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Abstract

SupposeM is a noncompact connected PL 2-manifold and #tM)g denote the identity
component of the homeomorphism groupMsfwith the compact-open topology. In this paper we
classify the homotopy type @f(M)q by showing that{(M)qg has the homotopy type of the circle
if M is the plane, an open or half open annulus, or the punctured projective plane. In all other cases
we show thatH (M) is homotopically trivial. 0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hamstrom [4] classified the homotopy types of the identity components of homeomor-
phism groups of compact 2-manifolds. In this paper we treat the case whéfeis non-
compact. Suppos¥ is a PL 2-manifold and is a compact subpolyhedron #f. We de-
note byH x (M) the group of homeomorphismsof M onto itself withi|x = id, equipped
with the compact-open topology, and B§(M )o the identity component of((M). Let R?
denote the plan&? the unit circle andP? the projective plane. The following is the main
result of this paper.

Theorem 1.1. SupposeV is a noncompact connectéseparablg PL 2-manifold andX
is a compact subpolyhedron of. Then
(i) Hx(M)o~Stif (M, X) =[R2 %), (RZ, 1py, (ST x RL, %), (St x [0,1), ) or
(P2\ 1pt 0),
(i) Hx(M)p= * in all other cases.
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Corollary 1.1. If M is a connected(separablg¢ 2-manifold and X is a compact
subpolyhedron o with respect to some triangulation @ff, thenHy (M) is an £»-
manifold.

In [14] we obtained a natural principal bundle connecting the homeomorphism group
and the embedding space (cf. Section 2). In this paper we will seek a condition under which
the fiber of this bundle is connected (Section 3). The contractibility and the ANR property
of Hx(M)o in the compact case will then imply the similar properties of embedding
spaces and in turn the corresponding properti@spfM )o in the noncompact case. Corol-
lary 1.1 follows immediately from the characterizatior¢gfmanifolds and this enables us
to determine the topological type itself Bfy (M)o by the homotopy invariance of infinite-
dimensional manifolds.

In a succeeding paper we will investigate the subgroupd oM ) consisting of PL
and Lipschitz homeomorphisms from the viewpoints of infinite-dimensional topological
manifolds.

2. Preliminaries

Throughout the paper we follow the following conventions: Spaces are assumed to
be separable and metrizable, and maps are always continuous. AVisem subset of a
spaceX, the notations Ff A, clxy A and Inty A denote the frontier, closure and interior
of A relative toX (i.e., Inty A = {x € A | A contains a neighborhood af in X} and
Fry A=cly A\ Inty A). On the other hand, wheM is a manifold, the notationsM and
Int M denote the boundary and interior &f as a manifold. Whewv is a 2-submanifold of
a 2-manifoldM, we always assume thatis a closed subset af and FrN = Fry; Nisal-
manifold transversal té M. Therefore we have IlN = Inty; N NIntM and Fy N C N.

A metrizable spaceX is called an ANR (absolute neighborhood retract) if any map
/B — X from a closed subset of a metrizable spddes an extension to a neighborhood
U of B. If we can always také& =Y, thenX is called an AR (absolute retract). ANRs are
locally contractible and ARs are exactly contractible ANRs (cf. [7]). Finédlgenotes the
separable Hilbert spadéx,) e R*: 3", x,? < 00}.

In [14] we investigated some extension property of embeddings of a compact 2-
polyhedron into a 2-manifold, based upon the conformal mapping theorem. The result
is summarized as follows: Suppog¢ is a PL 2-manifold andk C X are compact
subpolyhedra of\f. Let £ (X, M) denote the space of embeddingisX «— M with
flk = id, equipped with the compact-open topology. We consider the subspace of
proper embeddingSg (X, M)* ={f € Ex (X, M): f(XNIM)C oM, f(XNIntM) C
IntM}. Let Ex (X, M); denote the connected component of the inclugipnX C M in
Ex (X, M)*.

Theorem 2.1. For every f € Ex (X, M)* and every neighborhood of f(X) in M, there
exists a neighborhootf of f in £x (X, M)* and amapy : U — Hgumwnu)(M)o such that
p(g)f =g foreachg eld andp(f) =idy.
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Corollary 2.1. For any open neighborhood of X in M, the restriction map

7 Hrumu)(M)o— Ex (X, V)5, n(f) = flx,

is a principal bundle with fibe§¢ = Hxum\v)(M)o N Hx (M), where the groug acts on
Hrxum\uy(M)o by right composition.

