
, r1 = g3 − g1 + (1+ ω)(g1 − g2), ω∓ = e∓ 2πiµ

3 ,

(4.21)
C2

C0
= 3−2µ

�(1− µ
3 )�(1− 2µ

3 )

�(1+ µ
3 )�(1+ 2µ

3 )
.

Regularity of the metric asτ → 0 can fixs.
First let us considera21 ∼ τ−2/5e−y . From the regularity ofa21, we have

(4.22)eu = ey ∼ τ−2/5,

which gives

(4.23)µ = 3/5, s= 1+ 2 cos(2π/5)� 1.618, r1 = 1,
C2

C0
= 3−6/5(25/2)

�(4/5)�(3/5)

�(1/5)�(2/5)
.

Similarly, for a31 ∼ τ−1/5eZ , we have

(4.24)eu = e−Z ∼ τ−1/5,

from which we get

µ = 4/5, s= 1+ cos(8π/15)� 0.791, r1 = 1,

(4.25)
C2

C0
= 3−8/5((15)2/32

)�(11/15)�(7/15)

�(4/5)�(8/15)
.

These completely fixes behaviors of solutions at both ends.

Mirror of C
2/Z5

In this case, we only need to considera11, a22 sincea33 anda44 are determined in terms ofa22 anda11 respec-
tively by the reality condition. Thet t∗ equations fora11, a22 are given by Eqs.(4.5) or Eqs.(4.14). They can be
identified as theB̃2 = DT (SO(5)) Toda system. We will investigate the relation between thet t∗ equations in the
orbifold geometry and various Toda systems elsewhere. The charge matrixQ = g∂ g−1 − 1 with τ = logλ can be
τ
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be

l
is from

charge

a
ose
d

only.
ot much

h result
case

ven for

work is
calculated to be given by

(4.26)Q =




−3
5 + a11∂τ a

−1
11 0 0 0

0 −1
5 + a22∂τ a

−1
22 0 0

0 0 1
5 − a22∂τ a

−1
22 0

t2a11∂τ a
−1
11 0 0 3

5 − a11∂τ a
−1
11


 .

Notice that in terms ofqij andλ (= ζ ), and if we look at the|λ| dependence only, the tachyon potential can
identified as

(4.27)V = 2Qmax= −ζ∂ζ q11(ζ ).

We expect that this is monotonically decreasing from the value 5/3 at t= 0 to 0 at t→ ∞. So far, the mathematica
literature on the solution to the equation is not available and the qualitative behavior we suggested above
physical intuition that in the final stage of tachyon condensation there is no nontrivial chiral primaries with
other than 0.

5. Discussion

In this Letter, we calculatedt t∗ equations forC2/Zn with n = 3,4,5. In n = 3,4 cases, they reduce to
Painlevé III equation with different boundary conditions. Inn = 5 case, they reduce to a simple Toda system wh
explicit solutions are not known yet. Nonorbifolded LG model associated ton = 5 case involves a Bullough–Dod
equation.

As a limitation of this Letter, we mention that we considered the string theories without GSO projection
Since GSO projection does not provide a supersymmetry immediately in the orbifold background, there is n
point on restricting ourselves to GSO projected theory. According to the rule given in[8], xy term considered in
this Letter is projected out for type II, and we need to consider the deformation by higher operator, whic
in highly nontrivial equations due to the algebraic complexity of reality condition. Another very interesting
is the one where the daughter theory is also an orbifold. This also results in a highly nontrivial equations e
C

1/Zn background. We wish to report on these issues in later publications.
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