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Numerical simulation of pore-scale flow in chemical flooding process
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Abstract Chemical flooding is one of the effective technologies to increase oil recovery of petroleum
reservoirs after water flooding. Above the scale of representative elementary volume (REV),
phenomenological modeling and numerical simulations of chemical flooding have been reported
in literatures, but the studies alike are rarely conducted at the pore-scale, at which the effects
of physicochemical hydrodynamics are hardly resolved either by experimental observations or by
traditional continuum-based simulations. In this paper, dissipative particle dynamics (DPD), one of
mesoscopic fluid particle methods, is introduced to simulate the pore-scale flow in chemical flooding
processes. The theoretical background, mathematical formulation and numerical approach of DPD
are presented. The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation, and
then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies,
respectively. The selected parameters of those simulations are given in details. These preliminary
results show the potential of this novel method for modeling the physicochemical hydrodynamics
at the pore scale in the area of chemical enhanced oil recovery. c© 2011 The Chinese Society of
Theoretical and Applied Mechanics. [doi:10.1063/2.1102208]
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Chemical flooding, among the various enhanced oil
recovery (EOR) techniques, is playing a dominating role
in China.1 The EOR mechanism of chemical flooding is
that addition of some chemical agents (e.g. alkaline,
polymer, surfactant) to injected water makes higher
sweep efficiency and/or oil-displacement efficiency. As
the chemical EOR technique develops for some oil reser-
voirs with low primary and water-flooding oil recov-
ery, some aspects of this technology need further stud-
ies. One of the research focusing on chemical EOR
lies on how to evaluate the possible performance of oil-
displacement agents in reservoir.

Above representative elementary volume (REV),
the phenomenological model formulation and numerical
solution of chemical flooding have been reported in some
papers,2 and the distribution of oil saturation and pres-
sure in reservoir can be given by numerical simulations
of chemical flooding. Most of the phenomenological pa-
rameters in chemical EOR models need to be obtained
by laboratory experiments. To maximize the applica-
tion potential of chemical flooding and explore the po-
tential high-performance chemical agents, the phenom-
ena at the pore-scale must be studied. Both physico-
chemical and hydrodynamic effects are of great impor-
tance at the pore scale (∼ μm), which can hardly be
resolved by experimental studies. Some novel theoreti-
cal models and numerical simulation approaches should
be searched for.

A bottom-up approach to model the fluid flow
through porous media is displayed in Fig. 1. The
continuum-based approaches modelling the macroscopic
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Fig. 1. The bottom-up approach to model the fluid flow
through porous media

phenomena ignore fully the microscopic effects. Micro-
scopic molecular dynamics, on the other hand, requires
excessive times and efforts before the macroscopic ef-
fects become meaningful or make sense. It’s feasible to
study the pore-scale flow in chemical flooding process
by mesoscopic (between micro- and macro-) methods.
Three of popular mesoscopic methods are Lattice Boltz-
mann method (LBM), smoothed particle hydrodynam-
ics (SPH) and dissipative particle dynamics (DPD).3

LBM can be regarded as the numerical realization of
generalized Boltzmann equation, and SPH is the La-
grangian formulation of macroscopic fluid dynamics on
integral interpolants. LBM and SPH are mostly used
by the researchers who are focussed more on the hydro-
dynamics phenomena than on physicochemical ones. In
the area of chemical EOR, some physicochemical phe-
nomena (e.g. wettability) are essential for industrial
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applications. Besides, there are two advantages of DPD
as follows.

(1) Compared with LBM, the non-lattice DPD
method provides more flexible treatment of com-
plex solid boundary in porous.

(2) Owing to the same numerical formulation as used
in molecular dynamics (MD), DPD method has
the potential to establish a multi-scale simulation
architecture.

In the model of DPD,4–6 the fluid is represented
with discrete beads, and each one corresponds to a clus-
ter (the number is Nm) of real molecules or radicals.
The beads interact with each other via pair-wise con-
servation, random, and dissipative forces that locally
conserve momentum leading to a correct hydrodynamic
description. In our simulation, the cut-off radius rc and
the mass of one DPD beads mDPD were respectively
chosen as the characteristic length and mass, and the
imposed flow rate U is chosen as the characteristic flow
rate. The force exerted on each bead is given as

F̂i =
∑
j �=i

[
α̂ (1− r̂ij)− γ̂ŵD (êij · v̂ij)+

+
γ̂

1
2

P̂ e

ŵRξij√
Δt̂

]
· êij (1)

where v̂ij , r̂ij and eij are the dimensionless relative ve-
locity, the distance and unit vector between bead i and
bead j, respectively. α̂ is the conservative factor, which
is the maximum repulsive force between two beads, and
γ̂ are the dissipative factor. The random variable ξij is
selected from a Gaussian distribution with zero mean
and unit variance, and Δt̂ is the time step. The appar-
ent Peclet number P̂ e is the ratio of the characteristic
flow rate U to the thermal velocity of the system, UT .
Both the thermal and hydrodynamic effects of fluid sys-
tem exist at the pore scale, and high value of P̂ e means
that the hydrodynamic actions dominate in determin-
ing the movement of fluid beads. ŵD and ŵR are the
dissipation and the fluctuation weight function, one of
which can be chosen arbitrarily and the choice fixes the
other function. A generalized form of weight function
is usually given by

