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Abstract

Recently Dabholkar and Vafa proposed that closed string tachyon potential for non-supersymmetric@yfifaliterms of
the solution of ar* equation. We extend this result@#/Z, for n = 3,4, 5. Interestingly, the tachyon potentials foe= 3 and 4
are still given in terms of the solutions of Painlevé Il type equation that appeared in the sﬂ]H)y.Zy‘with different boundary
conditions. For(Cz/Z5 case, governing equations are of generalized Toda type. The potential is monotonically decreasing
function of RG flow.
0 2005 Elsevier B.\MOpen access under CC BY license.

PACS 11.25.Mj

1. Introduction

The study of localized tachyon condensatjtr5] has been considered with many interesting developments.
The basic picture is that tachyon condensation induces cascade of decays of the orbifolds to less singular ones unti
the spacetime supersymmetry is restored. Therefore the localized tachyon condensation has a geometric descriptio
as the resolution of the spacetime singularities.

Following the line of Vafa's reformulation of the problem in terms of mirror Landau—-Ginzburg theory, we
worked out the detailed analysis on the fate of spectrum and the background geometry under the tachyon conden-
sation as well as the question of what is the analogue of c-theorem with the GSO-projection in a series of papers
[6-8]. In all these works, super-conformal invariance was used very heavily so that we were working at the string
theory on-shell level.

On the other hand, recently, Dabholkar and \fdfgproposed that the tachyon potential is given by the maximal
charge. Strictly speaking, thé(1) charge in the question is defined only on the conformal point not on the off-
shell. On the other hand, the decay process considered as a renormalization group flow is an off-shell process anc
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one needs to extend the concept of charge in order to define the tachyon potential. The way to extend the charge is
to consider it as a semi-index which is contributed by BPS objects[@hlifhese are not just topological since it
has antiholomorphic dependence as well as holomorphic dependence on the deformation parameters. The way t«
calculate this quantity is to show that it satisfiesequationg11] and solve it if possible. If4], the process where
C/Z3 decays taC! was discussed.

In this Letter we extend the result Bf] to C?/Z, for n = 3,4, 5. Interestingly, the tachyon potential for= 3
and 4 is still given in terms of the solutions of Painlevé Il type that appeared in the study/@& with dif-
ferent boundary conditions. F@?/Zs the governing equation is that of generalized Toda type. The potential is
monotonically decreasing function of RG flow, therefore expected so as function of real time as well. For LG
model associated 162 /Zs without orbifold projection;s* equation contains the Bullough—-Dodd equation, whose
solution is knowr{13].

In this Letter, we do not attempt to give all necessary background. For the set up of tachyon condensation in
terms of mirror symmetry, sg@,6]. For the application of:* to the tachyon condensation, &

2. C?2)74

In this section we study the tachyon condensatioB4pZ, with Landau-Ginzburg (LG) description by calcu-
lating and solving the corresponding equations. First we consider the simplest of &) Z,,, namelyn = 3. The
mirror of this is a LG whose superpotential is given by

x3 3

y
W=—+"—1¢ 2.1
3tz (2.1)
with an imposition of an orbifold constraint.
Before we consider the orbifolded LG theory, we work out#hieequations for LG theory without orbifolding

for later interests. The fundamental variables aremotbut logx, logy [4,10] so that the chiral ring consists of

{xy, x2y, xyz, x2y2} (2.2)
from which charges of the elements can be read off to give NS-charges
2 4
A~ 15 17 (- 2.3
{2113 2:3)
The R-charges in the topological strings are related to those in NS by the spectral flow
n
9R=4NS ~ 5 (2.4)
For C2/Z3, we haven = 2 so we get
1 1
—--,0,0 =4, 2.5
{-3.003] 25)
This superpotential has symmetries
x> wx, y—o’y; and x - w’x, y— wy, (2.6)
wherew = g%”i, which constrains the metr'g:]vl. = ;1) (¢;s are chiral fields) to be of the form
anm 0 0 b
0 a1 0 O
0 0 a2 O

b 0 0 ax
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The topological metrig;; is given by residue paring

b — 1 ¢i(X)¢j(X)dX1/\.../\an
r

with superpotentialV, which in this case is calculated to be

0 00 1
0 01 0
100 7
From the reality constraint
nte(ntg) =1, (2.9)
we have
2 2
t 1 1 ¢
b= —aui, aipp=—, az=— + ——ai1. (2.10)
2 az ain 4

