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0. Introduction and notation

The classical idea of introducing an additional parameter to an expression or formula we wish to
deal with, is quite fruitful in many situations. This may simplify a proof of the corresponding identity
or lead to a more general identity which has several other useful specializations of the introduced
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parameter. The story of introducing the parameter q (or, the ‘quantum’ parameter) often has a differ-
ent flavor. Our motivation to study q-analogues of multiple zeta values (MZVs)

ζ(k) = ζ(k1, . . . ,kr) =
∑

n1>···>nr�1

1

nk1
1 · · ·nkr

r

, k1, . . . ,kr ∈ {1,2, . . .}, k1 � 2, (1)

and multiple zeta star values (MZSVs)

ζ �(k) = ζ �(k1, . . . ,kr) =
∑

n1�···�nr�1

1

nk1
1 · · ·nkr

r

, k1, . . . ,kr ∈ {1,2, . . .}, k1 � 2, (2)

is to a better understanding the structure of linear and algebraic relations between the numbers (1)
(or (2)). An important advantage of the q-model is that proving the absence of such relations is a
much easier task (cf. [18]): the functional case is normally not as hard as the numerical one. On the
other hand, showing that some relations hold is normally easier for numbers than for functions. The
main problem here is finding an appropriate q-analogue which is often dictated by already existing
proofs of the corresponding original identities. In this paper we hope to convince the reader that
there is no uniform q-generalization of the multiple zeta (star) values, but having several q-analogues
in mind and a simple way to pass from one q-model to another gives one a very natural parallel
between the numbers and their q-analogues.

Throughout the article we assume that q ∈ C satisfies |q| < 1. Let us first recall the definition of
the q-MZVs and q-MZSVs which is already accepted to be dominating [1,2,13,17]:

ζq(k1,k2, . . . ,kr) =
∑

n1>n2>···>nr�1

qn1(k1−1)+n2(k2−1)+···+nr(kr−1)

[n1]k1 [n2]k2 · · · [nr]kr
(3)

and

ζ �
q (k1,k2, . . . ,kr) =

∑
n1�n2�···�nr�1

qn1(k1−1)+n2(k2−1)+···+nr(kr−1)

[n1]k1 [n2]k2 · · · [nr]kr
, (4)

where [n] = [n]q = (1 − qn)/(1 − q) is a q-analogue of the positive integer n and conditions for the
multi-index k = (k1, . . . ,kr) are exactly the same as in (1) and (2) (such multi-indices are called
admissible). The corresponding q-analogues of the values of Riemann’s zeta function are as follows:

ζq(k) = ζ �
q (k) =

∑
n�1

qn(k−1)

[n]k
.

We add one more notation for our convenience:

ζ �
q (k1,k2, . . . ,kr) = (1 − q)−(k1+k2+···+kr)ζ �

q (k1,k2, . . . ,kr)

=
∑

n1�n2�···�nr�1

qn1(k1−1)+n2(k2−1)+···+nr(kr−1)

(1 − qn1)k1(1 − qn2)k2 · · · (1 − qnr )kr
; (5)

the same convention is used for ζ q(k1,k2, . . . ,kr).
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A different version of q-analogues for the numbers (1) and (2) is given by the formulas

zq(k1,k2, . . . ,kr) =
∑

n1>n2>···>nr�1

qn1

(1 − qn1)k1(1 − qn2)k2 · · · (1 − qnr )kr
(6)

and

z�q(k1,k2, . . . ,kr) =
∑

n1�n2�···�nr�1

qn1

(1 − qn1)k1(1 − qn2)k2 · · · (1 − qnr )kr
; (7)

this time we even do not require the condition k1 > 1. Note however that, under the latter condition,
the limits as q → 1, |q| < 1, of

(1 − q)kzq(k) and (1 − q)kzq(k), where k =
r∑

i=1

ki,

exist and coincide with (1) and (2), respectively.
Several relations for the MZSVs have very simple q-analogues in terms of (7). The examples are

z�q(2,1) = 2z�q(3) − z�q(2)

(
=

∑
n�1

qn(1 + qn)

(1 − qn)3

)
,

z�q(2,1,1) = 3z�q(4) − 2z�q(3)

(
=

∑
n�1

qn(1 + 2qn)

(1 − qn)4

)
,

z�q(2,2,1) = 2z�q(5) − z�q(3)

(
=

∑
n�1

qn(1 + 2qn − q2n)

(1 − qn)5

)
,

z�q(2,1,1,1) = 4z�q(5) − 3z�q(4)

(
=

∑
n�1

qn(1 + 3qn)

(1 − qn)5

)
,

z�q(2,1,2,1) + z�q(2,2,1,1) = 5z�q(6) − 3z�q(4)

(
=

∑ qn(2 + 6qn − 3q2n)

(1 − qn)6

)
,

z�q(2,2,2,1) = 2z�q(7) − z�q(4)

(
=

∑
n�1

qn(1 + 3qn − 3q2n + q3n)

(1 − qn)7

)
.