ŵD =
[
ŵR

]2
= (1− r̂ij)

2
. (2)

The procedure of DPD simulation is the same as used
in molecular dynamics simulation, and the movement of
each DPD bead satisifies the classical Newtonian law. A
modified version of the velocity-verlet algorithm is used
to integrate the equations of motion.5 The evolution of
positions and velocities of beads is determined as follows

r̂i (t+Δt) = r̂i (t) + Δtv̂i (t) +
1
2Δt2F̂i (t),

v̂′
i (t+Δt) = v̂i (t) + λΔtF̂i (t),

F̂i (t+Δt) = F̂i [r̂i (t+Δt) , v̂′
i (t+Δt)],

v̂i (t+Δt) = v̂i (t) +
1
2Δt

[
F̂i (t) + F̂i (t+Δt)

]
,

(3)

where λ is the integration parameter, and the value is
chosen as 0.65 in our simulation.

The selection of the parameters for DPD simulation
is the main topic in several DPD studies.5,7,8 The trans-
port properties of a DPD fluid can be obtained as mea-
surable quantities resulting from a chosen set of DPD
input parameters. According to the proposed relation
for the viscosity of DPD fluid,9 the factor of dissipative
force can been given as

γ̂ ≈ 1 575

2π

1

R̂e× n̂DPD

(4)

To determine the proper value of conservative force co-
efficient α, a reported relationship between the meso-
scopic model parameter and the compressibility of the
system is give5

κ̂ =
1

Nm

(
1 + 2α

nDPD

kbT

)
(5)

The value of the conservative force parameter α can be
determined from Eq. (5) by referring to the isothermal
compressibility of fluid κ̂. Both experimental measure-
ments and molecular dynamics (MD) simulations can
be used to determine the value of κ̂, and the latter pro-
vides a probable multi-scale simulation approach to re-
late the molecular behavior of chemical agents and its
oil-displacement effects. Some literatures in the area of
physical-chemical research have shown the feasibility of
the above-mentioned approach,5 but the problem to de-
termine the value of conservative force coefficient α are
not completely solved. The value of α keeps linear re-
lationship with the value of Nm in Eq. (5) for a fixedκ̂,
which is not correct if Nm takes a very larger value (usu-
ally for the simulation of hydrodynamic phenomena).
For most of DPD simulations of water (κ̂ ∼16), the in-
fluence of coarse-graining parameter Nm is ignored, and
Eq. (6) is often simplified into the following form

α̂ =
75

2× n̂DPD × P̂ e2
. (6)

By the fluctuation-dissipation theorem, there is a rela-
tion between the factor of dissipative force γ̂ and the
factor of random force σ̂.6

σ̂ = γ̂
1
2

/
P̂ e. (7)
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To check the accuracy of the DPD simulation
and illustrate the selection of its parameters, a plane
Poiseuille flow, the steady state flow between two sta-
tionary parallel plates, is studied here. The analyt-
ical solution of this flow model can be derived from
continuum-based Navier-Stokes equations, where the
flow has a parabolic-like velocity profile.

In this simulation, only one kind of beads is used
to represent the fluid of water, and the viscosity of the
fluid is 0.523 mPa · s. The simulation scale is set as
10rc × 20rc × 10rc, and the number of total beads is
8 000. Each bead represents a cluster of 2 × 107 real
molecules. The relations between measurable physical
quantities of fluid and DPD parameter are given in Ap-
pendix 1, and the values of parameters used in our sim-
ulation are chosen as follows: the coarse-graining num-
ber is 2× 107, the bead number density is 4, the cut-off
radius is about 1.337× 10−7m, the characteristic veloc-
ity is 0.246 m/s, the conservative force factor is 2.349,
and the dissipative force factor is 994.716. The method
of periodic Poiseuille flow is adopted to eliminate the
drawbacks of artificial solid wall,10 where a mass force
with the value of (1.905) acts on each bead, and the
direction of the force is negative when 0 < y < 10 and
is positive when 10 < y < 20 (Fig. 2). The periodic
boundary conditions are used at x-, y- and z- axis.

Fig. 2. Illustration of the periodic Poiseuille flow

The simulation result is shown in Fig. 3. As a whole,
the velocity profile simulated with DPD is in good
agreement with the analytical solution of N-S equations.
The fluctuation of velocity in DPD simulation reflects
the stochastic property of flows under the condition of
low P̂ e number (1.998).

