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Abstract

Logical frameworks have enjoyed wide adoption as meta-languages for describing deductive systems. While
the techniques for representing object languages in logical frameworks are relatively well understood, lan-
guages and techniques for meta-programming with them are much less so. This paper presents work in
progress on a programming language called Rogue-Sigma-Pi (RSP), in which general programs can be
written for soundly manipulating objects represented in the Edinburgh Logical Framework (LF). The ma-
nipulation is sound in the sense that, in the absence of runtime errors, any putative LF object produced by
a well-typed RSP program is guaranteed to type check in LF. An important contribution is an approach
for soundly combining imperative features with higher-order abstract syntax. The focus of the paper is on
demonstrating RSP through representative LF meta-programs.

Keywords: Meta-Programming, Logical Frameworks, Rewriting Calculus

1 Introduction

Applications using a logical framework such as the Edinburgh Logical Framework
(LF) [7] very frequently need meta-programs which produce or manipulate LF en-
codings of derivations. For example, proof-producing decision procedures like the
CVC (“Cooperating Validity Checker”) system or the Touchstone theorem prover
from Necula’s PCC system emit proof objects for formulas they report valid [18,10].
The Princeton and Yale Foundational Proof-Carrying Code (FPCC) projects both
rely on tools that automatically generate LF derivations [22,6].

The present work contributes to the study of sound meta-programming for LF.
A meta-programming language for LF is described called Rogue-Sigma-Pi (RSP).
RSP extends LF in a type-safe way with convenient meta-programming constructs:
pattern-matching, general recursion, a limited form of dependent records, and ex-
pression attributes (for mutable state). The combination of mutable state with
higher-order abstract syntaz (HOAS) [12] is quite delicate. An important contribu-
tion of the present work in progress is a (currently just conjectured) sound approach
supporting this combination.
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The meta-theoretic properties of RSP necessary for its intended use are type
safety and conservativity with respect to LF. Due to the inclusion of dependent
records (as also happens with the inclusion of pairs: see, e.g., [16]), unicity of types
fails in LF and hence in RSP. The approach adopted here is to rely on bottom-up
type computation, but add support for explicit ascriptions to guide the type com-
putation to a desired type. Conservativity with respect to LF has one qualification.
In RSP, run-time errors like failure of pattern matching can occur, which result in
an RSP term’s evaluating to Null. The statement of conservativity is this: any
RSP value of LF type is guaranteed to be an LF object, as long as it contains no
Nulls. This form of conservativity together with type safety guarantees the prop-
erty mentioned above: in the absence of run-time errors, any putative LF object
produced by evaluation of an RSP term is truly an LF object.

The paper informally introduces RSP (Section 3), and then shows how the lan-
guage is used in practice on several example meta-programs (Section 4). While it is
not hard to formalize the basic idea of RSP’s type system, the exact formalization
needed to achieve the meta-theoretic results is work in progress. The paper presup-
poses knowledge of LF (see, e.g., [11]). Note that since the original presentation of
RSP, a version without HOAS has been developed and demonstrated on a number
of practical examples [21].

2 Related Work

LF meta-programming plays a crucial role in several application domains. In the
CVC project, a cooperating validity checker was instrumented to produce proofs
in a variant of LF [18]. It was originally hoped that producing proofs would help
catch bugs in CVC. This was actually quite rare, since most bugs were failures
of completeness, where validity proofs are of no obvious relevance. Nevertheless,
there were constantly bugs in CVC’s proof-producing code. Given a straightfor-
ward implementation in C++, it is easy to write code which erroneously generates
malformed proofs. Such an error is caught only when a malformed proof is produced
for some input formula and then run through a proof checker. Tracking down the
causes of such failed proofs is extremely time consuming.

