Muscle Regulation

2288-Pos Board B307
MST1 and a Key Player in Enhancing Fast Skeletal Muscle Atrophy
Bin Wei, Yan Xing, Zengqiang Yuan, Guangju Ji.
Institute of Biophysics, CAS, Beijing, China.
Skeletal muscle undergoes rapid atrophy upon denervation and the process of denervation-induced skeletal muscle atrophy is complicated. MST1 (mammalian sterile 20-like kinase 1) is identified as a central component of Hippo signaling pathway. In the present study, we identified that MST1 kinase was expressed widely in skeletal muscles and found that it was dramatically up-regulated in fast- but not slow-dominant skeletal muscles immediately upon denervation. The results of our histological and biochemical studies demonstrated that deletion of MST1 significantly attenuated denervation-induced skeletal muscle content loss and decreased expression level of Atrogin-1 and LC-3 genes in mice. Further studies indicated that MST1, but not MST2, remarkably increased FOXO3a phosphorylation level at Ser207 and promoted its nuclear translocation in atrophic fast-dominant muscles. Thus, we, in our knowledge for the first time, demonstrated that MST1 kinase plays an important role in regulation of denervation-induced skeletal muscle atrophy, namely, the up-regulated MST1 kinase promoted progression of neurogenic atrophy in fast-dominant skeletal muscles through activation of FOXO3a transcription factors.

2289-Pos Board B308
Evaluating Cellular Repair Potential - Lessons from Skeletal Muscle
Glenn Humphrey, Paul S. Blank, Elena Mekhedyov, Joshua Zimmerman.
PPB NICHD NIH, Bethesda, MD, USA.
The ability to repair disruptions in the plasma membrane is critical for maintaining cellular integrity and health; this is especially true for cells that routinely experience membrane damage as a result of activity such as skeletal muscle. Dystrophinopathies are a class of late onset muscle wasting diseases associated with the absence or truncation of the protein dystrophin. Dystrophin is postulated to have a role in membrane repair and the absence of dystrophin in both humans and animal models is associated with muscle damage. We are developing techniques to evaluate the repair potential of dystrophin null skeletal muscle fibers and myotubes using fluorescence assays of dye-leakage and calcium activity. In isolated muscle fibers or myotubes containing fluorescent dye and subjected to IR laser wounding, both the rate and duration of dye-leakage are measured by confocal microscopy. Upon wounding repair competent fibers a “puff” of dye is released at the wound site and dye leakage ceases within 60 seconds. Under conditions where resealing is inhibited (i.e. low extracellular [Ca²⁺]) a large amount of dye is lost; leakage continues for >10 minutes. Changes in intracellular [Ca²⁺]free are measured using a combination of the calcium indicator dyes fluo-4 and Fura Red. Upon wounding, a rise in [Ca²⁺]free is observed at the wound site and either returns to the pre-wound level following successful resealing, or in the absence of resealing remains high and spreads through the entire fiber or myotube. Dystrophin null muscle, is repair competent but may differ in the developed calcium load, contractile response and wound threshold compared to dystrophin positive muscle. Since our overall goal is to develop interventions that boost cellular repair potential, quantifiable metrics of this complicated cellular process are required when testing the efficacy of repair-targeted treatments.

2290-Pos Board B309
Tropomin T3 Regulates Cacna1 Gene Transcription
Tan Zhang, Alexander Birbair, Oswaldo Delbono.
WFUHS, Winston-Salem, NC, USA.
Tropomin T (TnT) plays a major role in striated muscle contraction. We recently demonstrated that the fast skeletal muscle TnT3 is localized in the muscle nucleus, and either its full-length or COOH-terminus leads to muscle cell apoptosis. Here, we further explored the mechanism by which it enters the nucleus - cytoskeleton and investigated its role in nuclear signaling pathway. Amino acid truncation and substitution showed that its COOH-terminus contains a dominant nuclear/nucleolar localization sequence (KLKRKQ). Deleting this domain or substituting lysine and arginine residues (KLAAQK) resulted in a dramatic loss of TnT3 nuclear and nucleolar localization. In contrast, the GATAKGGVGRWK domain-DSRed construct localized exclusively in the cytoplasm, indicating that a nuclear exporting sequence is possibly located at the COOH-terminus. Additionally, we identified a classical DNA-binding Leucine Zipper Domain (LZD). Deletion of LZD or KLKRKQ sequence significantly reduced cell apoptosis compared to full-length TnT3. shRNA knocking down of TnT3 in C2C12 myotubes down-regulated the expression of calcium channel z1s (CaVz1s) but not β1a subunit. Luciferase activity analysis further verified that knocking down TnT3 in C2C12 muscle cells inhibited while overexpression of TnT3-DsRed in mouse muscle in vivo increased the Cacna1 promoter activity. Additionally, chromatin immuno-precipitation using TnT3 antibody cocktails pulled down Cacna1 promoter fragments from C2C12 myotubes. In contrast, pre-RNA processing in the nucleolus was not affected by TnT3 deletion. We conclude that TnT3 contains both a nuclear localization signal and a DNA binding domain, which may mediate its nuclear signaling in muscle cell apoptosis and gene expression regulation.

