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s u m m a r y

Well characterised animal models that can accurately predict efficacy are critical to the development of
an improved TB vaccine. The use of high dose challenge for measurement of efficacy in Non-human
primate models brings the risk that vaccines with the potential to be efficacious against natural chal-
lenge could appear ineffective and thus disregarded. Therefore, there is a need to develop a challenge
regimen that is more relevant to natural human infection. This study has established that ultra-low dose
infection of macaques via the aerosol route can be reproducibly achieved and provides the first
description of the development of TB disease in both rhesus and cynomolgus macaques following
exposure to estimated retained doses in the lung of less than 10 CFU of Mycobacterium tuberculosis. CT
scanning in vivo and histopathology revealed differences in the progression and burden of disease be-
tween the two species. Rhesus macaques exhibited a more progressive disease and cynomolgus ma-
caques showed a reduced disease burden. The ability to deliver reproducible ultra-low dose aerosols to
macaques will enable the development of refined models ofM. tuberculosis infection for evaluation of the
efficacy of novel tuberculosis vaccines that offers increased clinical relevance and improved animal
welfare.
Crown Copyright © 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tuberculosis (TB) is a major global health problem, with 9
million new cases and nearly 1.5 million deaths annually [1]. With a
third of the world's population estimated to be infected, and the
effects of TB infection compounded by the emergence ofmulti-drug
resistant strains and HIV co-infection, there is an urgent need for
improved interventions, including a vaccine. The only currently
available vaccine is Mycobacterium bovis Bacille Calmette Guerin
(BCG) which protects children from developing severe TB disease
[2], but it is unsuitable for use in people whose immune system is
compromised, and has mostly failed to protect against pulmonary
TB in adults [3].

The lack of a defined immunological correlate of protection for
TB means that, in order to assess efficacy, candidate TB vaccines
fax: þ44 (0) 1980. 611310.
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must enter large clinical trials involving thousands of at-risk in-
dividuals in endemic countries [4]. Therefore, preclinical animal
models that can accurately predict the effectiveness of vaccines in
humans through challenge studies are critical to achieving the goal
of an improved TB vaccine. Because of their close similarity to
humans, non-human primates (NHP) are excellent potential
models of tuberculosis [5e7]. Reviews of published studies using
the TB NHP model [5e7] reveal that the selection of model pa-
rameters, including the macaque species and route and size of the
challenge dose, can affect the outcome of experimental TB exposure
in NHPs. Both rhesus [8e15] and cynomolgus macaque species
[11,16e19] are used to evaluate the efficacy of new TB vaccine
candidates. Both species recapitulate aspects of human TB but
which provides the most appropriate model for vaccine evaluation
is a subject of debate.

The quantity of M ycobacterium tuberculosis administered to
evaluate vaccine efficacy is critical to the outcome of an efficacy
study. The dose needs to be sufficient to induce a consistent and
cle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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measureable disease burden in all exposed animals but not so large
as to overwhelm any protection provided by the host response. The
readouts used routinely to measure the efficacy of new TB vaccines
in NHP models such as changes in clinical parameters, bacterial
burden and qualitative gross pathology and histopathological
scoring systems have limited sensitivity [20]. This has necessitated
the use of high doses of TB for challenge, which far exceed the
estimated doses encountered during natural exposure, and bring
the risk that potentially useful vaccines could be disregarded.
Consequently, there is a growing view that a lower challenge dose
(less than 10 infectious bacilli) that more closely resembles natural
infection is required to refine the vaccine assessment process. The
physical properties of M. tuberculosis (e.g. clumping) create diffi-
culties in generating inocula containing very few bacilli from high
titre stocks but the process of aerosolisation disrupts bacterial ag-
gregates and generates aerosol particles which mostly contain
single bacteria. Measurement of the outcome of very low dose
challenge requires improved tools to provide more sensitive read-
outs of disease burden such as those offered by advanced in vivo
imaging [21e23].

With the ultimate aim to establish an NHP model for vaccine
assessment based upon ultra-low dose infection the present study
was set up to provide proof of concept for the reproducible delivery
of an ultra-low dose (ULD) of M. tuberculosis to macaques by the
aerosol route; to characterise the outcome of ULD aerosol exposure;
and compare the resulting disease in the two macaque species.
Furthermore the potential benefit of computed tomography (CT) to
provide sensitive measures of disease burden that could be used as
readouts for evaluation of vaccine efficacy following low dose
challenge was investigated.

2. Materials and methods

2.1. Experimental animals

Eight male rhesus macaques and eight male cynomolgus ma-
caques, aged 3e4 years, were obtained from established UK
breeding colonies. Genetic analysis of these colonies has previously
confirmed the rhesus macaques to be of the Indian genotype and
cynomolgus macaques of Indonesian genotype. Absence of previ-
ous exposure to mycobacterial antigens was confirmed by a tu-
berculin skin test and screening using an ex-vivo IFN-g ELISPOT
(MabTech, Nacka. Sweden) to measure responses to PPD (SSI,
Copenhagen, Denmark), and pooled 15-mer peptides of ESAT6 and
CFP10 (Peptide Protein Research LTD, Fareham, U.K.).

