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Abstract

We develop methods for computing Hochschild cohomology groups and deformations of
crossed product rings. We use these methods to 4nd deformations of a ring associated to a
particular orbifold with discrete torsion, and give a presentation of the center of the resulting
deformed ring. This connects with earlier calculations by Vafa and Witten of chiral numbers and
deformations of a similar orbifold.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Our motivation for this paper was a desire to provide a mathematical basis for physics
statements in the paper [24] of Vafa and Witten. Speci4cally, we expect that the chiral
numbers of an orbifold with discrete torsion come from the Hochschild cohomology
groups of associated crossed product rings, and that geometric deformations of the
orbifold correspond with algebraic deformations of these rings. In Section 2, we make
these ideas more precise, and propose a mathematical de4nition of some of the chiral
numbers. This gives the proper context for results in the remainder of the paper. We
also describe in detail there the central example of [24], which consists of the quotient
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of the product of three elliptic curves by an action of the Klein four-group. A local
version of this is our motivating example throughout the paper.
Speci4cally, let R = C[x; y; z], X = C3 = SpecR, and let G = Z=2 × Z=2 act on X

by pairwise negation on two coordinates, leaving the third one 4xed. There are three
curves in X on which the action of G is not free (the coordinate axes), all meeting in
the origin, which is 4xed by G. Details are given in Example 3.1. We also include in
Section 3 the de4nitions (more generally) of the crossed product ring R#	G (where 	 is
a two-cocycle), and of the Hochschild cohomology groups and deformations of a ring.
Results of SJ tefan [23] imply that (over C) the Hochschild cohomology group

HH∗(R#	G) is the subspace of HH∗(R; R#	G) invariant under an action of G. Letting
R=C[x; y; z], we will use the Koszul resolution of R over R⊗R to 4nd HH∗(R; R#	G)
explicitly, and we will want an action of G on the Koszul complex. This action is
given in Lemma 4.2 in case G is a 4nite abelian group. We apply these ideas to 4nd
HH∗(R#	G) when G=Z=2×Z=2 in Example 4.3. For this example, unlike the compact
example of Vafa and Witten, the Hochschild cohomology groups that we compute are
in4nite dimensional as vector spaces over C.
In general, elements of HH2(R#	G) coincide with in4nitesimal (or 4rst-order)

deformations of the multiplication of R#	G. In order to 4nd explicit formulas for
the deformations in case R = C[x; y; z], we must relate the Koszul complex for R
to the Hochschild complex for R#	G. In Section 5, we develop a general method
for doing so, and apply it to 4nd the in4nitesimal deformations of our example
A = C[x; y; z]#	(Z=2 × Z=2). In Section 6, we continue and show that for our ex-
ample, in the presence of discrete torsion (	 nontrivial), the in4nitesimal deformations
of R#	G not coming from R lift to formal deformations of R#	G. This follows from
the application of a universal deformation formula based on a particular bialgebra, us-
ing results of [13]. Our example is of independent interest in this context: it is the
4rst example that we know of a formal deformation arising from a noncocommutative
bialgebra.
In the last section of the paper we study the behavior of the center Z(R#	G), which

is simply the G-invariant subring RG, under deformation. In our example, the three
curves of singularities of SpecRG are smoothed out after formal deformation, and an
isolated singularity is left at the origin. We give explicit equations for this singularity
in terms of the polynomials arising in the 4rst-order deformation.
We have now described brieMy some of the calculations in this paper. They indicate

that the behavior of our local picture closely mimics the picture described by Vafa
and Witten in their example. This supports our belief that the mathematical study
of an orbifold with discrete torsion should begin with the study of the Hochschild
cohomology groups and deformations of associated crossed product rings, followed by
an understanding of the behavior of the centers of these rings under deformation.

2. Physical and mathematical context

We begin with some motivating ideas from physics and describe, in particular, an
example of Vafa and Witten.
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2.1. Chiral numbers for Calabi–Yau manifolds and orbifolds

Given an action of a 4nite group G on a space X satisfying certain properties, one
can construct several physics theories which represent the G-equivariant physics of X .
There is more than one such theory because their construction takes as additional input
a two-cocycle 	 :G × G → C×, called the discrete torsion of the theory. We denote
(in a loose sense) the G-equivariant physics theory on X , with discrete torsion 	, by
PhysicsG;	(X ). A similar construction exists in the nonequivariant setting (without any
contribution from discrete torsion), assigning to a Calabi–Yau threefold X a physics
theory Physics(X ).
Every such theory has associated to it chiral numbers hij (i; j = 0; : : : ; 3) which

are de4ned as certain physical quantities. We are interested in giving a mathematical
de4nition of these numbers in situations of interest to physicists.
For a nonequivariant theory arising from an ordinary Calabi–Yau threefold X it is

well known that

hij(Physics(X )) = hij(X );

the ordinary Hodge numbers of X . An important observation is that h12(X ) is the
dimension of the space of complex deformations of X , which is also the dimension
of the space of deformations of the multiplication of the structure sheaf OX of X .
Chiral numbers are also well understood for a theory arising from a group action

G on a space X , but with trivial discrete torsion. Physics predicts that the chiral
numbers of such a theory should be the Hodge numbers of a crepant resolution of
the singularities of X=G. 2 This follows from the general principle of Kontsevich that
(at least some of) the data contained in the physics model can be extracted from a
certain derived category. For a theory built from an ordinary Calabi–Yau threefold
X this category is Db

coh(X ), the derived category of coherent sheaves on X . In the
equivariant setting this should be replaced by the derived category Db

coh([X=G]) of
G-equivariant sheaves on X . Results of Bridgeland et al. [6], combined with further
results of Bridgeland [5] show that in the cases of interest in physics there is an
equivalence

Db
coh([X=G]) ∼= Db

coh(Y )

for any crepant resolution Y of the singularities of X=G. Since one should be able to
extract hij(PhysicsG(X )) from Db

coh([X=G]), the above isomorphism would yield

hij(PhysicsG(X )) = hij(Db
coh([X=G])) = hij(Db

coh(Y )) = hij(Physics(Y ))

= hij(Y ):

This argument is unsatisfactory for two reasons: 4rst, there is no good notion of
Hodge numbers for an arbitrary derived category, so the above equalities should be
thought of only as general principles, not as mathematical statements. Second, there is

2 A resolution Y → X=G of the singularities of X=G is crepant if the relative canonical bundle is trivial.
In situations of interest in physics, this is equivalent to Y being Calabi–Yau.
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no generalization of the above argument regarding chiral numbers in the presence of
discrete torsion.
It should be mentioned here that there is another, topological approach to chiral

numbers for orbifolds, called orbifold cohomology. See [9,18] for details.