Proposition 2.1. £k (X, M) andEk (X, M)* are ANRs.

Next we recall some fundamental facts on homeomorphism groups of compact 2-
manifolds.

Fact 2.1. If N is a compacPL 2-manifold andY is a compact subpolyhedron &f, then
Hy (N) is an ANR([8,9], cf. [14, Lemma 3.2])

Lemma 2.1 ([4], [12, §3]). SupposeV is a compact connecteBL 2-manifold andY is a
compact subpolyhedron af.
(i) If (N, Y) 2 D2, 9), (D2 0), (S* x [0, 1], ), (M, 8), (S%, %), (S?, 1pb, (S, 2pts,
(T?, %), (K2, 9), (P2, %), (P2, 1pd), thenHy (N)o = *.
(ii) If A is a nonempty compact subse®d¥, thenHy 4 (N)o = .
(iiiy 1f (N, Y) = (D?,0), (D2 0),(Sx[0,1], %), (M, ), (S?, 1pd, (S?, 2pts, (P?, 1 pb,
(K?, ), thenHy (N)o =~ S*.

Proof. In [12] the PL-homeomorphism groups of compact 2-manifolds was studied in the
context of semisimplicial complex. However, using Corollary 2.1 and the results in [4], we
can apply the arguments and results in [12, 83] to our setting.

(i) Let L be a small regular neighborhood of the uni@n of the nondegenerate
components ofY and letYp = Y \ Y1. Since Hy(N)o deforms into Hpuy,(N)o =
HerLuyy (Cl(N \ L))o, we may assume tha C dN. This case follows from [4] and [12,
83].

(i) Let a4+ N denote the union of the components$af which meetA. ThenHyua(N)o
strongly deformation retracts ontyus, v(N)o, and the latter is contractible by the
case (i). O

3. Relative isotopes on 2-manifolds

In Corollary 2.1 we have a principal bundle with a fidge= Hx (M) N Hg (M)o. In
this section we will seek a sufficient condition which impl@&s- H x (M ). SupposeM is
a 2-manifold andV is a 2-submanifold of/. In [2] it is shown that (i) two homotopic
essential simple closed curves in Mitand two proper arcs homotopic rel endsfh
are ambient isotopic rélM, (i) every homeomorphism: M — M homotopic toid, is
ambient isotopic tad ), . Using these results or arguments we will show that if, in addition,
h|y =idy thenh is isotopic toidy, rel N under some restrictions on disks, annuli and
Mobius bands components (i.e., the pieces which admit global rotations). We denote the
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Mébius band, the torus and the Klein bottle I T2 andK?, respectively. The symbol
#X denotes the number of elements (or cardinal) of aset

Theorem 3.1. Supposé/ is a connecte@-manifold,N is a compac®-submanifold of\f
and X is a subset oV such that
(i) M #T? P? K?or X #0,
(i) (a) if H is a disk component @¥, then#(H N X) > 2,
(b) if H is anannulus or M6bius band componentofthenH N X # ¢,
(iii) (a) if L is a disk componental(M \ N), thenFrL is a disjoint union of arcs or
#LNX)>2,
(b) if L is a MObius band componentdfiM \ N), thenFr L is a disjoint union of
arcsorLNX #40.
If h,: M — M is an isotopyrel X such thathg|y = h1|n, then there exists an isotopy
h;:M — M relN such thathy = ho, b} = hy andh; =h;(0<t <1) on M \ K for some
compact subsekt” of M.

Corollary 3.1. Under the same condition as in Theore®nl, we haveHy (M) N
Hx(M)o=Hn(M)o.

First we explain the meaning of the conditions (ii) and (iii) in Theorem 3.1. Suppose
h € Hy(M) andh is isotopic toidy, rel X. In order thath is isotopic toid,, rel N, it
is necessary thai does not Dehn twist along the boundary circle of any disk, M6bius
band and annulus component@f This is ensured by the condition (ii) in Theorem 3.1
(Fig. 1(a)). However, this is not sufficient because a union of some componens of
and clM \ N) may form a disk, a Mobius band or an annulus. The condition (iii) in
Theorem 3.1 is imposed to prevent Dehn twists around these pieces (Fig. 1(b)). This
condition is too strong (we can repla&eby Y = {a1, b1}), but it is simple and sufficient
for our purpose.

We proceed to the verification of Theorem 3.1. We need some preliminary lemmas.
Throughout this section we assume thidtis a connected 2-manifold and is a 2-
submanifold of\/. WhenG is a group and C G, (S) denotes the subgroup 6fgenerated
by S.