Several approaches have been proposed for writing type-safe LF meta-programs.
Appel and Felty use Twelf to implement partially correct tactics and decision proce-
dures [1]. In Twelf, sets of LF types receive a computational interpretation as logic
programs [13]. LF’s typing establishes that any proof produced by a successful com-
putation is guaranteed to check. The program may still fail due to run-time errors
such as non-termination or match failure. The Delphin language of Schiirmann is
a pure functional language for meta-programming with LF encodings [17]. Delphin
carefully places pattern-matching and recursion over LF for type safe manipulation
for LF encodings. Other less closely related systems include Cayenne and Alf [2,9].
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3 Overview of RSP

RSP is a proper extension of LF. We adopt the following notation for LF. We write
x:A => B for dependent product type I[I* A : B., and x:A -> M for Az : A. M.
We call the latter representational abstractions, since they will be used in RSP
solely for representation using HOAS. Another kind of abstraction will be used for
computation. In RSP’s operational semantics, computation occurs in the bodies of
representational abstractions, although not in the bodies of computational abstrac-
tions. Insofar as a representational abstraction is simply a parameterization of its
body, evaluating that body without any argument given is not unreasonable. Nota-
tionally, if x does not occur in B, we write A => B instead of x:A => B. Application
is written explicitly with infix @, and x @ y is sometimes written x(y) when x is a
variable or constant.

The features RSP adds to LF are briefly these. RSP has dependently typed
expression attributes, which can be read (X.a) and written (X.a := Y). The type
of an attribute is just like a dependent function type, except with =a> instead of =>.
Types of attribute reads are computed as for applications. The type system restricts
attributes in attribute reads and attribute writes to be just constant symbols. Using
such attributes, we support recursion by writing recursive equations: a functional
expression containing attribute read a.b, say, is written into the b attribute of a.

The computational abstractions mentioned above are dependently typed pat-
tern abstractions, typed with yet another arrow, =c>. These are of the form
x\P\A -> M. Here, x is a name for the whole input to the abstraction, P is the pat-
tern the input should match, A is a context for pattern variables in P, and M is the
body of the abstraction. If A is empty we write null for it. Pattern abstractions
are applied to target expressions by matching the pattern against the target. The
notion of matching used in RSP is just syntactic first-order matching. Determin-
istic choice allows pattern abstractions of the same type to be combined: we write
M|N for deterministic choice between M and N. An application of a |-expression is
evaluated by using the first abstraction (from left to right) whose pattern matches
the target expression. RSP uses Null(A) for match failure and also for reads of
uninitialized attributes, for every type A.

RSP’s pattern abstractions are inspired by those of Pure Pattern Type Systems
(P?TS) [3], with an important difference. In P2TS, the range type of a pattern
abstraction is allowed to depend on the pattern variables. Hence, the pattern and
its context must become part of the domain type of the abstraction, and pattern
abstractions receive types IIP : A. B, where P is the pattern, A is the context for
pattern variables, and B is the type of the body. Abstractions can still only be
connected by choice if they have exactly the same type. Since patterns are part
of types, this leads to the following serious drawback of the P?TS approach: ab-
stractions can only be connected if they are attempting to match the same pattern.
This is a severe restriction, since it means programs cannot use case analysis to take
different action based on the form of expressions. The present approach solves this
problem by not including patterns as part of the domain types of abstractions. But
this requires the range type not to depend on pattern variables. The range type
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pattern I' A P
(c-arrow-I) T ,AFP:A T,A\x=PFM:B TFx:A=c>B:x

'Faz\P\A —- M :: z:A=c>B

''-rM:A T,y=MFN:B T'tFx:AB:x
'(x=M,yN):z:AB

(rec-1)

Fig. 1. Selected RSP typing rules

can still depend, however, on the name x for the entire target expression to which
the pattern abstraction is being applied.

This approach to dependent pattern abstractions is enforced by the typing rule
(c-arrow-I) in Figure 1. As mentioned above, the exact formalization of RSP is not
yet complete, so this is just the essential idea: note that things like the definition
of pattern used in the first premise must be formulated with great care. The third
premise adds an equation to the context, which is used when checking convertibility.
The fourth premise ensures that the pattern variables from A are not used in B.