2.2. Hochschild cohomology

Noncommutative geometry provides a diOerent approach. Some of the following
ideas have been around for a while, see for example Connes’ book [10].
If R is a commutative ring with an action of a 4nite group G, we can construct the

crossed product ring R#G (see Section 3 for a de4nition). It is an associative, non-
commutative ring with the property that R#G-modules correspond with G-equivariant
R-modules. When the 4nite group G acts on a scheme X , this construction yields
a coherent sheaf OX #G of noncommutative algebras on X , with the property that
coherent sheaves of OX #G-modules are identi4ed with G-equivariant coherent sheaves
of OX -modules on X . More generally if 	∈H2(G;C×), we may construct a crossed
product ring R#	G twisted by 	. Again this construction globalizes to schemes.
The proper choice of cohomology theory for noncommutative rings is Hochschild

cohomology, which is de4ned for sheaves of algebras in [11]. Hochschild homology is
de4ned for schemes in [26], and even more generally, Hochschild homology is de4ned
for exact categories [15,20]. Standard formalism gives as well Hochschild cohomology
for exact categories [19]. Thus one can consider the Hochschild cohomology of the
exact category of sheaves of OX #	G-modules on a scheme X . Hochschild homology
has been shown to be invariant with respect to derived equivalences coming from
localization of pairs [15], and the same techniques can be applied for cohomology as
well. In fact, Hochschild cohomology for a scheme X can be shown to be invariant
under Fourier–Mukai transforms [7] (following ideas in [16], where the aQne case is
studied). In particular, the Bridgeland–King–Reid equivalence

Db
coh([X=G]) ∼= Db

coh(Y );

to which we referred earlier, yields an isomorphism on Hochschild cohomology

HHi(OX #G) ∼= HHi(OY )

for every i. For a smooth quasi-projective scheme Y we have [11,17]

HHi(OY ) ∼= ⊕
p+q=i

Hp

(
Y;

q∧
TY

)
;

where TY is the tangent bundle of Y . Thus for a smooth Calabi–Yau threefold Y , for
which we have

q∧
TY

∼=
3−q∧

�Y ;

the dimensions of HHi(OY ) are given by

1; 0; h12(Y ); 2 · h11(Y ) + 2; h12(Y ); 0; 1:
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In the case of a Calabi–Yau threefold then, the physical statement that

hij(PhysicsG(X )) = hij(Physics(Y ))

can be viewed as a consequence of the mathematical statement that

HHi(OX #G) ∼= HHi(OY )

for all i. (Note that knowing the dimensions of the Hochschild cohomology groups
for a Calabi–Yau threefold allows us to recover its Hodge numbers h11 and h12.) In
higher dimensions we do not expect to recover all the chiral numbers but rather only
the sums

dimHHi =
∑

n+p−q=i

hpq;

where n is the dimension of the underlying space.
In the case of a Calabi–Yau threefold X , we could de4ne the chiral numbers h11

and h12 as

h11 = 1
2 dimHH

3(OX )− 1 and h12 = dimHH2(OX ):

The same de4nition makes sense for an orbifold [X=G] (possibly with discrete torsion
	), in which case we replace OX by OX #	G. This allows us to talk about chiral numbers
in the generalized setting of orbifolds.
A further argument that this de4nition is the right one is the following observation:

for an arbitrary algebra A, HH2(A) is the space of in4nitesimal (4rst-order) deforma-
tions of A (see Section 3). In the case Y is a Calabi–Yau threefold, we know that these
deformations are measured by h12(X ). Thus de4ning h12=dimHH2 for Calabi–Yau-like
spaces agrees with the interpretation of these numbers as dimensions of 4rst-order
deformation spaces.

2.3. The example of Vafa and Witten [24]

Let X = E1 × E2 × E3 be the product of three elliptic curves, let G = Z=2 × Z=2,
and consider the action of G on X in which every nonidentity element of G acts by
negation on two of the Ei’s and leaves the third one 4xed. Note that the nonzero
holomorphic 3-form on X is invariant with respect to the action of G, so that X=G is
in a natural sense a (singular) Calabi–Yau 3-space. There are 48 curves in X where
the action is not free, and these curves intersect in the 64 points that are 4xed by all
of G.
The discrete torsion group (or Schur multiplier) H2(G;C×) is equal to Z=2. Thus

there are precisely two physical theories that we can build on the orbifold [X=G]
corresponding to the two choices of discrete torsion 	∈H2(G;C×): no discrete torsion
(	= 1) and nontrivial discrete torsion (	 	= 1).
Vafa and Witten computed the chiral numbers of these physical theories [24]

h11 = 51; h12 = 3 when 	= 1;

h11 = 3; h12 = 51 when 	 	= 1:
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The case 	 = 1 is again perfectly understood: essentially h12 = 3 means that every
deformation of OX #G must arise from a deformation of X (note that h12(X ) = 3
corresponding to the possible changes of complex structure on each elliptic curve).
The fact that h11 = 51 corresponds to the fact that to obtain a crepant resolution of
X=G one needs to blow-up the 48 curves of singularities in X=G, thus obtaining 48
new KRahler deformations of the resolution Y . (Again, h11(X ) = 3, corresponding to a
choice of volume for each elliptic curve.)
The surprise lies in the value h12 = 51 in the presence of discrete torsion. In gen-

eral, given a singular theory whose singularities are resolved by blow-ups (as in the
resolution Y → X=G), physics predicts the existence of another theory which removes
the singularities by deforming them. Thus one does expect to have more deformations.
The problem is that the total number of deformations of X=G is 115, which exceeds
h12, and so some deformations of X=G are not allowed in the physical model. Vafa and
Witten guessed that this means the allowed deformations of X=G only partially smooth
X=G, that is they are required (for some mysterious reason) still to have 64 ordinary
double points. An explanation for the appearance of these 64 ordinary double points
has since been given by the 4rst author [8], following ideas of Aspinwall et al. [1].
From the perspective of noncommutative geometry, this situation can be described as

follows: the data of PhysicsG;	(X ) (both with and without discrete torsion) is encoded
in the derived category Db

coh(OX #	G). Deformations of the ring OX #	G are measured
by the chiral number h12, and each deformation of this ring yields a deformation of its
center, which coincides with the ring of invariants (OX )G =OX=G. In each case we get
an allowable set of deformations of OX=G. In the absence of discrete torsion, there is
only a 3-dimensional space of allowable deformations (that all come from deformations
of X ), while in the presence of discrete torsion, there is a 51-dimensional space of
deformations, all of which deform the center OX=G to the structure sheaf of a space
which has at least 64 ordinary double points.