We will use the following facts from [2].

Fact 3.1.

(0) ([2, Theorem 1.7])f a simple closed curv€ in M is null-homotopic, then it bounds
a disk.

(1) ([2, Theorem 3.1]Bupposer and 8 are proper arcs inM. If they are homotopic
relative to end points, then they are ambient isotopic relativeib

(2) ([2, Theorem 4.2]).et C be a simple closed curve i, which does not bound a
disk or a Mobius band. Let € 1(M, *) be represented by a single circuit@fand
leta = g%, k > 0. Thena = 8.
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M

N

(b)

Fig. 1.4 cannot Dehn twisL. (&) N = Ny U No, cl(M \ N) = L andX = {a, b}, (b) N = N1 U No,
cl(M\N)=LULqULyandX = {aq, ao, b1, bo}.

(3) ([2, Lemma 4.3])
(i) If M #P, thenw1(M) has no torsion elements.
(i) SupposeM # T2, K2. If o, B € m1(M) andapB = Ba, thena, B € (y) for some
y € m1(M).

(4) ([2, p. 101, lines 5-10])f M # P2 and every circle component & N is essential
in M, then the inclusion induces a monomorphispN, x) — 71(M, x) for every
x€N.

(5) SupposeM is compact,X is a closed subset &fM, X #¢¥ andh: M — M is a
homeomorphism with|x =idy.

(i) ([2, Theorem 3.4)If M =D? or M and hlyy :0M — dM is orientation
preserving, theli is isotopic to id, rel X.
(i) ([2, Proof of Theorem 6.3])f M +# D? andh satisfies the following condition
(%), thenh is isotopic to idy rel X:
(x) he >~ ¢ relend points for every proper arc: [0, 1] — M with £(0), ¢(1) €
X (we allow that¢(0) = ¢(1) whenX is a single poink

Comments. (4) Consider the universal covering M — M. By Fact 3.1(3i)r ~X(Fry N)
is a union of real lines, half rays and proper arcsvl= P?, thenN = P2

(5ii)) M is a disk withk holes,¢ handles (a handle a torus with a hole) ana Mdbius
bands. The assertion is easily verified by the inductiom enk + ¢ + m, using Fact 3.1
(1) and (5i), together with the following remarks:

(a) When # > 2, we haveil >~ ¢ rel. end points even if(0) = £(1).

(b) If 1 is (ambient) isotopic té1 rel. X, thenhk; also satisfies the conditior)
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(c) SinceM # D?, from the condition ) it follows that for every componerdt of d M,
we haveh(C) = C andh preserves the orientation 6f.

(d) LetCy,...,C, be the components @M which meetX. Thenk is isotopic rel.X
to i1 such thati; = id on eachC;. Furthermorej satisfies £) for | J; C;.

We also need the following remarks.

Fact 3.2. SupposeV is a connecte@-manifold andC is a circle component aiM. If
either(i) C # M or (i) M is noncompact, theq' is a retract ofM.

Comments. (i) Take a half lay ¢ connectingC and oo, and consider the regular
neighborhoodv of C U ¢. SincedN is a real line we can retrad onto N and then
ontoC.

Fact 3.3. SupposeM is a compact2-manifold, {M;} is a finite collection of compact
connecte@-manifolds such tha¥/ = J; M; andIntM; NIntM; =@ (i # j).
() If M is adisk, then soma; is a disk.
(ii) If M is a Mdbius band, then sondé; is a disk or a Mdbius band.
(i) If M is an annulus, then som¥; is a disk or an essential annulus M. (If N
is a disk withr holes inM (r > 2), then there exists a disk C Int M such that
DNN=93DCdN.)

Lemma 3.1. SupposeM # K?, C is a simple closed curve i which does not bound a
disk ora Moébius band i, x € C anda € 71(M, x) is represented b¢. If 8 € m1(M, x)
and gk = o for somek, £ € Z \ {0}, thenp € ().

Proof. AttachingoM x [0,1) toaM C M, we may assume that\/ = ¢J. Take a covering
pi(M,%) — (M, x) such thatps1 (M, %) = (o, B) C m1(M, x).

If M is noncompact, then by [2, Lemma 2.2] there exists a compact connected
2-submanifoldN of M such thati € N and the inclusion induces an isomorphism
m1(N, x) — nl(IVI,)Z). SincedN # ¢, it follows thatrz1(N, X) = («, B) is a free group,
so it is an infinite cyclic grougy). By Fact 3.1(2)y = a*!, s08 € («).