One of the natural questions is finding a general formula for these simple relations. The answer on
this original question is given in Section 1. Briefly speaking the key is the so-called cyclic sum formula
for the MZSVs discovered in [14] and its q-version for (4) given in [13]. Surprisingly, the q-model (7)
admits a much simpler formula and the examples above are just its particular cases.

1. Cyclic sum formula and sum formula of q-MZSVs

To present our main result, we define for any function f depending on r positive integer parame-
ters, the cyclic sum cycl f by

cycl f (k1, . . . ,kr) =
r∑

i=1

ki−2∑
j=0

f (ki − j,ki+1, . . . ,kr,k1, . . . ,ki−1, j + 1),

where the empty sums (for ki = 1) are interpreted as zero. Under this notation, the result is as follows.
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Main theorem. For any positive integers r � 1 and k1,k2, . . . ,kr with k = ∑r
i=1 ki > r, we have

cyclz
�
q(k1, . . . ,kr) = kz�q(k + 1) − rz�q(r + 1).

Also, as an easy consequence of our Main theorem, we newly get the sum formula of the q-MZSVs.
We denote by I0(k, r) a set of indices

I0(k, r) =
{

(k1, . . . ,kr) ∈ Z
r
∣∣∣ k =

r∑
i=1

ki, k1 > 1, k2, . . . ,kr � 1

}

for k > r � 1.

Theorem 1 (Sum formula of z�q). For any positive integers k > r � 1, we have

∑
k∈I0(k+1,r+1)

z�q(k) =
(

k

r

)
z�q(k + 1) −

(
k − 1

r − 1

)
z�q(r + 1).

Both expressions in the above formulas are close to those formulas of ζ � compared with the
formulas of ζ �

q (see, e.g., Theorem 3 below). As a by-product, following Hoffman’s argument in [7], we
obtain a version of Theorem 1.

Theorem 2 (Sum formula of zq). For any positive integers k > r � 1, we have

∑
k∈I0(k+1,r+1)

zq(k) = zq(k + 1) −
r∑

j=1

(−1)r− j
(

k − 1 − j

r − j

)(
k − 1

j − 1

)
zq( j + 1).

For the non-q-versions of Theorems 1 and 2, cf. [14,13,10] and [6,21], respectively. It is interesting
that the sum formula for (3) has exactly the same expression as for (1) (cf. [1,17]), while the sum
formula for (4) is quite involved (cf. [13]).

2. Proof of the Main theorem

To prove the required identity we rewrite the cyclic sum formula of (4) in terms of (7). Note that
the equivalence of the formula for (3) and (4) is shown in [10, §4]. The cyclic sum formula of q-MZSVs
in [13] is as follows.

Theorem 3 (Cyclic sum formula). (See [13].) For any positive integers r � 1 and k1,k2, . . . ,kr with k =∑r
i=1 ki > r,

cyclζ
�
q (k1,k2, . . . ,kr) =

r∑
l=0

(k − l)

(
r

l

)
(1 − q)lζq(k − l + 1). (8)

For any non-negative integer b and positive integers r,a1,a2, . . . ,ar , we define the index set J as
follows:

J (a1, . . . ,ar;b) = {
(b1, . . . ,br) ∈ Z

∣∣ ai > bi � 0, b1 + · · · + br = b
}
.