2.4. Our example

For the purposes of our calculations we simplify Vafa and Witten’s example by
replacing the product of three elliptic curves by aQne 3-space. One important diOer-
ence is that in our case, deformations of arbitrary degree are allowed. (The situation
is analogous to the diOerence between aQne and projective geometry: for example if
X is the aQne scheme Spec k[x], then H0(X;OX ) consists of all polynomials in k[x]
of arbitrary degree, while if X ′ is the projective scheme Proj k[x; y], the global sections
H0(X ′;OX ′(n)) of a line bundle OX ′(n) will correspond only to homogeneous polyno-
mials of 4xed degree n.) In our example then, the Hochschild cohomology groups
HH∗(R#	G) that we will compute will be in4nite dimensional. When 	 = 1, there is
another diOerence between our local picture and the one described by Vafa and Wit-
ten: HH2(R#	G) picks up many 4rst-order deformations of A that do not arise from
deformations of R (see Example 4.3).
The deformations of Z(R#	G)=RG, corresponding to those of R#	G that we will cal-

culate, exhibit diOerent behaviors for diOerent degrees involved. Similar to the example
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of Vafa and Witten, in all cases the three curves of singularities of SpecRG are
smoothed out after a formal deformation and an isolated singularity is left at the ori-
gin. However, a surprising consequence of our calculations is that in order to see this,
calculations to 4rst-order do not suQce: 4rst-order deformations of R#	G do not give
rise to nontrivial =rst-order deformations of RG (see Section 7).
This could be described geometrically as follows: if there were a geometric germ

of a moduli space (Def R#	G; 0) of formal deformations of R#	G such that maps from
Spec k[[t]] to Def R#	G that map the closed point of Spec k[[t]] to 0 correspond to formal
deformations of R#	G, then the tangent space to Def R#	G at 0 would be naturally
isomorphic to HH2(R#	G), the space of 4rst-order deformations of R#	G. The same
picture can be imagined for RG with a germ of a moduli space (Def RG ; 0). The operation
of taking a ring to its center would give a (partially de4ned) map Def R#	G → Def RG ,
which in turn would induce a partially de4ned map on tangent spaces at the origin
HH2(R#	G)→ HH2(RG). (The reason this map is only partially de4ned is that there are
Mat deformations of R#	G over Spec k[[t]] whose center is not Mat over Spec k[[t]].)
Our statement in the previous paragraph amounts to the statement that this map on
tangent spaces is zero whenever it is de4ned. In other words, the map Def R#	G →
Def RG is completely rami4ed at 0. However, when we move from the map on tangent
spaces to the map on deformation spaces the map stops being constant, and this yields
the change in the type of singularity.

3. De�nitions

In this section, we recall some needed ideas regarding algebraic deformations (see
[12] for the details), Hochschild cohomology (see [3]), and crossed products (see [22]).
A formal deformation of an associative C-algebra A is an algebra A[[t]] over the formal
power series ring C[[t]] in one variable, with multiplication de4ned by

u ∗ v= uv+ �1(u⊗ v)t + �2(u⊗ v)t2 + · · ·
(u; v∈A), where the �i :A ⊗ A → A are linear maps. Associativity of A[[t]] imposes
constraints on the �i. In particular, the in=nitesimal (or =rst-order) deformation �1
must satisfy

�1(u⊗ v)w + �1(uv⊗ w) = �1(u⊗ vw) + u�1(v⊗ w) (3.1)

for all u; v; w∈A, that is �1 is a Hochschild two-cocycle (a representative of an element
in HH2(A)). Here, as A is an algebra over a 4eld, its Hochschild cohomology may be
de4ned as

HH∗(A) := Ext∗Ae(A; A);

where Ae := A⊗Aop acts on A by left and right multiplication. Often this is expressed
in terms of the (acyclic) Hochschild complex, that is the Ae-free resolution of A given
by

· · · �3−→A⊗4 �2−→A⊗3 �1−→Ae m−→A → 0; (3.2)
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where m is the multiplication map and

�n(a0 ⊗ a1 ⊗ · · · ⊗ an+1) =
n∑

i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1:

Removing the term A from complex (3.2) and applying HomAe(−; A), we obtain the
Hochschild (cochain) complex

0→ HomAe(Ae; A)
�∗1−→HomAe(A⊗3; A)

�∗2−→HomAe(A⊗4; A)
�∗3−→· · · (3.3)

Thus HHn(A)=Ker(�∗n+1)=Im(�
∗
n). Since HomAe(A⊗(n+2); A) ∼= HomC(A⊗n; A), we may

identify HH2(A) with a subquotient of HomC(A⊗2; A), the space of in4nitesimal de-
formations of A mentioned earlier (see (3.1)). Obstructions to lifting an in4nitesimal
deformation �1 to a formal deformation A[[t]] of A lie in HH3(A) [12].
More generally, if M is any A-bimodule (equivalently, Ae-module), then

HH∗(A;M) := Ext∗Ae(A;M):

Next we recall the de4nition of a crossed product ring. Let G be a 4nite group
acting by automorphisms on a C-algebra R. Let 	 :G × G → R× be a two-cocycle
(where R× is the group of units of R), that is

(# · 	($; %))	(#; $%) = 	(#; $)	(#$; %)

for all #; $; %∈G. We assume that the image of 	 is central in R. (More generally,
the image of 	 need not be central, and the action of G is twisted by 	. See for
example [22].) In fact we will mainly be interested in two-cocycles 	 with image in
C×. Sometimes we will identify 	 with its cohomology class in H2(G; R×). Let

