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Abstract 

Although often considered to be undesirable, noise can produce beneficial effects in a system.  Here, the authors 
discuss two representative nonlinear systems and the influence of noise on the responses of these systems.  One of 
these systems is a set of coupled monostable Duffing oscillators, while the second of these systems is a Rayleigh-
Duffing system that has been considered in honor of Dr. Y. Ueda.  For the coupled oscillators, it is shown that an 
appropriately chosen noise addition can be used to localize energy as well as shift energy localization locations.  In 
the case of the Rayleigh-Duffing system, the authors illustrate how the addition of noise to a deterministic input can 
push the system from a periodic attractor in the case without noise to a “broken-egg attractor” in the case with noise. 
These representative examples serve to illustrate a range of possible noise-influenced responses, and it is expected 
that similar as well as a wider range of responses can be expected in other nonlinear systems.    
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1 Introduction 

The introduction of noise into a nonlinear system can result in significant changes to the response of a 
system. Traditionally, these effects have been perceived as being undesirable.  Following the notion of 
stochastic resonance [1, 2], there have been findings that noise can – and very often does – have a 
beneficial or enhancing effect.  There are many examples of stochastic resonance in biological, physical, 
and chemical systems [e.g., 3].  These examples do provide a motivation to look for noise-enhanced 
responses in a wide variety of nonlinear systems.  By the qualifier “noise-enhancement,” the authors refer 
to one of the following, due to the introduction of noise into the system:  i) amplification of the response, 
ii) energy transfer from one oscillator to another in an array, iii) stabilization of the response to a 
harmonic input, iv) sustenance of the response in an oscillatory state (even after the deterministic 
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excitation input is switched off); and v) an attainment of desirable dynamics.    Here, the authors will 
explore noise-enhancement possibilities in the context of an array of monostable Duffing oscillators and 
the Rayleigh-Duffing mixed type oscillator. 

 
In the literature, intrinsic localized modes (ILMs) are known as discrete breathers or Anderson 
localizations; they are energy localizations that can occur in spatially extended, perfectly periodic, 
discrete systems [4, 5].  ILMs occurring in pure anharmonic lattices are similar to energy localizations 
occurring in harmonic lattices with a defect [6].  They can be considered to be a forced nonlinear 
vibration mode of an oscillatory system [7].   Here, an array of monostable Duffing oscillators is studied, 
as it has relevance to microelectromechanical systems (MEMS), which are relevant for a host of 
engineering applications including communications and signal processing.  However, the oscillator array 
structure considered here is different from previous studies carried out in the authors’ group [7]. At the 
micro-scale, stochastic effects can play a significant role in determining the system dynamics and ILMs 
have been studied in the context of micro-scale systems [7, 8]. ILMs can have adverse effects on the 
performance of a micromechanical device; for example, they could inhibit information flow or, in some 
cases, damage the microelectromechanical array and the associated electronic circuitry.  However, if 
these energy localizations are better understood, they have the potential to lead to new technologies.  The 
energy localization phenomenon in the coupled oscillator array of this study does not have the large 
amplitude characteristic of an ILM; however, this work is relevant to realize energy localization in 
coupled oscillator arrays. The second system studied here is a Rayleigh-Duffing mixed type oscillator, 
which is a system studied by Dr. Y. Ueda in the 1960s.  This system was shown to have a chaotic 
attractor in the form of a broken egg [9].  Since this system has had an important influence on developing 
an understanding of chaos, as a tribute to Dr Y. Ueda, the authors have chosen to explore the effects of 
noise on the response of this oscillator. 
 
Nomenclature 

xi position of ith oscillator 

xi,1 position of ith oscillator in state space 

xi,2 velocity of ith oscillator in state space 

mi mass of ith oscillator 

k0,i linear coupling spring on left side of ith oscillator 

k1,i linear spring constant of ith oscillator 

k3,i nonlinear spring constant of ith oscillator 

  

ci damping term of ith oscillator 

F,  forcing amplitude, forcing frequency 

  white noise (derivative of Wiener process) 