In this notation, we get the following identity to rewrite the left-hand side of formula (8).
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Proposition 1. For any positive integers r � 1 and k1,k2, . . . ,kr with k = ∑r
i=1 ki > r,

cyclζ
�
q (k1,k2, . . . ,kr)

=
k−r∑
b=1

∑
(b1,...,br)∈ J (k1,...,kr;b)

(−1)k−r−b
r∏

i=1

(
ki − 1

bi

)
cyclz

�
q(b1 + 1, . . . ,br + 1). (9)

Proof. The left-hand side of the above identity is

r∑
i=1

ki−2∑
j=0

ζ �
q (ki − j,ki+1, . . . ,kr,k1, . . . ,ki−1, j + 1)

=
r∑

i=1

ki−2∑
j=0

∑
n1�n2�···�nr�nr+1�1

qn1(ki− j−1)+n2(ki+1−1)+···+nr(ki−1−1)+nr−1 j

(1 − qn1)ki− j(1 − qn2)ki+1 · · · (1 − qnr )ki−1(1 − qnr+1) j+1
,

where the inner sum with respect to r is

ki−2∑
j=0

qn1(ki− j−1)+n2(ki+1−1)+···+nr(ki−1−1)+nr−1 j

(1 − qn1)ki− j(1 − qn2)ki+1 · · · (1 − qnr )ki−1(1 − qnr+1) j+1

=
ki−2∑
j=0

qn1(1 − (1 − qn1))ki− j−2(1 − (1 − qn2))ki+1−1 · · ·
(1 − qn1)ki− j(1 − qn2)ki+1 · · ·

× (1 − (1 − qnr ))ki−1−1(1 − (1 − qnr+1)) j

(1 − qnr )ki−1(1 − qnr+1) j+1

=
∑

bi+1,...,bi−1

ki−2∑
j=0

ki− j∑
εi=2

j∑
j0=0

(−1)k−eqn1
(ki− j−2

εi−2

)(ki+1−1
bi+1

)(ki+2−1
bi+2

) · · · (ki−1−1
bi−1

)( j
j0

)
(1 − qn1)εi (1 − qn2)bi+1+1 · · · (1 − qnr )bi−1+1(1 − qnr+1) j0+1

=
∑

bi+1,...,bi−1

ki∑
εi=2

ki−εi∑
j0=0

ki−εi∑
j= j0

(−1)k−eqn1
(ki− j−2

εi−2

)(ki+1−1
bi+1

)(ki+2−1
bi+2

) · · · (ki−1−1
bi−1

)( j
j0

)
(1 − qn1)εi (1 − qn2)bi+1+1 · · · (1 − qnr )bi−1+1(1 − qnr+1) j0+1

.

The first sum on the left-hand side runs over all indices in Z
r−1 subject to the conditions

0 � bi+1 < ki+1, 0 � bi+2 < ki+2, . . . , 0 � bi−1 < ki−1.

By using a variant of Vandermonde’s identity for binomial sums (cf., e.g., [20, p. 9]) we have

ki−εi∑
j= j0

(
ki − j − 2

εi − 2

)(
j

j0

)
=

(
ki − 1

εi + j0 − 1

)
,

hence the right-hand side of the above equality equals

∑
b ,...,b

ki∑
ε =2

ki−εi∑
j =0

(−1)k−r−bqn1
( ki−1
εi+ j0−1

)(ki+1−1
bi+1

)(ki+2−1
bi+2

) · · · (ki−1−1
bi−1

)
(1 − qn1)εi (1 − qn2)bi+1+1 · · · (1 − qnr )bi−1+1(1 − qnr+1) j0+1
i+1 i−1 i 0
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=
∑

bi+1,...,bi−1

ki−1∑
bi=1

bi−1∑
j0=0

(−1)k−r−bqn1
(ki−1

bi

)(ki+1−1
bi+1

)(ki+2−1
bi+2

) · · · (ki−1−1
bi−1

)
(1 − qn1)bi− j0+1(1 − qn2)bi+1+1 · · · (1 − qnr )bi−1+1(1 − qnr+1) j0+1

.

Thus we obtain the desired identity (9). �
To rewrite the right-hand side in (8) we use the following proposition.

Proposition 2. For any positive integers n, r, t, we have

r∑
l=0

(t + l)

(
r

l

)
qn(t+l)

(1 − qn)t+l+1
=

t∑
j=0

(−1)t− j(r + j)

(
t

j

)
qn

(1 − qn)r+ j+1
, (10)

hence

r∑
l=0

(t + l)

(
r

l

)
ζ �

q (t + l + 1) =
t∑

j=0

(−1)t− j(r + j)

(
t

j

)
z�q(r + j + 1).