A := R#	G

(or R#	CG) be the corresponding crossed product ring. That is, as a vector space,
A= R⊗C CG, where CG is the group algebra, and the multiplication is given by

(p⊗ $)(q⊗ %) = p($ · q)	($; %)⊗ $%

for all p; q∈R and $; %∈G. To shorten notation, we will write S$ := 1⊗ $, so p S$ :=
p⊗$. (Note that R is subalgebra of A, but CG is a subalgebra only if 	 is a cobound-
ary.) The action of G on R becomes an inner action on A, as

$ · p= S$p( S$)−1 (where( S$)−1 = 	−1($; $−1)$−1)

for all $∈G, p∈R.
We will obtain speci4c information about Hochschild cohomology and deformations

of A when R = C[x; y; z] and G is abelian. The following algebra will be the main
example of this paper.

Example 3.1. Let G = Z=2 × Z=2 be the Klein four-group whose elements will be
denoted 1; a; b; c. We de4ne an action of G as automorphisms on R= C[x; y; z] by

a · x =−x; a · y = y; a · z =−z;

b · x =−x; b · y =−y; b · z = z:
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Up to coboundaries, there is exactly one nontrivial two-cocycle 	 :G×G → C×, which
we take to be given by 	(1; $) = 1 = 	($; 1) = 	($; $) for all $∈G, and

	(a; b) = i=−	(b; a); 	(b; c) = i=−	(c; b); 	(c; a) = i=−	(a; c);

where i=
√−1. Then A := R#	G is a crossed product algebra, as de4ned above.

4. Hochschild cohomology

We will 4rst state a general result about Hochschild cohomology of the rings A =
R#	G, that is an immediate consequence of a result of SJ tefan on the Hochschild co-
homology of a Hopf Galois extension A=R [23]. Alternatively, we provide a more
constructive (for our purposes) proof in Section 5 under additional hypotheses. Note
that A is an R-bimodule under left and right multiplication. The superscript G in the
statement of the following proposition denotes the subspace of G-invariant elements,
that is all elements left unchanged by the action of any g∈G.

Proposition 4.1. Let A=R#	G. For each n¿ 0, there is an action of G on HHn(R; A)
such that

HHn(A) ∼= HHn(R; A)G:

Proof. By [23, Corollary 3.4] (see also [23, Propositions 2.3 and 2.4 aand Theo-
rem 3.3]), there is an action of G on HHn(R; A) and a spectral sequence with

Em;n
2 = Hm(G;HHn(R; A))⇒ HHm+n(A):

As we are working in characteristic 0, the cohomology of G is concentrated in degree
0, that is

H∗(G;HHn(R; A)) = H0(G;HHn(R; A)) ∼= HHn(R; A)G:

Therefore, Em;n
2 = Em;n

∞ and HHn(A) ∼= HHn(R; A)G.

It is again a result of SJ tefan that a G-action on HHn(R; A) extending the action
inherited from A on

HH0(R; A) ∼= AR := {u∈A | up= pu for all p∈R}
exists and is unique [23, Proposition 2.4]. Therefore, if we can 4nd such a group action
on HHn(R; A), it is necessarily the action to which Proposition 4.1 refers.
Assuming that the image of 	 is in C×, the group action in the proposition arises

from an action of G on the Hochschild complex (3.3) for R; A:

($ · f)(p1 ⊗ · · · ⊗ pn) := S$f(($−1 · p1)⊗ · · · ⊗ ($−1 · pn))( S$)−1 (4.1)

for all $∈G; f∈HomRe(R⊗n; A). However in case R is a polynomial algebra, we
would like to have a group action on the Koszul complex, as this is the complex with
which we will compute cohomology. We will describe such an action explicitly in case
R= C[x; y; z] and G is abelian.
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Let

f := x ⊗ 1− 1⊗ x; g := y ⊗ 1− 1⊗ y; h := z ⊗ 1− 1⊗ z ∈Re:

The Koszul complex (a free Re-resolution of R) is a complex in which the terms are
exterior powers of Re [25], and it is equivalent to

0→ Re �3−→(Re)⊕3 �2−→(Re)⊕3 �1−→Re m−→R → 0; (4.2)

where m is multiplication, and

�1 = (f g h); �2 =




−h 0 −g

0 −h f

f g 0


 and �3 =




−g

f

h


 :

Dropping the last term R from complex (4.2), mapping into A, and identifying HomRe

((Re)⊕n; A) with A⊕n, we obtain the complex

0→ A
�∗1−→A⊕3

�∗2−→A⊕3
�∗3−→A → 0: (4.3)

Therefore �∗n is just the transpose of �n in each case, that is

�∗1 =




f

g

h


 ; �∗2 =




−h 0 f

0 −h g

−g f 0


 and �∗3 = (−g f h):

We have HHn(R; A) = Ker(�∗n+1)=Im(�
∗
n).

We will need to compute the action of G on complex (4.3) induced by the diagonal
action on Re and its exterior powers. In the following lemma, we assume that G is
abelian, and further that the action is diagonalized so that G acts by scalar multiplication
on each monomial. We de4ne the symbol p($) by

$ · p= p($)p ($∈G;p a monomial) (4.4)

that is p($) denotes the scalar by which $ acts on p. The lemma below may be
veri4ed by direct computation.

Lemma 4.2. Let R = C[x; y; z], let G be an abelian group acting by scalar multipli-
cation on each of x; y; z, and let 	∈H2(G;C×). The action of G on R induces the
following action on the cochain complex (4.4). Letting $∈G and u; v; w∈A= R#	G,
the action is given by

(i) (degree 0) $ · u= S$u S$−1,
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(ii) (degree 1)

$ ·




u

v

w


=




x($−1) S$u S$−1

y($−1) S$v S$−1

z($−1) S$w S$−1


 ;

(iii) (degree 2)

$ ·




u

v

w


=




xz($−1) S$u S$−1

yz($−1) S$v S$−1

xy($−1) S$w S$−1


 ;

(iv) (degree 3) $ · u= xyz($−1) S$u S$−1.