The chiral ring coefficient are defined Byg; = C{‘quk and if we denote the matrix for the multiplication by by
C;, then

0O 0 0 1
02 0 0
C = 00 2 0 (2.11)
0 0 0 7
Putting all these inter* equation
di(ghg ) =[Cr.g(CnTg™]. (2.12)
we get
1 1B,
970, logai1 = —— + a1 970, loga12 = 0. (2.13)
aj; 16

The exchange symmetsy= y due to the special form of perturbation, together with the reality cond{#dt0)
determines

ajp=az1 =1, (2.14)
which is consistent with the second equation of €q13) By changes of variables

1 1
y=ag, = §t3 and y= §|t|2Y, (2.15)
the first equation of E(2.13)can be transformed into
1.2 -2
9z 0; IogY:Z(Y -Y79). (2.16)

In terms ofY andz = |¢| the last equation can be written as

AYA ’
_@ v s 1 (2.17)

Y//
Y z Y’
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which is already known as Painlevé Il equation. We can further rewritdZ£86) as the sinh-Gordon equation
dpdgu = sinhu, (2.18)

by introducingu by 1 = 2logy. Now, since we are interested in the scaling behavior of the solutions, we look at
the dependence an= |¢| of Eq.(2.18)

u” +u'/7 =4sinhu, (2.19)

where the prime denote the derivativezinThe solution to this is well knowf12]. The real solutions are classified
by their asymptotic behavior in— 0

u(z) ~rlogz + O(ZZ_M) for |r| < 2. (2.20)
In our case, the regularity afi; requires
4
u(z) ~ ~3 logz. (2.21)
Therefore this fixes = —4/3. Forz — oo
3e %
~. 2 , — 00. 2.22
u(@) ~/ ~ N (2.22)
The precise form of regular solution can be written in terms of a convergent expansion
00 241 P24l —2z costy;
2cos(2— 4 do; ‘
M(Z;r)=—42 [ $(2—r)m/4)] / 1—[ avi ¢ (2.23)
= 2n+1 Pl 4 coshH(; —6;+1)/2]
= o i=

with 62,1 =61 andr = —4/3.

In order to define the charge matrix, we need to look at the scaling behavior of the system. Thezsealing
induces/ d?zd%0 — Afdzz d?6, which is equivalent to the field redefinition and coupling change suchithat
AW. For the given superpotential

33
W=—+4 = —txy, 2.24
3 t3 (2.24)

we can identify the necessary field redefinitions and coupling change as
x =AY3%, y=AY35 and =13, (2.25)

by which W can be written as
23 y3

W=x =+ = —toxy ). 2.26
( 3 T3 T > (2.26)

In this way changing is equivalent to the changing the scale. The metric components in old and new basis are
related by
G+j)

aij =[x y7 |xiyd) = [ 5 (® 57 57) o= 0] by (2.27)
with n = 3. The off-shell ‘charge’ of the system was defirjéd] as

N

9,8 — =

Q=80 — >
wherer = logi and the metric components in use ar&jry basis, namely;;’s. From the regularity condition of
the metric inx, y basis at = 0, one can verify that the charge at the starting poiath = 0 is encoded correctly

to give the result listed in Eq2.5).

(2.28)



S Lee, S-J. Sn/ Physics Letters B 614 (2005) 113-123 117

Orbifolded LG model: {W = x3+ y3 — txy}//Z3

In this case, the chiral ring generated:by: {xy, x2y2} and NS-charges ar{%, %}. The metric and charges can
be obtained from the previous subsection by simply discar@dip@ndas1. Following[4], the tachyon potential is

proposed to be

d

V(t,7)=2max 0, t)’——ézdu (2.29)
where we identified: = 1 by Egs.(2.15), (2.25)after settingrg = 3'/3. The factor 2 in the above equation is
from the asymptotic form of; is given by Eqs(2.22), (2.21) Its exact form can be written in terms nfgiven

in Eq. (2.23)with »r = —4/3. The potential vanishes exponentiallyras- co. As a consequence of the tachyon
condensation, the fate of tiig?/Z3 is justC? as expected.