Proof. For the function f (x) = xt(1 + x)r = ((1 + x) − 1)t(1 + x)r we have the expansions

f (x) =
r∑

l=0

(
r

l

)
xt+l and f (x) =

t∑
j=0

(−1)t− j
(

t

j

)
(1 + x)r+ j,

hence

f ′(x) =
r∑

l=0

(t + l)

(
r

l

)
xt+l−1 =

t∑
j=0

(−1)t− j(r + j)

(
t

j

)
(1 + x)r+ j.

It remains to use these two representations for

qn

(1 − qn)2
f ′

(
qn

1 − qn

)

to arrive at identity (10). �
By using Propositions 1 and 2 we can now write the cyclic sum formula (8) in terms of z�q as

follows.

Proposition 3. For any positive integers r and k1,k2, . . . ,kr with k = ∑r
i=1 ki > r,

k−r∑
b=1

∑
(b1,...,br)∈ J (k1,...,kr ;b)

(−1)b
r∏

i=1

(
ki − 1

bi

)
cyclz

�
q(b1 + 1, . . . ,br + 1)

=
k−r∑
j=0

(−1) j(r + j)

(
k − r

j

)
z�q(r + j + 1), (11)

where the set J(a1, . . . ,ar;b) is as above.
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To apply the inverse relation of binomial coefficients to our computation, we introduce notation

F (n1, . . . ,nr) =
n∑

j=0

(−1) j(r + j)

(
n

j

)
z�q(r + j + 1), where n = n1 + · · · + nr,

and

G(n1, . . . ,nr) =
{

cyclz
�
q(n1 + 1, . . . ,nr + 1) + F (0, . . . ,0) if n > 0,

F (0, . . . ,0) if n = 0.

Note that F (0, . . . ,0) = rz�q(r + 1) is a correction term required to start the summation on the left-
hand side in (11) from b = 0: Since

k−r∑
b=0

∑
(b1,...,br)∈ J (k1,...,kr;b)

(−1)b
r∏

i=1

(
ki − 1

bi

)
F (0, . . . ,0) =

{
0 if k − r > 0,

F (0, . . . ,0) if k − r = 0,

the relation (11) can be translated as

F (k1 − 1, . . . ,kr − 1) =
k−r∑
b=0

∑
(b1,...,br)∈ J (k1,...,kr;b)

(−1)b
r∏

i=1

(
ki − 1

bi

)
· G(b1, . . . ,br).

We now recall an inverse relation of binomial coefficients.

Proposition 4. (See L.C. Hsu [9].) The equality

F (n1, . . . ,nr) =
∑

0�mi�ni
i=1,...,r

(−1)m1+···+mr

r∏
i=1

(
ni

mi

)
· G(m1, . . . ,mr)

implies

G(n1, . . . ,nr) =
∑

0�mi�ni
i=1,...,r

(−1)m1+···+mr

r∏
i=1

(
ni

mi

)
· F (m1, . . . ,mr).

Using the inverse relation we obtain

G(k1 − 1, . . . ,kr − 1)

= cyclz
�
q(k1, . . . ,kr) + rz�q(r + 1)

=
k−r∑
b=0

∑
(b1,...,br)∈ J (k1,...,kr;b)

r∏
i=1

(
ki − 1

bi

) b∑
j=0

(−1)b− j
(

b

j

)
(r + j)z�q(r + j + 1)

=
k−r∑
j=0

{
k−r∑
b= j

∑
(b1,...,br)∈ J (k1,...,kr;b)

(−1)b− j
(

b

j

) r∏
i=1

(
ki − 1

bi

)}
(r + j)z�q(r + j + 1). (12)

To deduce the desired formula in the Main theorem it remains to use one more proposition.
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Proposition 5. For any positive integer r and non-negative integers a1,a2, . . . ,ar and c � a = a1 + · · · + ar ,
we have

a∑
b=c

∑
(b1,...,br)∈ J (a1+1,...,ar+1;b)

(−1)b−c
(

b

c

) r∏
i=1

(
ai

bi

)
=

{
1 if c = a,

0 if c < a.

Proof. We use the following expansion:

(x − y + z)a =
r∏

i=1

(
x − (y − z)

)ai =
r∏

i=1

ai∑
bi=0

(−1)bi

(
ai

bi

)
xai−bi (y − z)bi

=
a∑

b=0

( ∑
(b1,...,br)∈ J (a1+1,...,ar+1;b)

(−1)b
r∏

i=1

(
ai

bi

))
xa−b(y − z)b

=
a∑

b=0

( ∑
(b1,...,br)∈ J (a1+1,...,ar+1;b)

(−1)b
r∏

i=1

(
ai

bi

))
xa−b

b∑
c=0

(−1)c
(

b

c

)
yb−c zc

=
a∑

c=0

a∑
b=c

( ∑
(b1,...,br)∈ J (a1+1,...,ar+1;b)

(−1)b−c
(

b

c

) r∏
i=1

(
ai

bi

))
xa−b yb−c zc .