We now have the following algorithm for computing HH∗(A) under our hypotheses:
Find HH∗(R; A) by direct calculation using cochain complex (4.3). Then compute the
elements of HH∗(R; A) invariant under the G-action given in Lemma 4.2. By Proposi-
tion 4.1 and the remarks immediately following its proof, HH∗(A) ∼= HH∗(R; A)G.
We make one general remark before giving an example: as an R-bimodule, A de-

composes into a direct sum ⊕$∈G R S$, and so

HH∗(R; A) ∼= ⊕
$∈G

HH∗(R; R S$):

If G is abelian, the action of G on cohomology preserves this decomposition, and by
Proposition 4.1 we have an additive decomposition

HH∗(A) ∼= ⊕
$∈G

HH∗(R; R S$)G:

This decomposition of Hochschild cohomology is illustrated in the following
example.

Example 4.3. Let A = R#	(Z=2 × Z=2) as in Example 3.1, where 	 may be either
trivial or nontrivial. Note that the R-bimodule structure of A is the same in either of
the cases that 	 is trivial or nontrivial, so HH∗(R; A) is the same in either case. We
4nd HH0(R; A) ∼= AR = R ∼= HH0(R), HHn(R; A) = 0 (n¿ 3), and

(i) HH1(R; A) ∼= R⊕3 ∼= HH1(R).
(ii)

HH2(R; A) =







p1 + q1 Sa

p2 + q2 Sc

p3 + q3 Sb



∣∣∣∣∣∣∣∣
pi ∈R; q1 ∈C[y]; q2 ∈C[x]; q3 ∈C[z]




= R⊕3 ⊕ C[y] Sa⊕ C[z] Sb⊕ C[x] Sc:
(iii)

HH3(R; A)={p1 +p2 Sa+p3 Sb+p4 Sc |p1 ∈R; p2∈C[y]; p3∈C[z]; p4∈C[x]}
= R⊕ C[y] Sa⊕ C[z] Sb⊕ C[x] Sc:
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Applying Lemma 4.2, we have HH0(A) ∼= C[x2; y2; z2; xyz]=Z(A), the center of A (as
expected), HHn(A) = 0 (n¿ 3), and

(iv) In either the case that 	 is trivial or that 	 is nontrivial,

HH1(A) =







p1

p2

p3



∣∣∣∣∣∣∣∣
p1 ∈ xC[x2; y2; z2] + yzC[x2; y2; z2]

p2 ∈yC[x2; y2; z2] + xzC[x2; y2; z2]

p3 ∈ zC[x2; y2; z2] + xyC[x2; y2; z2]


 :

(v)

HH2(A) =







p1 + q1 Sa

p2 + q2 Sc

p3 + q3 Sb




 ;

where p1 ∈yC[x2; y2; z2]+xzC[x2; y2; z2], p2 ∈ xC[x2; y2; z2]+yzC[x2; y2; z2], and
p3 ∈ zC[x2; y2; z2]+xyC[x2; y2; z2]. If 	 is trivial, we take q1 ∈yC[y2], q2 ∈ xC[x2],
and q3 ∈ zC[z2]. If 	 is nontrivial, we take q1 ∈C[y2], q2 ∈C[x2], and q3 ∈C[z2].

(vi) HH3(A) = {p1 + p2 Sa + p3 Sb + p4 Sc}, where p1 ∈Z(A). If 	 is trivial, we take
p2 ∈C[y2], p3 ∈C[z2], and p4 ∈C[x2]. If 	 is nontrivial, we take p2 ∈yC[y2],
p3 ∈ zC[z2], and p4 ∈ xC[x2].

5. In�nitesimal deformations

Under some hypotheses on A = R#	G, we 4nd in this section an explicit formula
for the in4nitesimal deformation �1 :A ⊗ A → A corresponding to a given element
of HH2(A). We assume that HH2(A) has been computed via Proposition 4.1, using
an Re-projective resolution of R that itself carries an action of G. (See for exam-
ple Lemma 4.2.) Since our elements of HH2(A) are given as G-invariant elements
of HH2(R; A), we will therefore need to relate the Hochschild complex for A to this
resolution of R. With this in mind, we will now give a more constructive (for our
purposes) proof of Proposition 4.1, using the action (4.1) of G on the Hochschild
complex.
We assume now that the image of 	 is contained in C×. Let

* := ⊕
$∈G

R S$ ⊗ R S$−1;

a subalgebra of Ae=A⊗Aop containing Re. Then R is a *-module and A ∼= (Ae)⊗*R as
an Ae-module (see [4, Lemma 3.3]). Note that Ae=⊕$∈G *( S$⊗1) is a free *-module.
Therefore by the Eckmann–Shapiro Lemma [2, Corollary 2.8.4],

ExtnAe(A; A) ∼= ExtnAe((Ae)⊗* R; A) ∼= Extn*(R; A):
Once we show that Extn*(R; A) ∼= (ExtnRe(R; A))G, we will have proved Proposition 4.1.
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Let · · · �3−→P2
�2−→P1

�1−→P0
�0−→R → 0 be a *-projective resolution of R. By restric-

tion, it is an Re-projective resolution of R, and there is an inclusion Hom*(Pn; A) ⊂
HomRe(Pn; A) for each n. Moreover, there is an action of G on the complex given
by $ · p = S$p S$−1 (as the image of 	 is in C×), and a corresponding action on
the cochain complex given by ($ · f)(p) = S$f(( S$)−1p S$)( S$)−1 for all $∈G;p∈Pn,
and f∈HomRe(Pn; A). Therefore, Hom*(Pn; A) = HomRe(Pn; A)G. As |G| is invert-
ible in C, the subspace of G-invariant elements is just the image of the trace map
(1=|G|)∑$∈G $·, and so (Ker(�∗n+1)=Im(�∗n))G ∼= Ker(�∗n+1)G=Im(�∗n)G. Further, if f=
�∗n(f

′) is G-invariant, then f=(1=|G|)∑$∈G $ ·�∗n(f′)=�∗n((1=|G|)∑$∈G $ ·f′) is in
the image of �∗n restricted to G-invariant homomorphisms, that is *-homomorphisms.
Therefore Extn*(R; A) ∼= (ExtnRe(R; A))G, which proves Proposition 4.1 under the as-
sumption that 	∈H2(G;C×).
We will 4nd useful the following *-projective resolution of R. For each n¿ 0, let