2291-Pos Board B310
Lasp regulates Actin Filament Dynamics in Drosophila Myofibrils Assembly
Isabelle Fernandes, Frieder Schoeck.
McGill University, Montreal, QC, Canada.
The actin cytoskeleton plays a key role in a number of motile and morphogenetic processes. The coordinated assembly and disassembly of actin filaments promotes cell shape changes, mediates motility, contractility, and many other processes. In each case, actin dynamics is finely regulated by a large number of actin-binding proteins (ABPs) that control actin filament polymerization, nucleation and crosslinking.
One group of ABPs is the nebulin family. To date, this family comprises 5 members, each containing from 2 to 185 actin-binding nebulin repeats. In our previous work, we showed that Lasp is the single member of this family in Drosophila. Lasp has an N-terminal LIM domain, two nebulin repeats, and a C-terminal SH3 domain. Lasp null mutants are homozygous viable, but male sterile. The stem cell niche is not properly anchor and actin cone migration is impaired, resulting in failure of spermatid individualization. Recently, we discovered that Lasp also functions in myofibril assembly. In Lasp mutants, sarcomere length is reduced and muscle contractility is weaker than in wild type flies. These results are consistent with a function of nebulin family proteins as scaffolding and actin filament organizing proteins. Using a double-tagged Lasp, I performed a pull down assay to identify interacting partners. As expected Lasp binds muscle-specific actin isoforms. More surprisingly, most of the isolated proteins are components of thick filaments, suggesting new functions for Lasp. We will report which domain of Lasp regulates actin dynamics, protein interactions and proper localization in sarcomere assembly. By decapping Lasp function in both Z-disc and A-band, we will obtain further insights into the mechanism of myogenesis.

2292-Pos Board B311
Zasp PDZ Domain Proteins Cooperate in Z-Disc Formation and Myofibril Assembly
Anja Katzemich, Kuo-An Liao, Frieder Schoeck.
McGill University, Montreal, QC, Canada.
Zasp52 is a multi-domain protein, composed of an N-terminal PDZ domain, ZM motif, and four LIM domains, and is found predominantly in Drosophila muscle. It is part of the PDZ-LIM domain protein family, which comprises Enigma, ENH, ZASP, Alp, CLP36, RIL, and Mystique in vertebrates. In Drosophila embryos, Zasp52 was shown to co-localize with z-actin at Z-discs and with integrins at myotendinous junctions. Mutations in Zasp52 cause first instar larval lethality with defects in Z-disc assembly and maintenance as well as muscle attachment. During Drosophila indirect flight muscle (IFM) development in the pupa, Zasp52 is present at very early stages of myofibril assembly. It localizes with z-actin in rudimentary Z-bodies along the assembling myofibril, before other muscle proteins show any periodicity. RNA interference against the last exon encoding the most C-terminal LIM domain results in the depletion of all high molecular weight isoforms. This gives rise to viable but flightless adult animals. IFM sarcomeres show thin and interrupted Z-discs as well as distorted H-zones from early stages of myofibril assembly onwards. These findings suggest that Zasp52 is required for the establishment of normal Z-discs in the IFM and subsequent sarcomere stability after onset of contractility. A closely related PDZ domain containing protein, Zasp66, is also required for Z-disc formation and stability. Simultaneous knock down of Zasp52 and Zasp66 lead to more severe, synergistic myofibrillar defects, demonstrating that both proteins act together during Z-disc formation, likely because both biochemically bind z-actin.

2293-Pos Board B312
Regulation of Reproduction in Permeabilized Muscle Cells: Apparent KM for ADP Shows the Mitochondrial Outer Membrane Permeability
Rafael Bagur Quetglas1,2, Minna Karu-Varikma3,4, Kersti Tep3, Madis Metsis1, Tuuli Kaambre1, Alexei Grichine5, Francois Boucher6, Valdur Saks1,7, Rita Guzun1.
1EINERM U1055. Laboratory of Fundamental and Applied Bioenergetics, Joseph Fourier University, Grenoble cedex 9, France, 2Experimental, Theoretical and Applied Cardio-Respiratory Physiology, Laboratory of Tuesday, February 5, 2013 447a
TIMC-IMAG, Joseph Fourier University, Grenoble, France, 3Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. 4INSMI U1055, Laboratory of Fundamental and Applied Bioenergetics, Joseph Fourier University, Grenoble cedex9, France, 5Life science imaging – in vitro platform, IAB CRI U823 Inserm / Joseph Fourier University, Grenoble, France, 6Experimental, Theoretical and Applied Cardio-Respiratory Physiology, Laboratory TIMC-IMAG, Grenoble, France, 7Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