Putting x = y = 1 for the both sides of this computation we deduce

za =
a∑

c=0

(
a∑

b=c

∑
(b1,...,br)∈ J (a1+1,...,ar+1;b)

(−1)b−c
(

b

c

) r∏
i=1

(
ai

bi

))
zc .

It remains to compare the coefficients of zc on the both sides. �
Putting ai = ki − 1, a = k − r, c = j in Proposition 5, we get our Main theorem immediately from

the right-hand side of equality (12). Furthermore, we deduce Theorem 1 by the argument similar
to [14].

3. q-Shuffle relations

It looks quite sophisticated that identities for the multiple zeta (star) values (1) and (2) have so
different complexity of the corresponding q-analogues. Although our examples here (Main theorem
and Theorem 1) demonstrate an advantage of the q-model (7) compared with (5), there are many
identities for (3) or (4) (hence, for ζq(k) and ζ �

q (k)) having the same or almost the same form as
their prototypes for (1) or (2); see [1] and [17]. On the other hand, there are several examples when
q-analogues involve certain series not all expressible in terms of the q-MZVs (see, e.g., [2]), or when
q-analogues are not known at all, like for the two-one (conjectured) formula and the weighted sum
theorem in [16]. What is a reason for all this?

Without presenting here a deep but standard algebraic setup for the multiple zeta values (1)
(or (2)), recall that the presumable structure of algebraic relations for (1) is given by the so-called
double shuffle relations, the relations that come out of identifying the model (1) with a certain alge-
bra on words, with two products (see, e.g., [4,11,8,22]). One of these products, harmonic (or stuffle),
originated from the product formula for series, has a very natural q-generalization for the model (3)
or (4) (hence, for ζq(k) and ζ �

q (k)), but the corresponding form for (6) and (7) is rather awkward.
The main difficulty arises when we look for a reasonable q-generalization of the shuffle product

of (1), the product originated from the differential equations for the multiple polylogarithms
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Lik1,...,kr (z) =
∑

n1>···>nr�1

zn1

nk1
1 · · ·nkr

r

. (13)

Namely, one has

d

dz
Lik1,k2,...,kr (z) =

{
1
z Lik1−1,k2,...,kr (z) if k1 � 2,

1
1−z Lik2,...,kr (z) if k1 = 1,

(14)

and this comes from the “fundamental theorem of calculus”,

d

dz

(
f (z)g(z)

) = d

dz
f (z) · g(z) + f (z) · d

dz
g(z). (15)

The differential equations (14) give rise to an integral representation of the polylogarithms (13)
(hence, of the multiple zeta values (1)), where the participating differential forms dz/z and dz/(1 − z)
are assigned as two non-commutative letters, so that the integrals themselves are interpreted as
words on these letters.

The q-analogue of (15) reads as

Dq
(

f (z)g(z)
) = Dq f (z) · g(z) + f (z) · Dq g(z) − (1 − q)z · Dq f (z) · Dq g(z), (16)

where

Dq f (z) = f (z) − f (qz)

(1 − q)z
.

Defining a q-analogue of the multiple polylogarithms (13) as

Lik1,...,kr (z;q) =
∑

n1>···>nr�1

zn1

[n1]k1 · · · [nr]kr
, (17)

from (16) we deduce the following analogue of (14):

Dq Lik1,k2,...,kr (z;q) =
{

1
z Lik1−1,k2,...,kr (z;q) if k1 � 2,

1
1−z Lik2,...,kr (z;q) if k1 = 1.

This q-model of the multiple polylogarithms, together with classical formulas in the theory of basic
hypergeometric series [5], were used in [17] to derive a q-analogue of the main result in [15]. This is
a reason to believe that the q-multiple polylogarithms (17) are ‘motivated’ q-analogues of (13). Note
also that the q-MZVs in (6) come as the values of (17),

zq(k1, . . . ,kr) = (1 − q)−(k1+···+kr) Lik1,...,kr (q;q).