*n :=
{∑

p0$0 ⊗ · · · ⊗ pn+1$n+1 |pi ∈R; $i ∈G and $0 · · · $n+1 = 1
}
;

a *-submodule of A⊗(n+2). Thus *0=*, and each *n is a projective *-module. Consider
the complex

· · · �3−→*2
�2−→*1

�1−→*0
m−→R → 0; (5.1)

where m denotes multiplication and the maps �n are restrictions of the standard maps
from Hochschild complex (3.2). The above complex (5.1) is exact, as there is a chain
contraction sn : *n−1 → *n given by

sn(u0 ⊗ · · · ⊗ un) = u0 ⊗ · · · ⊗ un ⊗ 1:

Therefore (5.1) is a *-projective resolution of R.
The Hochschild complex (3.2) is just the complex (5.1) induced from * to Ae.

Thus the isomorphism ExtnAe(A; A)
∼−→Extn*(R; A) is given at the chain level simply

by restricting maps from HomAe(A⊗(n+2); A) to Hom*(*n; A). As discussed above, the
isomorphism Extn*(R; A)

∼−→ExtnRe(R; A)G is given at the chain level by inclusion of
Hom*(*n; A) into HomRe(*n; A). Now there is a map from (5.1) to the Hochschild
complex for R, as they are both Re-projective resolutions of R. Under the assumption
that 	∈H2(G;C×), this is given by

p0$0 ⊗ p1$1 ⊗ p2$2 ⊗ · · · ⊗ pn+1$n+1 �→(
n∏

i=0

	($0 · · · $i; $i+1)

)
p0 ⊗ $0 · p1 ⊗ ($0$1) · p2

⊗ · · · ⊗ ($0$1 · · · $n) · pn+1: (5.2)

In particular, this map is the identity on the submodule R⊗(n+2) of *n.
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Now suppose that

· · ·P2 → P1 → P0 → R → 0 (5.3)

is any other Re-projective resolution of R carrying an action of G. Let

 n :R⊗(n+2) → Pn (n¿ 0)

be Re-homomorphisms giving a map of chain complexes from the Hochschild complex
(3.2) for R to the above complex (5.3). The next result is an explicit formula for the
in4nitesimal deformation �1 :A ⊗ A → A corresponding to an element of HH2(A) ∼=
HH2(R; A)G expressed as a cochain in terms of (5.3).

Theorem 5.1. Let A = R#	G with 	∈H2(G;C×). Let f :Pn → A be a function rep-
resenting an element of HHn(R; A)G ∼= HHn(A) expressed in terms of complex (5.3).
The corresponding function f̃∈HomC(A⊗n; A) ∼= HomAe(A⊗(n+2); A) of Hochschild
complex (3.3) is given by

f̃(p1$1 ⊗ · · · ⊗ pn$n) = ((f ◦  n)(1⊗ p1 ⊗ $1 · p2 ⊗ · · ·
⊗($1 · · · $n−1) · pn ⊗ 1))$1 · · · $n:

In particular, if n= 2, we obtain the in=nitesimal deformation �1 :A⊗ A → A,

�1(p S$ ⊗ q S%) = ((f ◦  2)(1⊗ p⊗ $ · q⊗ 1)) S$ · S%:

Proof. Identifying HomC(A⊗n; A) with HomAe(A⊗(n+2); A) and applying the map (5.2),
we have

f̃(1⊗ p1$1 ⊗ · · · ⊗ pn$n ⊗ 1)

=	−1($1 · · · $n; $−1n · · · $−11 )f̃(1⊗ p1$1 ⊗ · · · ⊗ pn$n ⊗ $−1n · · · $−11 )$1 · · · $n

=
n−1∏
i=1

	($1 · · · $i; $i+1)((f ◦  n)(1⊗ p1 ⊗ $1 · p2

⊗ · · · ⊗ ($1 · · · $n−1) · pn)⊗ 1))$1 · · · $n

=((f ◦  n)(1⊗ p1 ⊗ $1 · p2 ⊗ · · · ⊗ ($1 · · · $n−1) · pn ⊗ 1)$1 · · · $n:

We will use Theorem 5.1 to calculate the in4nitesimal deformations for Example 3.1,
that is for A=C[x; y; z]#	(Z=2×Z=2) (whose Hochschild cohomology was given in Ex-
ample 4.3). Let R=C[x; y; z] for the rest of this section. There are Re-homomorphisms
giving a map from the Hochschild complex (3.2) to the Koszul complex (4.2) for R,

· · · �4−−→ R⊗5 �3−−→ R⊗4 �2−−→ R⊗3 �1−−→ R⊗2 m−−→ R −−→ 0�  3

�  2

�  1

∥∥∥ ∥∥∥
0 −−→ Re �3−−→ (Re)⊕3 �2−−→ (Re)⊕3 �1−−→ Re m−−→ R −−→ 0:
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A computation shows that such maps may be de4ned as follows (cf. [14]):

 1(1⊗ xiyjzk ⊗ 1) =




i∑
‘=1

xi−‘yjzk ⊗ x‘−1

j∑
‘=1

yj−‘zk ⊗ y‘−1xi

k∑
‘=1

zk−‘ ⊗ xiyjz‘−1




;

 2(1⊗ xiyjzk ⊗ xryszt ⊗ 1)

=




t∑
m=1

i∑
‘=1

xi−‘yj+szk+t−m ⊗ xr+‘−1zm−1

t∑
m=1

j+s∑
‘=1

yj+s−‘zk+t−m ⊗ xi+ry‘−1zm−1−
t∑

m=1

s∑
‘=1

xiyj+s−‘zk+t−m ⊗ xry‘−1zm−1

s∑
m=1

i∑
‘=1

xi−‘yj+s−mzk ⊗ xr+‘−1ym−1zt




;

 3(1⊗ xiyjzk ⊗ xryszt ⊗ xuyvzw ⊗ 1)

=−
v∑

n=1

t∑
m=1

i∑
‘=1

xi−‘yj+s+n−1zk+t−m ⊗ xr+u+‘−1yv−nzw+m−1:

Example 5.2. Let A = C[x; y; z]#	(Z=2 × Z=2) as in Example 3.1, where 	 may be
either trivial or nontrivial. For any integer i, let Si be its reduction modulo 2, that is
Si = 0 if i is even and Si = 1 if i is odd. Direct computation yields the following: the
in4nitesimal deformation �1 :A ⊗ A → A given by Theorem 5.1 and map  2 above,
and corresponding to the element (p1; p2; p3; q1 Sa; q2 Sc; q3 Sb) of Example 4.3(v) is

�1(xiyjzk S$ ⊗ x‘ymzn S%)

=x‘ymzn($){(xi+‘−1yj+mzk+n−1)(inp1 + in(−1)‘q1 Sa)
+ (xi+‘yj+m−1zk+n−1)(jnp2 + jn(−1)mq2 Sc)
+ (xi+‘−1yj+m−1zk+n)(imp3 + im(−1)‘q3 Sb)} S$ · S%:

Here the scalar x‘ymzn($) is de4ned by (4.4), and a negative power of x; y or z
indicates that the term is 0.
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6. Formal deformations

We will give a universal deformation formula (de4nition below) that will apply
in particular to A = C[x; y; z]#	(Z=2 × Z=2), producing a formal deformation that lifts
some of its in4nitesimal deformations in case 	 is nontrivial. Our formula was inspired
by an unpublished result of the second author and Zhang, and uses results in their
paper [13].
A universal deformation formula based on a bialgebra B is an element

F ∈ (B⊗ B)[[t]] satisfying the equations

(2⊗ id)(F) = 1⊗ 1 = (id ⊗ 2)(F) (6.1)

and

[(*⊗ id)(F)] · (F ⊗ 1) = [(id ⊗ *)(F)] · (1⊗ F);

where id is the identity map. The virtue of such a formula is that if S is any B-module
algebra, then F provides a formal deformation of S [13]. Speci4cally, if x; y∈ S, then
the deformed product is given by x ∗ y = (m ◦ F)(x ⊗ y), where m : S ⊗ S → S is the
ordinary multiplication.
Let H1 be the associative C-algebra generated by the elements D1, D′1, and 61,

subject to the relations

D21 = 0 = (D
′
1)
2; D1D′1 = D′1D1; D161 =−61D1; D′161 =−61D′1;

and 621 = 1:

Then H1 is a bialgebra with comultiplication determined by

*(D1) = D1 ⊗ 61 + 1⊗ D1; *(D′1) = D′1 ⊗ 1 + 61 ⊗ D′1; *(61) = 61 ⊗ 61

and counit 2(D1)=0=2(D′1), 2(61)=1. In fact, H1 is a quotient of the Drinfel’d double
of a Taft algebra (see [21, Lemma 4.4]). Let H1[[t]]=H1⊗CC[[t]] be the Hopf algebra
H1 with coeQcients extended to the formal power series ring C[[t]]. Take H2 and H3
to be two more copies of the Hopf algebra H1 (with appropriately changed indices),
and H = H1 ⊗ H2 ⊗ H3, the tensor product Hopf algebra.

Lemma 6.1. The element Fi = 1 ⊗ 1 + tDi ⊗ D′i of Hi[[t]] ⊗ Hi[[t]] (i = 1; 2; 3) is a
universal deformation formula. Consequently, the product F = F1F2F3 is a universal
deformation formula, based on H [[t]]⊗ H [[t]].

Proof. It is straightforward to check Eq. (6.1) for each Fi. The second statement of the
lemma follows, as the product of universal deformation formulas is again a universal
deformation formula, based on the tensor product of the bialgebras.

Example 6.2. Let A = C[x; y; z]#	(Z=2 × Z=2), as in Example 3.1. We assume the
cocycle 	∈H2(Z=2×Z=2;C×) is nontrivial. We claim that A is an H -module algebra,
that is the Di and D′i act as skew derivations, and the 6i act as automorphisms. Let
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q1 ∈C[y2], q2 ∈C[x2], and q3 ∈C[z2] (see Example 4.3(v)). De4ne, for all i; j; k ∈Z¿0
and $∈Z=2× Z=2,

D1(xiyjzk S$) = Six($)xi−1yjzk S$; D′1(x
iyjzk S$) = (−1)i Skxiyjzk−1q1 Sa · S$;

D2(xiyjzk S$) = Sjz($)xiyj−1zkq2 Sc · S$; D′2(x
iyjzk S$) = Skxiyjzk−1 S$;

D3(xiyjzk S$) = Siy($)xi−1yjzkq3 Sb · S$; D′3(x
iyjzk S$) = Sjxiyj−1zk S$;

61(xiyjzk S$) = (−1)ix($)xiyjzk S$;

62(xiyjzk S$) = (−1)kz($)xiyjzk S$;

63(xiyjzk S$) = (−1)jy($)xiyjzk S$;

where the scalars x($), y($), and z($) are de4ned in (4.4). Then A is a left H -module
algebra under the above operations: from their de4nitions, it is clear that 61, 62, and 63
are automorphisms on A, and that they commute with each other. It is straightforward
to verify that the Di, D′i are skew derivations on A with respect to the automorphisms
6i, in accordance with their coproducts in H ⊗ H . From their de4nitions we have
D2i = 0 = (D

′
i)
2 and 62i = id. Again it may be veri4ed directly that Di6i =−6iDi, and

D′i6i =−6iD′i as operators on A (i=1; 2; 3), and that all other pairs of these operators
commute.
Now set p1=p2=p3=0 in Example 5.2. We claim that the corresponding in4nites-

imal deformation �1 of A lifts to a formal deformation of A over the power series ring
C[[t]]: by [13, Theorem 1.3, De4nition 1.11] and Lemma 6.1, the universal deforma-
tion formula F gives a formal deformation of A. From their de4nitions, as operators
on A, we see that

D1D3|A = 0; D2D′3|A = 0 and D′1D
′
2|A = 0:

Therefore, we may write the universal deformation formula F , as an operator on A⊗A,
as

F |A⊗A = 1⊗ 1 + t(D1 ⊗ D′1 + D2 ⊗ D′2 + D3 ⊗ D′3) + t2D2D3 ⊗ D′2D
′
3: (6.2)