Supposeﬂ is compact. Since ranty(M) =0 or 1 andnl(M) #+ 1, it follows that
M = P2 or K2 and M is closed and nonorientable. ¥ = K2 so x (M) = 0, then
X(M) =0 andM = K2, a contradiction. Thereford/ = P2 andy (M) = 1, sox (M) =
andM = P2, We haver1(M) = (a). 0O

Note that ifM = K? anda, 8 are represented by the center circles of two Mébius bands,
thena? = 82, butg ¢ («)

Lemma 3.2. SupposeC is a circle component odM, x € C and o € m1(M, x) is
represented by'. If M # D2, M or St x [0,1]\ A (A is a compact subset 6 x {1}),
then there exists @& € 71(M, x) such thatyo” # oy for anyn € Z \ {0}.
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Proof. By the claim below we have a € w1 (M, x) \ («). If ya ="y for somen # 0,
then by Fact 3.1(3iip", y € (B) for somep € 71 (M, x) anda” = g* for somek € Z.
Sincea # 1 andM + P2, by Fact 3.1(3i% # 0. Hence by Lemma 3. € («) soy € («),
a contradiction. O

Claim. Supposé/ is a connecte@-manifold,C is a circle component dfM, x € C and
o € m1(M, x) is represented by. If 71(M, x) = («), thenM = D? or S x [0, 1]\ A for
some compact subsatof ST x {1}.

Proof. First we note thad/ does not contain any handles or Mdbius bands. In fakt i§

a handle or a Mdbius band W, then we can easily construct a retractionM — H
which mapsC homeomorphically ont@ H (Fact 3.2), and we have the contradiction
71(H) = (rya). In particular, if M is compact therd/ is a disk or an annulus.

SupposeM is noncompact. It follows thad M contains no circle components other
thanC. In fact if C’ is a circle inaM \ C, then we can joinC andC’ by a proper arc
A in M and by Fact 3.2 we have a retractidh— C U A U C’, a contradiction. We can
write M = |72, Ni, whereN; is a compact connected 2-submanifoldiéf C C Inty N1,

N; C Inty; N;41 and each component of(af \ N;) is noncompact. We will show that each
N = N; is an annulus. This easily implies the conclusion.

Let Cy, ..., C, be the components @fN \ C. By the above remark’; ¢ 9M, soC;
meets a component of@ \ N). Let N’ be a submanifold ofV obtained by removing
an open color of eacly; from N. It follows that N’ = N, FrN’ is the union of circles
C’; associated wittC;’s, eachC’; is contained in some componen} of cl(M \ N'),
cl(M\N')=J; L;, and eaclL; is noncompact. Sinc# contains no handles or Mobius
bands (so no one point union of two circles), it follows tigtN L’j =0 (j #j) and
LiNN = C; By Fact 3.2N’ is a retract ofM, so71(N’, x) = {«). This implies that
N = N'isanannulus. O

The next lemma is a key point in the proof of Theorem 3.1. In [2, Lemma 6.1] the
condition “the loop#; (x) is null-homotopic inM” is achieved by rotating: along C.
However, this process does not keep the condition “isotopittel

Lemma 3.3. Suppose&” is a circle component ofr N which does not bound a disk or
a Mobius band inM, h: M — M is a homeomorphism with|y =idy and h,: M —
M (0 <t <1 is a homotopy withhg = h, h1 = idy,. If the following conditions are
satisfied, then for any € C the loopm = {h;(x): 0 <t < 1} is null-homotopic inM:
(i) M #T2? P2 K2,
(ii)y each circle component & N is essential inV,
(iii) each componenta¥ 2 D?, M, St x [0, 1]\ A (A c St x {1}, compac).

Proof. Let o = {¢{} € m1(M, x) be represented bg and letg = {m} € 71 (M, x). The
homotopyh, ¢ implies thata = Ba. Since M % T2, K2, by Fact 3.1(3ii)(e, ) C (8)
for someé € 71(M, x). SinceC does not bound a disk or a Mobius band, by Fact 3.1(2)
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Ne=
\p

Fig. 2. The loop¥, m andn in Lemma 3.3.