 noise amplitude 

,  Rayleigh-Duffing mixed type equation parameters 
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With each of the systems considered, the authors begin with the deterministic system and then include a 
stochastic noise component in the input.  In both cases, the system is numerically studied by using the 
Euler-Maruyama method [10].  By using this method, one obtains an approximate solution of the system.  
This method is an extension of the Euler method for ordinary differential equations, which has been 
adapted to perform integrations of stochastic differential equations (SDEs).  In addition, the authors also 
use a Method of Moments analysis to study the averaged dynamics of the system.  Through this analysis, 
they obtain an approximation to the Fokker-Planck equation (a partial differential equation) for the 
system, which governs the evolution of the probability density function of the states of each oscillator in 
the array.   The moment evolution equations (an infinite set of ordinary differential equations) are derived 
and truncated from the Fokker-Planck equation.  Numerically solving this truncated, finite set of ordinary 
differential equations gives an averaged (approximate) solution to the variables in the state space.  In the 
case of the Rayleigh-Duffing mixed type oscillator, to visualize the influence of noise on the response, the 
authors present the Poincaré sections of this system in the form of a two-dimensional histogram.  By 
using this means of visualization, the stochastic dynamics of the system is believed to be portrayed in a 
meaningful way.  The authors believe that this approach might serve as a useful tool in exploring the 
response of other systems with noise component inclusions.  

 
The rest of this article is organized as follows.  In Section 2, the equations governing the array of coupled 
monostable Duffing oscillators are derived.  The Euler-Maruyama simulations and the Method of 
Moments analysis are both presented in this section and discussed along with the results obtained.  In 
Section 3, the Rayleigh-Duffing mixed type oscillator is presented and the response of this oscillator is 
examined.  By using the Euler-Maruyama method and the aforementioned histograms of the Poincaré 
sections, the behaviour of this nonlinear system is explored and compared to that observed in the absence 
of noise.   Concluding remarks are collected together in Section 4. 

2  Monostable Duffing oscillator array 

Consider the array of monostable Duffing oscillators, which is depicted in Figure 1 and described by the 
following equations, with the variable and parameter descriptions, following that provided in Section 1: 

 

                 (1) 



62   Edmon Perkins and Balakumar Balachandran  /  Procedia IUTAM   5  ( 2012 )  59 – 68 

 
 
Figure 1.  Array of n coupled monostable Duffing oscillators. 

 
2.1 Euler-Maruyama simulations 
 
These n oscillators all have the same deterministic and stochastic forcing (  and , 
respectively).  The term, , denotes white noise, which is defined as the derivative of Brownian 
motion.  Since Brownian motion (or in the physics literature, the Wiener process) has independent 
increments, its derivative does not exist with probability one [11].  Thus,  is a “mnemonic” 
derivative.  To write the equations with more formality, the authors convert the system of stochastic 
differential equations into Langevin form.  For facilitating the analysis, the equations of motion are first 
cast into a state-space form.  In the subsequent notation, the x’s first subscript refers to the oscillator and 
the second subscript is used to denote the corresponding state: 
 

              (2) 

 
Next, the system of Langevin equations from this system of stochastic differential equations is written as 
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  (3) 

 
Notice that in this differential form, one no longer has the derivative of Brownian motion (which does not 
exist) but a differential white noise which does exist.  Now, the Euler-Maruyama method can be used to 
obtain numerical solutions of the following system: 
 

  (4) 

 
In this form, j is associated with the time step in the solver.  The quantity, , is the incremental noise; it  
has mean equal to zero and standard deviation equal to .  In these simulations, the forcing frequency 
was ramped up, starting at the highest linear natural frequency and progressing to a value 0.5% higher 
than the highest linear natural frequency for the system of oscillators, in a manner similar to that carried  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. a) The forcing frequency profile. b) Without noise, two energy localizations form. c) With noise, three 
energy localizations form. 
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out in the group’s previous studies [7, 12].  Thirty-two oscillators were simulated, while varying the noise 
intensity as a system parameter. 
 