3. C?/Z4
Let us now considet = 4. Working in the basis with definite ordering the chiral ring consists of
{xy,xzy,x3y,xy2,x2y2,x3y2,xy3, x2y3,x3y3}. (3.2)
The topological metric and metric are given by
T]Xilyjl’xizyjzzl, if i14+i2=j1+4 jo=24, N33 43,3 =1 3.2)
and
azz 0 O O O O O 0 b
0O a1 0 O O O O O O
0 O a3z O O O O o0 O
0 O O a2 O O O O oO
;=10 0 0 0 a O O 0 O 3.3)
0O 0O O O 0 azx 0 O O
0O 0 O O O O ams O O
0O 0O O O O O O0 a3 O
b 0 O O O O O O ass
Then, the reality condition gives
azp=1, a2 =1/a12, aiz=1/asa, azz=1/ann, azz = 1/a11 + |1|%a11/4.
b= 12a11/4. (34)
C, can also be calculated easily and given by
0 00O 121 0O0O q
0 00O 0100
0 00O 0 O0¢ O 0
0 00O 0 O0OOTZ1O0
¢;=]J0 0 0 0O 0 00 01 (3.5)
0200 0O0O0OOO
0O 0r OO OOODO
000 0 0O0O0TO
0000720000
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Then thert* equation becomes

— 33, logar1 = 1/a11 — |t|*a11/4, (3.6)
—d;0; logaz1 = 1/(az1a12) — |t|*az1a12, (3.7)
—0;9,logagy = |1|%/a3; — |t|%a3,, (3.8)
— 30 logaiz = 1/(az1a12) — |t|*az1a12. (3.9)

Most of the equations are of the form
) ) |t 2
m

By introducing change of variables

¢ = (L/@+Kk/2)) (16/m?) EVARZ 0y /T e, (3.11)

above equation lead us to the sinh-Gordon equaib8) The value of the in the solution of sinh-Gordon
equation can be obtained from the regularity of the metric component re@r Sincey ~ z¢/k+2¢4/2 we have

2k
~—— o e 3.12
M T 09 (3.12)

which determines the value= —kz—j_‘z.

Now from Eq.(2.28)the components of charge matrix is given by
qij = bijd bt — 1. (3.13)
Usinga;j = [A|(+)/2p;;, ai;l ~ y! for somel andy ~ zk/*+2)¢4/2 ith identificationz = ||,

! du(z) lk i+
474z T2+ a

Notice that(ij) is not the matrix index but the vector index. Using E8}12) the value of the charge at=0 is

1. (3.14)

qij(z) =

i+J
40 =—1 ~1, (3.15)
which confirms that we are in the right track. Now we apply this result to our system.
Foray1, by change of variablasl‘ll = 2y? Eq.(3.6)reduces to the standard form E§.10)with k =2, m = 4.

Thereforer = —1. This equation further can be reduced to sinh-Gordon equ&;i&gm = sinhu by settings =

12/2 andy = |t|e"/?/2. Sincel = 2 in this case, charge is given By (z) = 3224

Forajz andays, first we show they are equal. From E¢3.7) and (3.9)12 = |F ()|%az1 for some holomorphic
function F(¢). Sinceai2 = ap1 att = 0 as well as at = oo, the only nonsingular holomorphic function with
such boundary conditions is a constant functiofi) = 1, i.e.,a12 = a21. This supports the exchange symmetry
a;j = aj;. With this, Eqs(3.7), (3.9)are the case ofi = 1, k = 2; by settinga;; = y = |r|e*/? and¢ =12/2, we

get sinh-Gordon equatioh= 1 lead us ta712(z) = ¢g21(z) = %zdi’l—(zz).

Forazi, by z=t% andy = agl we get sinh-Gordon and the solutionyis= ¢*/2. It is easy to se@3z1(z) =

%zd’;—f). Notice thatg31(0) = ¢13(0) = 0. The monotonicity of the charge irsuggests thajz1(z) = 0. In fact the

exchange symmetrys; = a3 and the reality conditionz; = 1/a3; setsaz; = 1.
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Mirror of C2/Z4

So far, we have been considering the LG model without orbifolding action. To consider the miE8y D5
with generatorcy, we need to consider;; i = 1,2, 3. Sinceaz2 = 1 andagsgz is given byaii, we only need to

consider the equation far 1, which is given by Eq(3.6).