8§ =a*! sop = o for somek € Z. Letay = {¢} € m1(N, x). By Lemma 3.2 there exists
ay = {n} € m1(N, x) such thatya!) # oy for anyi € Z \ {0} (Fig. 2). The homotopy
hen implies thaty = By in m1(M, x). Sincer1(N, x) — w1 (M, x) is monomorphic by

Fact3.1(4)yaf =afy in 71 (N, x) so thatk =0 andg = 1 inw1(M,x). O

Lemma 3.4. SupposeV # ¢, cl(M \ N) is compact, each componentkfN is a circle,
h:M — M is a homeomorphism such thialy = idy andh is homotopic to ig;. If the
following conditions are satisfied, thénis isotopic to idy rel N:
(i) M #T? P2 K?,
(iiy each component of Fr N does not bound a disk or a Mdbius band,
(iii) each componenta¥ 2 S* x [0, 1]\ 4 (A c St x {1}, compac).

If we assume that is isotopic toidy,, then the condition (iii) is weakened to the
condition:
(i)’ each component af 2 St x [0, 1], St x [0, 1).

Proof. Let h,:h ~ idy; be any homotopy and lekq,..., L, be the components of
cl(M \ N). By Lemma 3.3 the loog; (x) >~ * in M for anyx € FrN = J,; FrL;. We
must find an isotopgﬂLj ~ idLj rel FrL;.

Let f:[0,1] — L; be any path withf(0), f(1) € FrL;. The homotopys, f yields
a contraction of the loopif - h(f (1) - f~1 - (h:(f(0))~1 in M. Since h,(f(0)),
h: (f (1)) ~ %, it follows thathf - f~1~xin M. Sincenry(L ;) — w1 (M) is monomorphic
by Fact 3.1(4), the loof - f~1 ~ % in L;, and the desired isotopy is obtained by
Fact 3.1(5ii)). O

Fig. 3 illustrates an original idea to prove Lemma 3.4 and Theorem 3.1: Consider the
loopm =n1fnaf~1 (f~1is the inverse path of). Any isotopy#h;: idy ~ hrel{a, b}
induces a homotopyt;m: m ~ ni(hf)n2(hf)~t in M\ {a,b}. Modify the homotopy
hym to simplify the intersection of the image afm and FrN, and obtain a homotopy
F:S! % [0,1] - M \ {a, b} shown in Fig. 3. The homotopies|4, in N1 and F|4, in
N2\ {a, b} imply thatk; =0 (i = 1, 2), and the homotop¥| g, in L implies thatf >~ hf
rel end points inL as required.
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Fig. 3.

Proof of Theorem 3.1. We can assume thaf is a finite set, since there exists a finite
subsetY of X such that(M, N,Y) satisfies the conditions (i)—(iii) in Theorem 3.1.
Replacingi; by h[lh[, we may assume thag = idy,.

(I) The case whereV is compact: LetNy,..., N, be the components oV and
L=cl(M\N).LetKy,..., K, be the components df which are disks or M6bius bands
andletLy, ..., L, be the remaining components. For egole can write

KD\ D\ m)
IL; = <UA{> U <UB{> u ( U C{),
i=1 i=1 i=1

WhereA{"s are the circle components of Ey, Bij’s are the components @fL ; which
contain some arc components of/Fr and Ci./’s are the remaining components @f ;.
We choose disjoint collarss/ of A/ and F/ of B/ in L; and setA/ = 9E/ \ A/,
B/ =9F/\ B/ and

ool (U0
eere (0071

Note that

a [/kG) o
Frv' = |:(UA{> U (UB{)} C IntM.
i=1

j=1 i=1

SinceHy (D) >~ Hy (M) =~ * by Fact 3.1(5i), we can isotope rel N to ank’ € Hy(M).
By the constructioniM, N’, X, h') satisfies the following conditions:
(1) N'is a2-submanifold oM, every component of ¥’ is a circle andX C Inty N'.
(2) n'|n =idy andh’ is isotopic toidy, rel X.
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(3) Suppos& is a component of B¥'. If C bounds a diskD then#D N X) > 2, and

if C bounds a Mébius ban thenE N X # @.

(4) If H is an annulus component &f thenH N X # @.

To see (3) first note thal/ is the union of compact 2-manifoldg’s, E;."’s, F/’s, Ki's
ande/.’s, which have disjoint interiors. Suppoégis a compact connected 2-manifold in
M with 9G c FrN’. SinceG C IntM and eachFl.j meetsaM, it follows that G is the
union of N;’s, Elfs L’j’s andKy’'s contained inG. SinceEij is an annulus and’j =L;
is not a disk or a Mobius band, from Fact 3.3 it follows that (i)Gifis a disk, thenG
contains a disk which is somé; or K; with K, C G CIntM,so G N X) > 2, (i) if G
is a M6bius band, thed contains a disk or a Mébius band which is soMeor K; with
KircGcCIntM,soGNX #0.