Finally, it turns out to be a practical necessity to have some kind of pairing
mechanism. This is mainly to allow pattern abstractions to perform simultaneous
pattern matching on a dependently typed bundle of objects. Initially, RSP adopted
dependent sum types, following [16]. It has become clear, however, that a limited
form of dependent record types would lead to more readable meta-programs.
This is because in some applications, it becomes necessary to manipulate rather
large bundles, and it is easier to read code which refers to elements of a large
bundle by name instead of by a sequence of projections. Fortunately, the uses of
bundles in RSP does not seem to require some of the features which complicate
record types. We do not need subtyping on record types, nor, apparently, manifest
fields in record types. We adopt right-associating records as in [14]. We write
{z : A, B} for the right-associating record with leftmost field x and remaining fields
B. Then (x = M, y.N) denotes the dependent record with leftmost field = storing
element M, and remaining fields N, where N is allowed to use y as another name for
M. This follows the approach originally proposed in [8], where each field has a label
and an associated bound variable (to avoid variable capture during substitution).
We often elide the binding and write just (x = M, N). By using x as an alias for M
in N (which is discussed but not supported in [14]), we can often guide bottom-up
type computation to some desired type for M. In some cases, however, we still need
explicit ascriptions M:A. The typing rule should be essentially the (rec-I) rule of
Figure 1.

RSP terms are parsed with the following precedences from tightest to loosest
binding: attribute read and projections, application, record formation, arrows, and
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0 : type.
IMP : (0 =>0 =>0).
FALSE : O.

Pf : (0 => type).
Dn : (P : 0 => Pf(IMP @ (IMP @ (IMP @ P @ FALSE) @ FALSE) @ P)).
K: (P :0=>Q:0=Pf(IMP@P Q@ (IMP @ Q @P))).
S: (P:0=Q:0=>R:0=
Pf(IMP @ (IMP @ P @ (IMP @ Q @ R))
@ (IMP @ (IMP@P @Q) @ (IMP @ P @ R)))).
MP : (P : 0=>Q :0=>Pf(IMP @ P @ Q) => Pf(P) => Pf(Q)).

I : type.

EQUALS : (I =>1I => 0).

Eqrefl : (x : I => Pf(EQUALS @ x @ x)).

Egsymm : (x : I =>y : I => Pf(EQUALS @ x @ y) =>
Pf(EQUALS @ y @ x)).

Eqtrans : (x : I =>y : I =>2z : 1I=>Pf(EQUALS @ x @ y) =>
Pf(EQUALS @ y @ z) => Pf(EQUALS @ x @ z)).

Fig. 2. LF signature: classical logic with equality (no quantifiers)

deterministic choice. So the first term below is fully parenthesized as the second
(and evaluates to whatever value is stored for attribute b of expression a)

(x\a\null -> x.b | x\y\y:I -> x.c) @ a
((x\a\null -> (x.b)) | \y\y:I -> (x.c))) @ a.

4 Meta-Programming Examples

We consider two example meta-programs that manipulate LF encodings of proofs
in classical first-order logic with equality. All the code has been type checked and
run on sample inputs using a prototype implementation of RSP !. This prototype
is written in Rogue, a version of the untyped Rewriting Calculus [19], which is
essentially an untyped version of RSP. We encode our logic in a standard way as
the LF signature of Figure 2. Our examples do not deal with quantifiers, so they
are omitted for space reasons. Also, constructs to form first-order logic terms are
omitted. The examples also make use of the following non-logical LF declarations,
whose role is further explained below:

base : type.
uf : base.
dt : base.

L This implementation does not support all the features of records yet, in particular field accesses. Versions
of the examples using projections instead of field accesses have been checked and run on sample inputs.
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1. rank : (I =a> Int).

2. findp : (x : I =a> {y:I, Pf(Equals @ x @ y)}).

3. find : (base =a> x : I =c> {y:I, d:Pf(Equals @ x @ y)}).

4.

5. uf.find :=x\y\y:I->

6. Let(fx, x.findp,

7. Ite(fx,

8. Let(ffx, uf.find @ fx.1,

9. x.findp := (y = ffx.1,

10. d = Eqtrans @ x @ fx.1 @ y @ fx.2 @ ffx.2)),
11. Dropl(x.rank := 0, (y = x,

12. d = Eqrefl(x) : Pf(Equals @ x @ y))))).