4. C?Zs

Here again, we first analyze the general LG model and at the end we comments on the orbifolded case. The
superpotential is given by

5 5
x>y

W=+ —txy. 4.1
55 Y “.1)

The chiral ring is given by — ry = 0 andy* — rx = 0. We order the basis by dictionary order in charge pair

@ Jj):
3.2 4.2 3.3 .4.3 3.4 4 4
R{xyxyxy,xy,xyxyxyxyxyxyxyxyxyxyxyxy} (4.2)

Then;; can be readily written and we avoid to writing it down. The meggl):has 16 diagonal components which
we denote byi;; = (x’Tyf_'|x"yj), i, j =1,2,3,4, and two nonvanishing off diagonal element$ as before. The
coupling matrixC; in this basis is given by

0 0 0O0OO0O 1 00O0OO0OO0ODOODOO

0O 0 0O0OO0O 0O 10O0O0OO0OOOO0OO §
0O 0O 0OO0O O O O1O0O0O0OO0OTO0OO0OO

0O 00O 0O O 00O 00 0O0OO0OCO0ODO
0O 0 0O0O O O O0OOO110O0O0OTO0OOGO

0O 0O 0O0OO0O 0O O0OO0OOOI11O0O0OO0TO i
0O 0 0O0OO0O O O0OO0OOOOTI11O0OQO0TO

0O 0 0O0O O O O0OO0OOOOTGOr 00O

Ci= 0O 0O 0OO0O O O 0OOOOOOOTIZ1IO i (4.3)

0O 0O OO O O OOOOUOOTGOO0OIZ2

0O 0 0OO O O O0OO0OOOSOTOOOTQ 01
02000 0O0O0O0OOOOO0O0 (
0O 0o+ 00O 0O 0OOOOOOOOOGQ
0O 0o 0¢r 0O 0OOOOODOOOOOGMQ
0 000#¥” 000O0O0O0OO0OOO0OGO0OOQO
0 000DO0000000O0GO0GO0O0

By use of the reality condition, we have 8 independent variables out @f 26eal variables and the rests can be
written in terms of them:

a13=1/as2, az3=1/azo, azz=1/az2, asz=1/a12, ara=1/as1,
aza=1/az1, aza=1/an, ass=1/a11 + |t|*a11/4,
1
b= Eﬂaﬂ. (4.4)

Then thert* equation becomes

| -1 1 4
—070;l0ga11 = aq aze — thl a11az2,
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-2 -1 1 4
—0;0;10gaze = ayy —aggaz — thl a11az2,

— 870, logaz1 = —|t*az1a12 + az]lagz,

—8;9, logarz = —|t[*az1a12 + al}lagzl,

—0;0; logazy = aizlagzl - agllagz,

—0;9, logazy = —|t|?az1a41 + 03_11042,

— 870, logaay = —|t|2aziaas + Itlzalllall,

—0;0, logagn = |t|2a;lla;21 - a511a42. (4.5)

The reality condition together with exchange symmetry gives us only 4 independent equations

— 379, 10ga11 = azz/a11 — a11azo|t|*/4, (4.6)
— 39, 10gazs = ayy — azp/air — |t|*ar1a20/4, (4.7)
— 379, logaz1 = —|t*a3; + ay., (4.8)
—370, logagy = —|t%az1 + ag?, (4.9)

as well as the predetermined values of some of them
azpp=ax =1, agy=ays=1. (4.10)

Notice that all monomials?y, xy?, x3, y3 have NS-charge 1 and these are the marginal operators. Above results
show that the marginal operators do not evolve under the condensation of tachyon represemnted by
To eliminater from above equations, let

aij = |t|V bj, ¢ :=art’. (4.11)
Then by using;d; = (ab)?|t|**~23; 0, , and by requiring that Eq¢4.6), (4.7)are homogeneous in

2b—2=copp—cr1=44c2+c11=—2c0=—c11+ c22, (4.12)
which givecoo = —2/3,c11 = —2 andb = 5/3 withab = 1. Based on this, we introduegs, g22 by

a11=2@/5P17|7%%e™ M, azy=2Y3(3/5/3|¢ |72, (4.13)
and rescale by — 21/3¢ to get

3z 0rq11= 117422 _ p—(q11+422)