As for (4), H is the union ofN;’s E""s F-j 's andK’s contained inH, andH contains
at least oneV;, which is a disk with- hoIes Ifr <1 then by the assumptiak; N X # @.

If » > 2 then we can find a disk in Int H such thatD N N; = D c dN; (Fact 3.3(iii)).
SinceD C IntN’ C IntM, D is a union ofN;’s and K;'s and we can conclude that it
coincides with som& (C Int M), which meetsX. These imply (4).

It remains to show that’ is isotopic toid, rel N’ under the conditions (1)—(4).

(i) WhenX C IntN’, we can apply Lemma 3.4 to the tripl#/ \ X, N\ X, //|s\x). TO
verify the condition (iii) in Lemma 3.4, note that (a) each compone™of X takes of the
form H \ X for some component df of N, and, in particular, (b) if7 \ X = S! x [0, 1),
thenH is a disk and # N X > 2, a contradiction. Therefor€|\ x is isotopic toid y x
rel N\ X. Extending this isotopy ove¥l by idx we have the required isotogy =~ id
rel N'.

(ii) In the case wher& ¢ IntN’, let C = 9N’ N aM and consideXM = M U¢ C x
[0,1], N =N’ Uc C x [0, 1], X, h), wherer is the extension of’ by idcx(o.15- Then (a)
X C IntN and(M, N, X, h) satisfies (1)-(4), and (b) an |sotopylof0|dM rel N restricts
to an isotopy ofi’ toidy, rel N'. (Alternatively, we can modify the isotopy éf toid, rel
X to an isotopy relX U V, whereV is a neighborhood ok N dM in M. We can replace
X sothatX c IntN'.) This completes the proof of the case (l).

(II) The case where is noncompact: Choose a compact connected 2-submanifolds
Lo and L of M such thath,(N) CIntyy Lo (0<t<1) andLg C Inty, L. Let Ny =
N Ucl(L \ Lo). Since N1 is a subpolyhedron of. with respect to some triangulation
of L (cf. [2]), by Corollary 2.1 we have the principal bundi(L)o — £(N1, L)§. Let
fi € H(L)o, f1 =id., be any lift = extension) of the patl, € £(N1, L); defined by
e/|y = hy|y ande, =id on cl(L \ Lo).

We can apply the case (I) té., N1, X1, f;), X1 = X Ucl(L\ Lg). For the condition (iii)
in Theorem 3.1, whet' is a component of ¢L. \ N1) =cl(Lo \ N), (a) if ENFrLo =,
thenE is a component of ¢M \ N) and (b) if E NFrLg # ¥, thenE contains a component
of FrLo and FrLo C cl(L \ Lo) C X1 (it also follows that Fr E is not connected since
ENFrN #0, soif E is a disk or a M6bius band, thenFE is a disjoint union of arcs).

Therefore we have an isotogy: L — L rel N1 such thatkg = fo, k1 = id.. We can
extendf; andk; to M by id. The required isotop; is defined byi; = ktft_lht. m]
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Proof of Corollary 3.1. Let G; denote the unit path-component of a topological group
G. Theorem 3.1 impliesHy (M) N Hx(M)1 = Hy(M)1. When M is compact, from
Fact 2.1 it follows thatHx (M) = Hx (M) for any compact subpolyhedraii of M.
Since X can be replaced by a finite subsétof X as in the above proof, we have
Hy(M)NHx(M)o C Hy(M)NHy(M)o=Hy(M)o. The noncompact case follows from
the same argument when we will show tikég (M)g is an ANR (Propositions 4.1, 4.2) in
the next section.

4. The homotopy types of the identity components of homeomorphism groups of
noncompact 2-manifolds

In this final section we will prove Theorem 1.1 and Corollary 1.1. Below we assume that
M is anoncompactonnected PL 2-manifold an#l is a compact subpolyhedron &1.
We setMo = X and write asM = | J;2, M;, where for eachi > 1 (a) M; is a nonempty
compact connected PL 2-submanifolddfandM;_1 C Inty; M;, (b) for each component
L of cl(M \ M;), L is noncompact and N M;1 is connected and (/1 N oM # @ if
dM # (). Taking a subsequence, we have the following cases:

(i) eachM; is a disk,

(i) eachM; is an annulus,

(iif) each M; is a Mobius band, and

(iv) eachM; is not a disk, an annulus or a Mébius band.