Fig. 3. The RSP code for find

4.1 Proof-Producing Union-Find

The first example is a proof-producing version of the well-known union-find algo-
rithm (see, e.g., [4, Chapter 22]). Recall that this algorithm maintains disjoint sets
of elements in balanced lazily path-compressed trees. The union operation takes
two elements and merges their trees by making the root of the shallower one (as
bounded by its rank) point to the root of the deeper one. The find operation takes
an element x and returns the root of its tree. It modifies the pointers (called find
pointers) encountered along the path from x to the root so that they all point di-
rectly to the root. Proof-producing union additionally takes in (the LF encoding of)
a proof that the two given elements are equal. Proof-producing find additionally
returns a proof that x = r where x is the input element and r is the root element
which find returns. The underlying data structure is augmented so that every find
pointer from a node x to a node x.findp has associated with it a proof that x =
x.findp.

Figure 3 shows typing declarations and the code just for find. Lines are num-
bered for reference. The typing declarations declare attributes rank and findp, as
well as find (lines 1-3). The latter is just so we can write a recursive definition,
which occupies the rest of the Figure (lines 5-12). We implement find pointers using
the findp attribute. The idea is that x.findp will store a dependent record of type
y:I, Pf(Equals @ x @ y). That is, a record consisting of an individual y together
with a proof that x equals y. Such a record is also what uf.find returns. We set
uf.find to be a pattern abstraction taking in an individual x matching a pattern
which is a single variable y (line 5). Since a variable matches anything, this pattern
does not constrain the input to the abstraction at all (and syntactic sugar can be
introduced to omit it). We first put x’s find pointer in temporary variable £x using
a Let statement (line 6). We then use an Ite statement (if-then-else) to check (line
7) whether or not x’s find pointer is Null (at the appropriate type). This relies on
the fact, mentioned above, that attributes without a stored value default to Null.
Let and Ite forms (as well as Dropl, used on line 11) are abbreviations, given in
Figure 4, where we write type (M) for the type in the current context of M.
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Let (x,M,N) = (x\ q\ q :typeM) ->N) @M

Ite(M,N,N’) =  (Null(type(M)) —-> N’ |
g\ g2\ g2 :type(M) -> N) @ M

Drop1(M,N) Let (ignore, M, N)

Fig. 4. RSP abbreviations used in the examples

Consider then the first case of the if-then-else statement (lines 8-10). We make
a recursive call to uf.find on the first component of fx, which is the individual
pointed to by x’s find pointer, and put the result in temporary £fx (line 8). Then
we set x’s find pointer to be a new record, consisting of £fx.1 (line 9), which by
induction is the top element of the chain of find pointers from fx.1; and the appro-
priate transitivity proof (line 10). Note the careful use of y as the third argument
to Eqtrans. This ensures that the type computed bottom-up for the record (i.e.,
the one being stored in x.findp) is y:I, d:Pf(Equals @ x @ y), as required by
the stated return type for uf.find. The “else” branch of the Ite expression (lines
11-12) sets x’s rank to 0 (for the benefit of uf.union), and then returns a record
consisting of x and a reflexivity proof. Bottom-up type computation for Eqrefl (x)
will compute the type Pf(Equals @ x @ x). In order for the two branches of the
Ite expression to have the same type, an ascription must be used (line 12) so that
the reflexivity proof will be viewed as having type Pf(Equals @ x @ y). Since y
is an alias for x at this point, this ascription is legal.

4.2 Imperative Deduction Theorem

The union-find example constructs proofs but never applies a pattern abstraction
to a proof to analyze it. In this second example, we consider a meta-program that
does analyze proofs using pattern abstractions. For the Hilbert-style formulation
of classical logic we have adopted (Figure 2), it is standard to prove the so-called
Deduction Theorem by induction on the structure of proofs (cf. [20, Chapter 2])
with case analysis:

Theorem 1 (Deduction Theorem) If formula B is derivable possibly using as-
sumption u of formula A, then the formula “A implies B” is derivable without
assumption u.

The inductive proof corresponds exactly to a certain recursive program, where
case analysis is implemented by pattern matching. Such a program is a standard
example for meta-programming in Twelf [11]. The Twelf program implementing
the Deduction Theorem uses HOAS to represent the hypothetical judgment that B
is derivable from assumption A as a representational (i.e., A-) abstraction. Careful
use of higher-order pattern unification enables computation to proceed beneath such
abstractions.