The aim of this work was to study the regulation of respiration and energy fluxes in permeabilized oxidative and glycolytic skeletal muscle fibers. Despite certain similarities of mitochondrial organization into Intracellular Energetic Units (ICEUs), different muscle types have distinct metabolic patterns with specific regulatory mechanisms of mitochondrial respiration. In this work we measured ADP fluxes through mitochondrial outer membrane (MOM) in permeabilized fibers graphically using pyruvate kinase - phosphoenolpyruvate system for trapping ADP produced in mitochondrial creatine kinase localized behind MOM. These fluxes were high in permeabilized fibers from glycolytic muscles and very low or absent in soleus muscle fibers and cardiac myocytes. These results indicate that the permeability of voltage-dependent anion channel (VDAC) in MOM correlates with the apparent Kcat for ADP in regulation of respiration. In cardiac cells, the MOM permeability seems to be regulated by the interaction of VDAC with mitochondrial outer membrane protein (MOM), to ascertain the role of this protein in skeletal muscles we visualized the localization pattern of MOM tubulin with mitochondrial protein VDAC immunochemically. We used the Metabolic Control Analysis to evaluate the Flux Control Coefficients of the respiratory chain complexes (III, IV), ANT, ATP synthase, and MCK in permeabilized soleus muscle fibers under conditions of respiration stimulated by exogenous ADP and by endogenous ADP produced in activated MCK reaction.

2294-Pos Board B313 Significance of Troponin Dynamics for Ca2+-Mediated Regulation of Contraction and Inherited Cardiomyopathy Devandad Kowlessur, Larry S. Tobacman. University of Illinois at Chicago, Chicago, IL, USA.

Ca2+ dissociation from troponin causes cessation of muscle contraction, by incompletely understood structural mechanisms. To investigate this process, regulatory site Ca2+ binding in subunit TnC’s NH\textsubscript{2}-lobe was abolished by mutagenesis, and effects on cardiac troponin dynamics were mapped by hydrogen-deuterium exchange MS (HDX). The findings demonstrate the inter-relationships among troponin’s detailed dynamics, troponin’s regulatory actions, and the pathogenesis of cardiomyopathy linked to troponin mutations. Ca2+ slowed HDX up to two orders of magnitude within the NH\textsubscript{2}-lobe and the NH\textsubscript{2}-lobe-associated TnC switch helix, implying that Ca2+ greatly stabilizes this troponin regulatory region. HDX of the TnI COOH-terminus indicated that its known role in regulation involves a partially folded rather than unfolded structure in the absence of Ca2+ and actin. Ca2+-triggered stabilization extended beyond the troponin actin regulatory region to the regulatory region of the neighboring TnI helix 1, and to the COOH-terminus of the TaT-TnI coiled-coil. Ca2+ destabilized rather than stabilized specific TnC segments within the coiled-coil, and destabilized a region not previously implicated in Ca2+-mediated regulation: the coiled-coil’s NH\textsubscript{2}-terminal base plus the preceding TnI loop with which the base interacts. Cardiomyopathy-linked mutations clustered almost entirely within very dynamic regions of troponin, and many sites were Ca2+ sensitive. Overall, the findings demonstrate highly selective effects of regulatory site Ca2+, including opposite changes in protein dynamics at opposite ends of the troponin core domain. Ca2+ release triggers an intra-molecular switching mechanism that propagates extensively within the extended troponin structure, suggests specific movements of the TnI inhibitory regions, and prominently involves troponin’s dynamic features.

2295-Pos Board B314 Human Cardiac Troponin C undergoes Global Conformational Changes in Response to Divalent Cation Binding: Solution Studies of Fluorescent Protein Constructs by FRET and Analytical Ultrasoundfugation Myriam A. Badr, Michael W. Davidson, P Bryant Chase. Florida State University, Tallahassee, FL, USA.

Troponin C (TnC), a Ca2+ binding subunit in striated muscle, is central to regulation of contraction. Crystal structures of skeletal TnC show a rigid, elongated central helix, whereas solution NMR shows it is flexible and unstructured in the absence of other troponin subunits. In Ca2+-saturated crystal structures of troponin complex core domain, sTnC’s central helix is a well-defined, rigid α-helix, whereas the cardiac TnC isoform reveals a melted helix. This led to the hypothesis that the structural relationship between the N- and C-termini of cTnC depends more on interactions with other troponin subunits than divalent cation binding. We designed a series of novel FRET constructs using human TnC, to examine the contributions of the N- and C-termini upon divalent cation binding. Full length cTnC was flanked by FRET pairs of fluorescent proteins (mCerulean/mVenus, mTurquoise/mNeonGreen, mTurquoise/mCP Venus). FRET was measured in the presence and absence of saturating Ca2+ and/or Mg2+. FRET increased substantially and reversibly upon Ca2+ binding to cTnC. Similar FRET changes were observed upon saturation of the C-terminus with Mg2+, suggesting that the structural changes detected are primarily attributable to occupancy of the C-terminal sites. Analytical ultracentrifugation (AUC) confirmed that constructs undergo global conformational changes to a more compact structure upon Mg2+ binding, with further compaction when Ca2+ occupies all 3 sites of cTnC. In summary: the ends of cTnC come closer upon binding divalent cations (FRET) yielding a more compact structure (AUC); the FRET signal is primarily attributed to the C-terminus binding of Ca2+ or Mg2+, whereas AUC studies suggest a more compact structure in the 3Ca2+ state compared to the 2Mg2+ state.