Although the rule (16) might be interpreted as a shuffle product of a suitable functional q-model
of the multiple polylogarithms and the corresponding q-MZVs, these models are different from and
even ‘incompatible’ with already given models. For example, the q-analogue of the formula

Li1(z)r = r! Li{1}r (z) (18)

in terms of (17) involves certain undesired ‘parasites’: if r = 2, from
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Dq
(
Li1(z;q) Li1(z;q)

) = 1

1 − z
Li1(z;q) + Li1(z;q)

1

1 − z
− (1 − q)

z

(1 − z)2

we have

Li1(z;q)2 = 2 Li1,1(z;q) − (1 − q)

∞∑
n=1

(n − 1)zn

[n] ,

where the latter series cannot be expressed by means of (17). On the other hand, the identity (18)
has a different q-generalization in [23], free of ‘parasites’.

A related problem is a q-generalization of Euler’s decomposition formula [3]

ζ(s)ζ(t) =
s−1∑
i=0

(
t − 1 + i

i

)
ζ(t + i, s − i) +

t−1∑
i=0

(
s − 1 + i

i

)
ζ(s + i, t − i), (19)

since the known proofs make use (explicitly or not) of the shuffle relations. It seems that a way to
overcome this difficulty is to extend the algebra of q-MZVs differentially, i.e., to consider a differential
algebra of q-MZVs and all their δ-derivatives of arbitrary order, where δ = q d

dq . Although it is hard to
‘justify’ this claim, let us demonstrate how problems may be fixed on the example of a q-analogue
of (19) when t = s = 2,

ζ(2)2 = 2ζ(2,2) + 4ζ(3,1), (20)

by means of (6). (Even this particular case in [2] involves something, which does not belong to q-
MZVs.)

We use the strategy of [2] but start with the identity

1

(1 − x)(1 − y)
= 1

2

(
f (x, y) + f (y, x)

)
, where f (x, y) = 1 + x

(1 − x)(1 − xy)
, (21)

which is the particular case of Lemma 2 in [23]. Differentiate both sides of (21) with respect to x
and y,

∂ f (x, y)

∂x∂ y
= 2

(1 − x)2(1 − xy)2
+ 4

(1 − x)(1 − xy)3
− 4

(1 − x)(1 − xy)2
− 1 + xy

(1 − xy)3
;

multiply the result by xy; substitute x = qn and y = qm; use

∞∑
n,m=1

xy(1 + xy)

(1 − xy)3

∣∣∣∣
x=qn,y=qm

=
∞∑

l=1

(l − 1)
ql(1 + ql)

(1 − ql)3

= δ

∞∑
l=1

ql

(1 − ql)2
−

∞∑
l=1

ql(1 + ql)

(1 − ql)3
= δzq(2) − 2zq(3) + zq(2).

All this finally results in

zq(2)2 + δzq(2) = 2zq(2,2) + 4zq(3,1) − 4zq(2,1) + 2zq(3) − zq(2),

which is the desired q-analogue of (20).
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One can also use Ramanujan’s system of differential equations satisfied by the Eisenstein se-
ries [19] to get rid of the term δzq(2). Namely, using

δzq(2) = zq(2) − 5zq(3) + 5zq(4) − 2zq(2)2

we obtain

zq(2)2 = −2zq(2,2) − 4zq(3,1) + 4zq(2,1) + 5zq(4) − 7zq(3) + 2zq(2),

which is also a q-analogue of (20). But for a general q-analogue of (19) we do expect terms involving
δzq(s) and δzq(t), hence working in the δ-differential algebra generated by the multiple q-zeta val-
ues (6) (or (7)). We wonder if there exists a nice form of double shuffle relations in this differential
algebra.

Another related problem, which is worth being investigated in its own but goes far beyond the
aim of this paper, is the comparison of the limiting q → 1 behavior of q-analogues versus the regu-
larized MZVs and MZSVs themselves for non-admissible indices k = (k1, . . . ,kn) with k1 = 1. By [12,
formula (2.5)],

lim
q→1
|q|<1

(
(1 − q)zq(1) − log

1

1 − q

)
= lim

q→1
|q|>1

(
ζq(1) − log

1

1 − q−1

)
= γ ,

Euler’s constant, suggesting that at least one of the two q-versions has a good chance to be related
to one of the standard regularizations Z∗ or Z�� given in [11, Proposition 1]. Note however that for
the multiple q-zeta values (3) we need to work with |q| > 1, whereas for our q-MZVs (6) we can stay
with the more natural domain |q| < 1.
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