In Figure 2a), the forcing frequency profile is provided.  The frequency is ramped from the highest natural 
frequency to 0.5% above the highest natural frequency over two seconds.  After this time, the frequency is 
held constant until 40 seconds is reached, where the forcing is turned off completely.  In Figure 2b), two 
energy localizations are shown.  In Figure 2(c), with the addition of noise, additional energy localization 
forms.  In Figure 2, one of the localizations is more spatially distributed than the other: the localization at 
oscillators 15-16 has denser energy than the localization at oscillators 20-23.  Further research is 
necessary in order to determine whether the noise has a deterministic effect on where an ILM forms.  This 
is an important question if noise can be used to control the formation of ILMs at different locations in a 
micro-oscillator array.  The present results can be compared to those previously obtained by 
Ramakrishnan and Balachandran [12], for micro-cantilever arrays, in which each oscillator pair had two 
different types of oscillators. Although the oscillator systems of references [7, 12] are different from the 
current one, the authors believe that noise can produce the following two differing effects in array 
systems; that is, attenuation of energy localizations and creation of energy localizations. If fully 
understood, noise might be harnessed to create and/or destroy energy localizations in an array.     
 
2.2 Fokker-Planck equation and Method of Moments analysis 
 
In the preceding subsection, the authors demonstrated the use of noise to realize energy localization 
through a direct numerical simulation.  In this subsection, the authors aim to obtain an approximate 
solution on the basis of a formalism based on the Fokker-Planck equation [13].  The solution of this 
partial differential equation is the time evolution of the probability density function, which is a function of 
the variables in state space and of time.  In general, the Fokker-Planck equation can be written as 
 

 =  (5) 

 
where, p is the probability density function and  is the vector of variables in state space.  The Fokker-
Planck equation for the ith oscillator can be constructed as  
   

  

  (6) 

 
To find an approximate solution for equation (6), the Method of Moments is employed [14].  To briefly 
explain this method, first take the general moment equation: 
 

  (7) 
 
Then, obtaining the moment as it evolves through time, it is found that 
 

                 (8) 

 
Now, considering the rth moment of position and sth moment of velocity of the ith oscillator, the result is 
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                 (9) 

 
After substitution and rearrangement, the authors obtain the moment evolution equation for the ith 
oscillator: 
 

          (10) 

 
The x’s and v’s without subscripts refer to the position and velocity of the ith oscillator, and 

.  This moment evolution equation gives an infinite set of ODEs, as different 
values of r and s are substituted.  The following three approximations are made, in order to solve this 
infinite set of ODEs: 1) the Fokker-Planck equation is written for the ith oscillator, considering only the  
neighboring two oscillators, 2) the states are assumed to be independent (i.e.  ), and 3) 
moments of order 4 and higher are neglected.  These approximations yield a set of 6n ODEs, from the 
previous SDE.  The numerical results obtained with this reduced-order system are presented in Figure 3.  
 
Note that in using the Fokker-Planck equation, it is customary to use ; thus, this is indeed the 
same noise level as that used to generate the results shown in Figure 1.  Also, the same initial conditions 
were used to generate the results shown in Figure 2 as well as that shown in Figure 3.  It seems that on 
average, the third energy localization does not occur.  However, through the previous Euler-Maruyama 
simulations, the localization is shown to occur sometimes.  By taking higher order moments, the third 
energy localization observed in Figure 2c) might be better predicted by the Method of Moments analysis.  
The authors are currently exploring this further. 
 
 

  
 
Figure 3. The numerical solution to the Fokker-Planck equation, using the same parameters as in Figure 1.  a) For no 
noise, two energy localizations form. b) Using the same noise level as in Figure 1(b), there are still only two 
localizations. 
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3  Rayleigh-Duffing mixed type oscillator 
 
In the previous section, the authors studied the effects of noise on the response of an array of nonlinear 
oscillators.  Here, in honor of Dr. Y. Ueda, the authors explore the effects of noise on the Rayleigh-
Duffing oscillator, which is described by  
 

                (11) 

 
As before, the system has a superposition of deterministic and stochastic forcing (  and , 
respectively).  For the parameter values  = 0.2,  = 4.0, F = 0.3, and  = 1.1, the deterministic 
counterpart of this system (i.e., the system without noise) exhibits the broken-egg chaotic attractor [10].  
As discussed in Section 2, this equation can be written in Langevin form, and using this form, an Euler-
Maruyama simulation can be implemented.  By keeping the other parameters at the aforementioned  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Illustration of the broken-egg attractor along with the different responses on the Poincaré section 
constructed by using the forcing frequency as the clock frequency: a) With no noise, the motion of the oscillator is 
periodic, as illustrated by the discrete set of points. b) With a low level of noise, a curve in the state space is traced. c) 
With the noise level at  = 0.05, the Poincaré sections are, on average, on an egg-like shape which encircles the 
broken-egg attractor. d) With higher levels of noise, the oscillator’s response fills a large, sparsely populated area.   
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values, but reducing the forcing constant to F = 0.166, it is found that the motion of the oscillator is 
periodic. 
 