In (i) the inclusionM; C M;1 is essential, otherwise a boundary circleMdf bounds a
disk componentin €M \ M;), and it contradicts the condition (b).

Lemma 4.1. In the casesi)—(iii) it follows that
(i) (@) IM=¢=M=R?
(b) oM £ = M =D\ A, whereA is a nonempt@-dimensional compact subset
of a;
(i) (@ M =0 = M =S x R,
(b) OM £ 0 =
(b)y M =St x[0,1),
(b), M = S' x [0,1) \ A, where A is a nonempty0-dimensional compact
subset ot x {0},
(b)s M =S x [0,1]\ A, where A is a nonempty0-dimensional compact
subset of? x {0, 1};
(i) (@) OM =0 = M =P?\ 1pt
(b) oM £ = M =M\ A, whereA is a nonempty-dimensional compact subset
of ML

In the case (ii)(b) we may further assume thaf; meets botts? x {0} andSt x {1}.
We choose a metri¢ on M with d < 1 and metrizé{x (M) by the metrico defined by

o0

1
p(f.8) =) = supd(f(x),gwx)).

i=1 Zl xeM;
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We separate the following two cases:

() (M, X)=(R? 0), (R 1pb, (ST x RL, 9), (ST x [0, 1), ¥), (P2 \ 1pt, ).
(I (M, X) is not case ().

Case(ll): First we treat case (ll) and prove the following statements:

Proposition 4.1. In case(ll), we havgl) Hx (M)o >~ x and(2) Hx (M)o is an ANR.

We use the following notation: For eagh> 1 let U; = Intyy M; and L; = Fry M;,
and for eachj > i > k > 0 let My ; = Haguanuy (Mo, U = En(M;, Uj)g and let
7h i Hij — U] ; denote the restriction map; (k) = h|u,.

Lemma4.2.
(1) Hy,j = HMkULj(Mj)O is an AR.
(2) The mapn,i’j “Hij — u,g,j is a principal bundle with the structure groufi, ; N
Hp, (M) = g;w. =Hmr;(Mj)oN Huur,; (Mj) (under the restriction map
3) L{,i’j is an open subset ofy, (M;, M), clu,i’j C U ., and Ey (M;, M) =

_ k. j+
1
Ujsi Uy ;-

Proof. The statement (1) follows from Fact 2.1 and Lemma 2.1(ii), and (2) follows from
Corollary 2.1. For (3), note thaly, (M;, M){ is path connected (Proposition 2.1) and each
f € Em (M;, M) is isotopic to the inclusio; C M in a compactsubsetdff. O

Lemma 4.3. In case(ll), foreachj >i >k >0, () g;;‘j is an AR (b) the restriction map
;. Hej — Uy ; is atrivial bundle andc) ; ; is also an AR.

Proof. Once we show thatx g;;’j =HmuL;(Mj)o, then (a) the fibegli’j is an AR by
Fact 2.1 and Lemma 2.1(ii), so (b) the principal bundle has a global section and it is trivial
and (c) follows from Lemma 4.2(1). It remains to prov@.(

(1) The cases (i)(a), (ii)(a), (iii)(@), (i)(k)and (iv) (under the condition (lIl)): We
can apply Theorem 3.1 tCﬂ?]‘ = M; ULj L; x [0, 1], Mi = M; ULj Lj x [0, 1], Mk =
My Ur; L; x [0, 1]). We can verify the conditions (i) and (iii) in Theorem 3.1 as follows:
(i) By the assumptioniM;, X) % (D, #), (D, 1 pb), (St x [0, 1], ¥), (M, @) for eachi > 1.

(i) If H is a componentof ¢}, (M;\ M;) = cly(M; \ M;), thenH contains a component
of L;. (Also, H meets bothM; andL; (if H N L; =¥ thenH is a compact component
of cl(M \ M;), a contradiction.), so b H is not connected. Hence # is a disk or a
Mébius band, then Fy. H is a disjoint union of arcs.) By Corollary 3.1 (Compact case) it
follows that™ j;, (Mj)on Hjj. (Mj) = Hji. (M )o and this implies ).

(2) The cases (i)(b), (ii)(=3)and (iii)(b): SinceM1NdM +# ¥ andM; meets botts* x {0}
andS? x {1} in the case (ii)(by, it follows that c(M; \ M;) is a disjoint union of disks,
thusHMiULj (Mj) =Hmur;(Mj)o by Fact 3.1(5-i). This impliesH).