Fig. 3. The result of DPD simulation for the periodic
Poiseuille flow

Following the traditional continuum-based ap-
proach, some specific constitutive relations for the EOR
fluids must beestablished, and the evolution of interface
between different fluid phases needs to be captured. For
DPD method, the above-mentioned challenges can be
conveniently dealt with due to intrinsic advantages of
fluid particle methods (FPM). In this simulation, four
kinds of DPD beads are used to represent polymer, wa-
ter, oil and solid wall, denoted respectively by P, W, O
and S.

The polymer macromolecules are constructed by
connecting several DPD beads together with nonlinear
springs, and the number of beads in one macromolec-
ular is 10. Spring force F̂ s

ij is calculated by the finite

extensible nonlinear elastic (FENE) model11

F̂ s
i,j = − k̂s × r̂ij

1− (r̂ij/r̂m)
2 · êij (8)

where k̂s and r̂m are the spring force factor and the max-
imum permissible length of one chain segment, respec-

tively, which are set as k̂s = 6 and r̂m = 3 in this sim-
ulation. The spring force increases drastically with the
distance between bead i and bead j. The problem that
we want to study is described in Figure 4. The simula-
tion space is set as 12rc×12rc×20rc( 1rc ≈ 1.815 μm),
and the throat is formed by two semi-circular solid par-
ticles with a radius of 3.2. The solid wall is represented
by frozen DPD beads. Maxwellian reflection boundary
conditions are used to prevent fluid beads from pene-
trating the solid boundaries.12

A link between the factor of conservative force α̂ and
parameter χ in Flory-Huggins-type models has been
made,5 and more detailed information can be found in
Ref. 7. The values of the repulsion parameters between
different kinds of beads are as follows: the value of re-
pulsive parameter between the same kind of beads is
18.75, and the value between polymer bead and water
bead is 25, the value between solid bead and water bead
is 55 for oil-wet solid surface and is 13.69 for water-wet
solid surface, and the value between solid bead and oil
bead is 13.69 for oil-wet solid surface and is 55 for oil-
wet solid surface.

In our simulation, a mass force is added to each fluid
bead to make the fluid flow, and the process of polymer
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Fig. 4. Polymer flooding through a throat

flooding through throat is shown in Figs. 5–7. The blue
beads, red ones and purple ones represent water, oil
and polymer, respectively. Since the value of α̂ij , re-
pulsive parameters between bead i and bead j, control
the miscibility of two fluids and the wettability of solid
surface,13 the polymer is water-soluble (α̂PO > α̂PW)
and the purple beads are dispersed among the blue
ones accordingly. Some fraction of oil adheres to the
solid wall after flooding over the oil-wet throat surface
(α̂WS > α̂OS), but the oil is completely detached from
the water-wet throat surface (α̂WS < α̂OS).

For an oil-wet throat, the surface tension between
oil and water is opposite to the direction of external
mass force, so the value of external mass force (the value
is 0.025 in Figs. 5−6) must be large enough to overcome
the surface tension, and make the fluid flow. On the
other hand, the surface tension is in the same direction
as the external mass force for a water-wet throat, so
a very small external mass force (the value is 0.001 in
Fig. 7) can make the fluid flow. It needs to mention that
the contact angle is not fixed in the flooding process
through the pore.

Fig. 5. Some snapshots of polymer flooding through an oil-
wet throat (F = 0.025)

Some preliminary studies on DPD simulations of
pore-scale flows in chemical flooding process are pre-
sented in this paper. In our opinion, the numerical in-
stabilities of many conventional methods can be avoided
in this approach, and the simulation results can gain a
clear physical insight into the flow of polymer flooding
at the pore scale.

Fig. 6. Some snapshots of polymer flooding through a water-
wet throat (F = 0.025)

Fig. 7. Some snapshots of polymer flooding through a water-
wet throat (F=0.001)
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Appendix

r̂ij = rij/rc,
m̂ = m/mDPD,
v̂ij = vij/U,
Δt̂ = Δt× U/rc,

F̂i = Firc/U
2 ×mDPD,

α̂ = αrc/U
2 ×mDPD,

γ̂ = γrc/U ×mDPD,

P̂ e =
(
mDPDU

2/2kbT
) 1

2 = U/
√
2UT ,

σ̂ = σr
1
2
c /(U

3
2 ×mDPD) = γ̂

1
2 /P̂ e,

n̂DPD = nDPD × r3c ,
k̂bT̂ = kbT/(mDPD × U2) = 1/(2× P̂ e2),
ρ = (n̂DPD ×mDPD)/r

3
c ,

UT =
√

kbT/mDPD,

R̂e = (U ×mDPD × n̂DPD)/μ× r2c ,
Δt̂ ≤ 0.1/γ̂,
kb ≈ 1.381× 10−23 (J/K)
For water at temperature 330 K
α̂ = 75/(2× n̂DPD × P̂ e2),

γ̂ ≈ 1575/2π1/(R̂e× n̂DPD),

rc ≈ 3.104× (n̂DPD ×Nm)1/3 × 10−10(m),

mDPD ≈ 3×Nm × 10−26 (kg), μ ≈ 0.523 (mPa · S).
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