07 O; gao = 2122 — 117422 — o~ (11+422), (4.14)

For Egs.(4.8) and (4.9)

A4 2cp1= —cp1=2b—2=2+ c31= —2c31. (4.15)
Then we haves1 = —2/3,c21=—4/3 andb = 5/3. We introduce andY (1), Z(t) by

t=¢% a1 = (5/3)"517%%" and az1= (5/3) %t %7, (4.16)
Then, both Eq(4.8), (4.9)are reduced to

3 (t3:Y)=e' —e™ 2, (4.17)
3. (13 Z) = % — %2, (4.18)
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which are known as Bullough—Dodd equation which is a degenerate Painlevé Ill, which also appears in the case
CY/Z4 — C transition withW = x* — rx.
The Bullough—Dodd equation

B, (T0,u) = e — ™2 4.19
(T 1) (4.19)

has been studied extensively and the properties of the asymptotically regular solutions were {i&nThe
solutions are parametrized by four complex numkgrs,, g3, ands satisfying

g1+g(l—s5)+g3=1, & —g183=g2. (4.20)

The asymptotic forms are given by

T > 00 e ~1+\/7 (3r)" _Z‘ﬁ g1=82=0, g3=1,

C2 o
1—>0: e'=-— ~2pPr =St

2tsirt{% ;Llnr + |n(r1C ) Co

2
s—1+005[ 3’1“}, rn=g3— g1+ 1+ w)(g1—g2), ot =et 3,

rl-4ra— 2
C2_ 32,1 I 23). (4.21)
Co P+ 5Hra+ %)

Regularity of the metric as — 0 can fixs.
First let us considetz1 ~ t~%/5¢~Y. From the regularity ofi>1, we have

=¥ ~ 1725, (4.22)
which gives

n=3/5  s=1+2co§27/5)~1.618, =1, %2) = 3—6/5(25/2)%. (4.23)
Similarly, for az; ~ =1/%¢%, we have

M =e%~ Y5 (4.24)
from which we get

u=4/5 s=1+cog87/15)~0.791, n=1,

g—z =37%°((15/%/32) Fr(ti; ;)5358(/71/ ;)5) (4.25)

These completely fixes behaviors of solutions at both ends.
Mirror of C2/Zs

In this case, we only need to considgi, ap» sinceass andayq are determined in terms @b, anday1 respec-
tively by the reality condition. Ther* equations fou11, azp are given by Eqs(4.5) or Eqs.(4.14) They can be
identified as theB, = DT (SO(5)) Toda system. We will investigate the relation betweenrtfieequations in the
orbifold geometry and various Toda systems elsewhere. The charge atrixd. g1 — 1 with T = log can be
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calculated to be given by

~3 +andart 0 0 0
0 Ly apdast 0 0
0= > e 9 . (4.26)
0 0 5 — a220ra55 0
t2a110.ay; 0 0 § —andeay

Notice that in terms of;; andx (= ¢), and if we look at thgi| dependence only, the tachyon potential can be
identified as

V =20max= —¢09:q11({). (4.27)

We expect that this is monotonically decreasing from the value 5/3-dtto O at 7— oo. So far, the mathematical
literature on the solution to the equation is not available and the qualitative behavior we suggested above is from
physical intuition that in the final stage of tachyon condensation there is no nontrivial chiral primaries with charge
other than 0.

5. Discussion

In this Letter, we calculated:* equations forC2/Z, with n = 3,4,5. In n = 3,4 cases, they reduce to a
Painlevé Il equation with different boundary conditionsula- 5 case, they reduce to a simple Toda system whose
explicit solutions are not known yet. Nonorbifolded LG model associated+t® case involves a Bullough—-Dodd
equation.

As a limitation of this Letter, we mention that we considered the string theories without GSO projection only.
Since GSO projection does not provide a supersymmetry immediately in the orbifold background, there is not much
point on restricting ourselves to GSO projected theory. According to the rule giVi&h iy term considered in
this Letter is projected out for type Il, and we need to consider the deformation by higher operator, which result
in highly nontrivial equations due to the algebraic complexity of reality condition. Another very interesting case
is the one where the daughter theory is also an orbifold. This also results in a highly nontrivial equations even for
C1/7z, background. We wish to report on these issues in later publications.
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