It may be veri4ed that D1⊗D′1 +D2⊗D′2 +D3⊗D′3, composed with multiplication in
A, yields the in4nitesimal deformation �1 given in Example 5.2.
In case the functions pi are not all 0, we recover the in4nitesimal deformation �1

of Example 5.2 from the following skew derivations di; d′i and automorphisms 8i:

d1(xiyjzk$) = iz($)zxi−1yjzkp1$; d′1(x
iyjzk$) = kxiyjzk−1$;

d2(xiyjzk) = jz($)zxiyj−1zkp2$; d′2 = d′1;

d3(xiyjzk$) = iy($)xi−1yjzkp3$; d′3(x
iyjzk$) = jxiyj−1zk$;

81(xiyjzk$) = z($)xiyjzk$; 82 = 81; 83(xiyjzk$) = y($)xiyjzk$:



68 A. C(ald(araru et al. / Journal of Pure and Applied Algebra 187 (2004) 51–70

The functions d1⊗ d′1; d2⊗ d′2, and d3⊗ d′3 on A⊗A produce the in4nitesimal defor-
mations �1 of Example 5.2 corresponding to p1, p2, and p3, respectively. However, it
may be checked for example that d1d′1 	= d′1d1 in general, so A is not an H1-module
algebra under the actions of d1; d′1 and 81. Therefore Lemma 6.1 does not produce a
formal deformation of A lifting the in4nitesimal �1 in this case.

Remark 6.3. In case A=C[x; y; z]#	(Z=2×Z=2) with 	 trivial, A is an Hi-module al-
gebra for each i, under the operators Di; D′i and 6i de4ned above, but with q1 ∈yC[y2];
q2 ∈ xC[x2] and q3 ∈ zC[z2] (see Example 4.3(v)). So for example, if q1 ∈yC[y2] and
q2 = q3 = p1 = p2 = p3 = 0, the universal deformation formula F = 1⊗ 1 + tD1 ⊗ D′1
of Lemma 6.1 yields a formal deformation of A lifting the in4nitesimal deformation
�1 of Example 5.2. However, D1D2 	= D2D1 in general in this case, and so A is not
an H -module algebra, and the universal deformation formula of Lemma 6.1 based on
H [[t]] does not apply to A in case q1q2 	= 0.

7. The center of the deformed algebra

In this section, we consider only the example A= C[x; y; z]#	(Z=2× Z=2), where 	
is nontrivial. Let AF denote the deformed algebra over C[[t]] given in Example 6.2, in
the case p1 =p2 =p3 =0. The center of the original algebra A is generated by x2, y2,
z2, and xyz. Inspection of the universal deformation formula F given in (6.2) shows
that the images of x2, y2, and z2 remain central in AF , but that this is not necessarily
the case for xyz. In the next lemma, we adjust the element xyz so that it is central in
AF . The resulting elements generate the new center.

Lemma 7.1. Let F be the universal deformation formula given in (6.2) above. Let Z
be the C[[t]]-subalgebra of AF generated by x2, y2, z2, and

w = xyz + 1
2 t(yq1 Sa+ xq2 Sc + zq3 Sb):

The center of AF is the completion Ẑ of Z with respect to the ideal (t).

Proof. The element w will be central in AF once we see that w ∗ xiyjzk S$= xiyjzk S$ ∗w
for any $∈G and nonnegative integers i; j; k. In either product, the resulting term in A
is xi+1yj+1zk+1 S$. Lengthy calculations show that the coeQcients of t, t2, and t3 in the
products w ∗ xiyjzk S$ and xiyjzk S$ ∗w are equal. Clearly this implies that Ẑ is contained
in the center of AF .
Now suppose that

v=
∞∑
i=0

tivi (7.1)

is in the center of AF . Then v0 must be in the center of A, and so is equal to a polyno-
mial in x2, y2, z2, and xyz, say v0 = P0(x2; y2; z2; xyz). Let v′0 = P0(x2; y2; z2; w) as an
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element of AF , known to be central by our previous argument. Note that v′0=v0 mod(t).
Write

v= v′0 +

(
(v0 − v′0) +

∞∑
i=1

tivi

)
;

a sum of an element in Z and an element with constant term 0. Again, the coeQcient
of t in the expression (v0 − v′0) +

∑∞
i=1 tivi must be central in A, and so must be a

polynomial in x2, y2, z2, and xyz, say P1(x2; y2; z2; xyz). Let v′1 =P1(x2; y2; z2; w), and
note that v′1 is equivalent to the coeQcient of t in (v0 − v′0) +

∑∞
i=1 tivi, modulo (t2).

By induction, for any positive integer n, we may 4nd v′0; v
′
1; : : : ; v

′
n−1 ∈Z with

v= v′0 + tv′1 + · · ·+ tn−1v′n−1 mod(t
n):

As Ẑ := lim← Z=(tn), we may identify v with an element of Ẑ .

Finally, for homogeneous q1; q2 and q3, we will 4nd a presentation of the central
subalgebra Z of AF generated by x2, y2, z2, and w. To this end, we calculate

w ∗ w = x2y2z2 + 1
4 t
2(y2q21 + x2q22 + z2q23)− 1

4 it
3q1q2q3;

where i=
√−1. Letting x̂=x2, ŷ=y2, ẑ=z2, and ŵ=w in AF , and choosing q1=ŷ j=2,

q2 = x̂i=2, and q3 = ẑk =2 for nonnegative integers i; j; k, we have a single relation in Z ,

ŵ2 = x̂ŷẑ + t2(x̂2i+1 + ŷ 2j+1 + ẑ2k+1)− 2it3x̂iŷ j ẑk : (7.2)

Thus Z is generated by x̂; ŷ; ẑ, and ŵ, subject to the relation (7.2).
A few comments are in order here:

(1) The deformed de4ning equation (7.2) of the center Z has no terms in t1. Therefore,
to 4rst-order Z does not deform. This explains our statement in the introduction
that the map Def R#	G → Def RG is totally rami4ed at 0.

(2) Unlike the compact situation of Vafa and Witten [24], we never obtain ordinary
double points as our singularities. In this respect the local picture is more similar
to the second example studied in [24].

(3) The deformation smooths out the initial three curves of singularities, leaving only
a singularity at the origin, as can be veri4ed by direct calculation.
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