It is noted that in Figure 4, a two-dimensional histogram is taken of the Poincaré sections of the Euler-
Maruyama simulation.  The clock frequency used to construct the Poincaré section is taken to be the 
forcing frequency.  In the histograms presented, the color coding shows how many points from the 
Poincaré sections lie on each small box of the state space in a given amount of time, where x refers to 
position and v refers to velocity.  On top of this histogram, the broken-egg attractor with the parameter 
values given above is graphed also for direct comparison.  As noise is added to the Rayleigh-Duffing 
mixed type oscillator, the oscillator progresses from periodic motion to something that appears to be 
“quasiperiodic” or “chaotic,” in an average sense. This method of visualization might be useful for other 
systems that have stochastic components.  Since there are many attracting sets between the parameter 
values F = 0.166 and F =0.3, the response of the oscillator is best thought of in an average sense: the noise 
pushes the response between many different attracting sets, which are near each other.  In an average 
sense, in going from Figure 4b) to Figure 4c), the noise pushes the system response to what also looks like 
a broken-egg form; the noise breaks the egg shape form observed in Figure 4b).  It is recalled that in the 
absence of noise, the response is periodic as noted in Figure 4a).  For relatively large levels of noise, the 
state of the system begins to fill a portion of the state space, centering on the origin.   
 
4  Concluding remarks 

The present work is intended to be an exploration into two different nonlinear systems, to illustrate the 
influence of noise on the response of nonlinear oscillators.  In one of the considered cases, the authors 
have studied how noise affects the response of a homogeneous array of monostable Duffing oscillators 
and a Rayleigh-Duffing mixed type oscillator.  The Euler-Maruyama method was employed to simulate 
these stochastic systems.  In the case of the coupled oscillator array, the Fokker-Planck equation was 
derived for a representative oscillator.  Assumptions regarding independence of moments and a truncation 
approximation were made in order to find a numerical approximation for the solution of the Fokker-
Planck equation.   The results suggest that a white noise addition can create an energy localization in the 
array, but in an average sense, this usually does not happen.  In other studies in the authors’ group, with a 
different set of coupled oscillators, it was shown that noise can be used to attenuate an energy localization 
[12].  Between the present and previous studies, it is shown that noise can be used to facilitate as well as 
to suppress energy localizations in coupled oscillator array systems. 

 
Through studies of the Rayleigh-Duffing mixed type oscillator, the authors have shown that the addition 
of noise can promote an early appearance of response in an average sense, which previously did not exist 
in the corresponding noise-free case.  Poincaré sections were constructed for the numerically obtained 
responses from the Euler-Maruyama simulation.  A two-dimensional histogram was used to visualize this 
data and compare it to the broken-egg chaotic attractor which is known to occur in this system.  It is noted 
that the noise inclusion caused the system response to progress from a periodic motion to a motion that 
appears to be “quasiperiodic” or “chaotic”.  The histograms can be taken to show the average dynamics of 
the system.  For the deterministic case, the histogram is simply the same as that obtained with the usual 
constructions of Poincaré sections.  As noise is added, the system dynamics moves between different 
attracting sets (there are many attracting sets between F = 0.166 and F = 0.3).  Eventually, the noise 
overpowers the attracting sets, and the system response fills a portion of the state space.  These results 
suggest that an optimal level of noise may exist, which can be used to control/confine the system response 
to different attracting sets. 
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Whereas noise is typically considered to be undesirable, in the two examples discussed in this chapter, the 
noise pushes the system into areas of desirable dynamics.  In physical systems, noise is always present.  
Understanding the stochastic aspects of a system could allow designs which utilize noise in new and 
advantageous ways.  For systems that are capable of chaotic behavior, understanding the stochastic 
aspects of the system in a statistical sense can be appropriate and useful. 
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