We develop here an implementation of the Deduction Theorem in RSP. Since
RSP supports imperative programming using attributes, we will actually be able
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dedthm : (base =a> A : 0 =c> B : 0 =c>
(Pf(A) => Pf(B)) =c> Pf(IMP @ A @ B)).

dedthm_h : (base =a> bridge : (u:0 => Pf(u)) =>
bundle : {A : 0O, B : 0, d : PEF(B)} =c>
Pf(IMP @ bundle.A @ bundle.B)).

dedthm_cached : (bundle : {A : 0, B : 0, d : PfF(B)} =a>
Pf(IMP @ bundle.A @ bundle.B)).

Fig. 5. Declarations for the Deduction Theorem

dt.dedthm := A:0 \ null -> B:0 \ null ->
D : (Pf(A) => P£(B)) \ null ->
(bridge : (u:0 => Pf(w)) ->
dt.dedthm_h @ bridge @
(g =A, p=B, d=D @ bridge(A) : Pf(p))
: PE(IMP @ A @ B))
@ Null(u:0 => Pf(uw))

~N O Ok W N

Fig. 6. Deduction Theorem, outer routine

1. dt.dedthm_h := bridge : (u:0 => Pf(u)) ->

2. bundle : {A:0, B : 0, 4:Pf(B)} \ null —->

3 Ite(bundle.dedthm_cached, bundle.dedthm_cached,

4. bundle.dedthm_cached := ((A : 0 ->

5. (B \ A\ null -> F \ bridge @ B \ null -> IMP_REFL |
6

7

8

9

B:0 \ null —>
(F\MP QP @B @dl @d2
\ (P :0, dl : PF(IMP @ P @ B), d2 : Pf(P)) ->

10. MP @ (IMP @ A @ P) @ (IMP @ A @ B)

11. @ (MP @ (IMP @ A @ (IMP(P) @ B))

12. @ (IMP @ (IMP @ A @ P) @ (IMP @ A @ B))

13. @ (S@AQP@QB)

14. @ (dt.dedthm_h @ bridge @

15. (x \ A, y\ (IMP @ P @ B), dl : Pf(y))))

16. @ (dt.dedthm_h @ bridge @ (x \ A, y \ P, d2 : Pf(y))) |
17. D : Pf(B) \ null -> MP @ B @ (IMP @ A @ B) @

18. (K@B @A) @D))) @

19. bundle.A @ bundle.B @ bundle.d)).

Fig. 7. Deduction Theorem, main routine

to write an imperative version of this function, which caches intermediate results.
Caching intermediate results is a simple but highly effective optimization in au-
tomated reasoning systems. In the case of the Deduction Theorem, we will cache
intermediate proofs using an attribute dedthm_cached. Since the type of the cached
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MP @ (IMP @ A @ (IMP @ B @B)) @ (IMP @ A @ B)
@ (MP @ (IMP @ A @ (IMP(IMP @ B @ B) @ B))
@ (IMP @ (IMP @ A @ (IMP @ B@B)) @ (IMP @ A @ B))
@ (S@A@ (IMP @B @ B) @B)
@ (K@A® (IMP@B@B))) @ (K@A @ B)

Fig. 8. IMP_REFL (reflexivity of implication, where A = B)

proof, IMP @ A @ B, depends on both formulas A and B, we have to store cached
results in the dedthm_cached attribute of dependent records of type A:0, B:O0,
d:P£f (B). This explains the declared type for dedthm cached in Figure 5.