(3) The remaining case (ii)() It follows that (a) c(M; \ M;) is a disjoint union of
disks Dy and an annulug/ and (b)D; N M; is an arc,D; N L; is a disjoint union of arcs
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(#9)andH N M;, HN L; are the boundary circles @ . SinceN = M; U (|J, Dx) is an
annulusandv NL; # ¢, from Theorem 3. 1itf0|lowsthﬂthkUL (Mj)oNHyur; (M;) =
Hnur; (Mj)o. Eachf € gk . is isotopic relM; UL; to f' € Hnur,; (Mj). Slncef is
|sotop|c to id relM; U L;, |t follows that f’ € HNUL (M)o and sof € Hum;ur;(Mj)o.

This completes the proof.O

Lemma 4.4. In case(ll), for eachi > k > 0,
(@) Em (M;, M)§ is an AR,
(b) the restriction mapr : H s, (M)o — Eum, (M;, M) is a trivial principal bundle with
fiber Hy, (M)o,
() Ha, (M)g strongly deformation retracts ontd ys, (M )o.

Proof. By Lemma 4.3(c) eacbl,i’/. (j > i) isan AR. Thus by Fact 4.2(3)y, (M;, M) is
also an AR and it strongly deformation retracts onto the single poiriiset M}. Hence
the principal bundle

G = Mg (M)o N Hat, (M) C Hag (Mo — Eng, (Mi, M)y

is trivial andH , (M)o strongly deformation retracts onto the filgr. In particular,G; is
connected angi = Hy, (M)o. O

Proof of Proposition 4.1(1). By Lemma 4.4(c), for each > O there exists a strong
deformation retractloh’ (0<t <1)of Hay, (M)o ontoHyy,,, (M)o. A strong deformation
retractions; (0 <t < oo) of Hx(M)g onto{idy,} is defined as follows:

he(f)=hi_ it n(f) (f eHx(M)o, i 20, i <t<i+1)
hoo(f) =idpy.

Since diant{y;, (M)o < 1/2" — 0, the maph: Hx (M)o x [0, 0o] = Hx (M)g is continu-
ous.

(In the cases (i), (ii) and (iii), the same conclusion follows from Lemma 2.1(i), (ii) by
taking the end compactification 81.) O

For the proof of Proposition 4.1(2), we will apply Hanner’s criterion of ANRS:

Fact 4.1 [6]. A metric spaceX is an ANR iff for any > 0 there is an ANRY and maps
f:X—Yandg:Y — X suchthafgf is e-homotopic to ig .

Proof of Proposition 4.1(2). By Lemma 4.4(b) and Proposition 4.1(1) for edach 1 we
have the trivial principal bundle

Hat, (M)o C Hx (M)o 2> Ex(M;, M)§  with Haz, (M)o ~ *.

It follows that = admits a section, and the map is fiber preserving homotopic to
id 7y (ar), OVErEx(M;, M)g. Since each fiber of has diam< 1/2¢, this homotopy is a
1/2'-homotopy. Sinc&x (M;, M){ is an ANR (Proposition 2.1), by Fact 4Hx (M) is
alsoan ANR. O
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Case(l): The next statements follow from Lemma 2.1(iii) and Fact 2.1 by taking the end
compactification of\1.

Proposition 4.2. In case(l), we have(1) Hx (M)o ~ St and(2) Hx (M)o is an ANR.

Theorem 1.1 follows from Propositions 4.1, 4.2, and Corollary 1.1 now follows from the
following characterization of2-manifold topological groups.

Fact 4.2 [1]. A topological group is antz-manifold iff it is a separable, non-locally
compact, completely metrizable ANR.

Proof of Corollary 1.1. SinceM is locally compact and locally connected(M) is a

topological group an@x (M) is a closed subgroup i{(M). SinceM is locally compact
and second countabl&;(M) is also second countable. A complete metrion H(M) is

defined by

p(f,8) =doo(f, 8) +doo(f 1 g71),

1
doo(f, ) =) o= supd(f(x), g(x))

n=1 2" xeM,

for f,g € H(M), whered is a complete metric o/ with d < 1. SinceHy (M)o =
Hx(M)o x s [3], Hx(M)o is not locally compact. Finally, by Propositions 4.1, 4.2
Hx(M)g is an ANR. This completes the proofo
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