Just as in Twelf, it will be necessary to compute under representational abstrac-
tions. RSP is able to achieve this using just first-order matching. We borrow a
technique of Fegaras and Sheard, developed for implementing catamorphisms over
datatypes with embedded functions, to program with HOAS in RSP [5]. The func-
tion dt.dedthm of Figure 6 takes in the function from Pf (A) to Pf (B) representing
the hypothetical judgment. It calls this function on a placeholder term bridge(A),
thus replacing (representations of) uses of the assumption A in the proof with the
placeholder. The helper routine dt.dedthm h of Figure 7 then operates on objects
of type P£f (B) which may contain occurrences of the placeholder. Enountering the
placeholder signals that the assumption is being used, and the appropriate action
may be taken. One nice twist here is that unlike in [5], the placeholder does not
need to be built in (either to our LF signature or to RSP). We simply introduce
it using a representational abstraction (Figure 6, line 3). Since we compute in the
bodies of representational abstractions, we will then call the helper (line 4) with
the placeholder deployed in the term (line 5). Finally, the placeholder is eliminated
after the helper is done computing by applying the representational abstraction to
Null at the appropriate type (line 7). Bugs in our implementation might lead to
occurrences of Null appearing in the resulting proof, but this is consistent with our
statement of conservativity with respect to LF.

The main routine of the Deduction Theorem (Figure 7) has few surprises. The
code begins by checking to see if there is a cached result, and uses it if so (line 3).
Otherwise (lines 4-19), it sets the cached result to the appropriate proof, computed
by applying cases to the parts of the input bundle. Recursive calls are needed (line
14 and line 16) just when the input proof is an application of MP. For typographic
reasons the proof IMP REFL for one of the cases (in line 5) appears in Figure 8. Note
that this proof is in terms of A and B, but it is supposed to prove IMP @ A @ A.
This is indeed what it proves, because at the point in Figure 7 where IMP _REFL is
used (line 5), it is known that A and B are identical. This is because in line 5,
the pattern abstraction matches iff the argument given for B matches pattern A.
Bottom-up type computation for the proof of Figure 8 will, however, compute type
IMP @ A @ B, which is just what we need to match the return type of dt.dedthm h.
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5 Mutable State and HOAS

The above examples combine mutable state and HOAS. Without some restrictions,
this would quickly lead to failure of type preservation. For example, consider the
term
x:I > (a.b := x)

Since this is a representational abstraction, evaluation will occur in the body, caus-
ing variable x to be stored in attribute b of expression a. Reading this attribute
subsequently returns an open term, which is hardly typable!

Our solution to this problem is based on the following very simple observation.
Suppose that instead of the above term we had something like

x:I -> (x.b := x)

Then there would be no unsoundness, because outside the scope of this binding for
x, we cannot reference x. Hence, we cannot attempt to read its b attribute.

We generalize this observation as follows. In an attribute write expression x.a
:= y, if x is a value and the set of its free variables FV(x) is a superset of FV(y),
then we know that it cannot happen that a variable of y goes out of scope while
x.a could still be evaluated?. The above examples all are safe in this regard. For
instance, take the attribute write in uf.find (Figure 3, lines 9-10). Assume by
induction that terms t cannot evaluate to terms t’ such that FV(t’) 2 FV(t).
Then no term in the body of uf.find can evaluate to a term containing more than
the free variables of x. Hence, the attribute write is safe. A similar observation
applies to the attribute write in dt.dedthm h (Figure 7, line 4). A suitable analysis
could enforce this approach; in some cases, it appears some annotations may need
to be supplied relating the free variables sets of different arguments to a function.
This is the case with the union function of union-find, for example, whose code we
omit for space reasons.

6 Conclusion and Future Work

This paper has presented work in progress on imperative LF meta-programming in
Rogue-Sigma-Pi (RSP). RSP overlays LF with standard programming constructs,
including syntactic pattern matching and unrestricted recursion. Imperative pro-
gramming is supported through dependently typed attributes, which are very con-
venient for numerous examples, including those of proof-producing union-find and
the imperative Deduction Theorem which were considered here. It is well-known
that great care is required to combine programming constructs with LF. Imperative
features pose special problems, particularly due to the interaction with HOAS. A
conservative solution was proposed: we can store values with free variables in at-
tributes as long as we know that the attribute read expressions become inaccessible
at least as soon as the values do. The main future work is proving the meta-theoretic

2 T am grateful to Frank Pfenning who pointed out at LFM ’04 that if x is not a value, then evaluation
might cause some of its free variables to be eliminated.
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properties of type safety and conservativity with respect to LF for a formalization
of the system.
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