Animals were housed in compatible social groups, in accordance
with the Home Office (UK) Code of Practice for the Housing and
Care of Animals Used in Scientific Procedures (1989), (now updated
to Code of Practice for the housing and Care of Animals Bred,
Supplied or Used for Scientific Purposes, December 2014, and the
National Committee for Refinement, Reduction and Replacement
(NC3Rs), Guidelines on Primate Accommodation, Care and Use,
August 2006 (NC3Rs, 2006)). Animals were sedated by intramus-
cular (IM) injection with ketamine hydrochloride (Ketaset, 100 mg/
ml, Fort Dodge Animal Health Ltd, Southampton, UK; 10 mg/kg) for
procedures requiring removal from their housing. None of the an-
imals had been used previously for experimental procedures. All
animal procedures were approved by the Public Health England
Ethical Review Committee, Porton Down, UK, and authorised under
an appropriate UK Home Office project license.

2.2. Clinical procedures

Animals were monitored daily for behavioural and clinical
changes. Behaviour was evaluated for contra-indicators including
depression, withdrawal from the group, aggression, changes in
feeding patterns, breathing pattern, respiration rate and cough.
Prior to blood sample collection, aerosol challenge and eutha-
nasia, animals were weighed, examined for gross abnormalities
and body temperature measured. Red blood cell (RBC) haemo-
globin levels were measured using a HaemaCue haemoglobin-
ometer (Haemacue Ltd, Dronfield, UK) to identify the presence
of anaemia, and erythrocyte sedimentation rates (ESR) were
measured using the Sediplast system (Guest Medical, Edenbridge,
UK) to detect andmonitor inflammation induced by infectionwith
M. tuberculosis.

2.3. M. tuberculosis challenge strain

The Erdman K01 stock (HPA-Sept 2011) used for challenge was
prepared from stocks of theM. tuberculosis Erdman strain K 01 (BEI
Resources). A stock suspension was initially prepared from a 5 ml
bacterial starter culture originally generated from colonies grown
on Middlebrook 7H11 supplemented with oleic acid, albumin,
dextrose and catalase (OADC) selective agar (BioMerieux, UK). A
liquid batch culturewas then grown to logarithmic growth phase in
7H9 medium (SigmaeAldrich, UK) supplemented with 0.05% (v/v)
Tween 80 (SigmaeAldrich, UK). Aliquots were stored at �80 �C.
Titre of the stock suspensionwas determined from thawed aliquots
by enumeration of colony forming units cultured ontoMiddlebrook
7H11 OADC selective agar.

2.4. Aerosol exposure

2.4.1. Apparatus and procedure
The methodology and apparatus used to deliver M. tuberculosis

via the aerosol route was as previously described [14,20,24]. In
brief, the aerosols were generated from a suspension of
M. tuberculosis at a pre-determined concentration (see below) using
a 3-jet Collison nebuliser (BGI) and delivered, using a modified
Henderson apparatus [25] controlled by an AeroMP (Biaera) control
unit [26], to the nares of each sedated animal via a modified vet-
erinary anaesthesia mask. A ‘head-out’, plethysmography chamber
(Buxco, Wilmington, North Carolina, USA) enabled the aerosol to be
delivered simultaneouslywith themeasurement of respiration rate.

2.4.2. Quantification of ultra-low aerosol dose
The number of bacilli deposited and retained in the lungs of

macaques cannot bemeasured directly and the quantification of the
dosemust be calculated from the concentration of viable organisms
in the aerosol (Caero) and the volume of aerosol inhaled by the an-
imal. This ‘presented dose’ (PD) is the number of organisms which
the animals inhale. Caero is either measured directly using air sam-
pling within the system or may be calculated using the concentra-
tion of organisms in the nebuliser (Cneb) and a ‘spray factor’which is
a constant derived from data generated for the specific organism
with identical aerosol exposure parameters. The calculations to
derive the PD and the retained dose (the number of organisms
assumed to be retained in the lung) have been described previously
for high/medium aerosol doses [20,24]. Directmeasurement of Caero
would not be possible for an ultra-low dose challenge and therefore
the dose calculations were based upon Cneb and the spray factor.
Aerosol challenge data from previous experiments were used to
develop and verify the calculationwhichwould predict the retained
dose, and a nebuliser concentration was selected to result in a
retained dose of approximately 5 viable bacilli.

2.4.3. Macaque aerosol exposure
Four rhesus and four cynomolgus macaques (group A) were

exposed to aerosols of M. tuberculosis five weeks before the second
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group of four rhesus and four cynomolgus macaques (group B)
(Figure 1). The study was conducted in two phases to allow eval-
uation of the reproducibility of the aerosol delivery system.
2.5. Computed tomography (CT) imaging

CT scans were collected from animals using a 16 slice Lightspeed
CT scanner (General Electric Healthcare, Milwaukee, WI, USA),
three, eight and eleven weeks after aerosol exposure to M. tuber-
culosis (Figure 1) as described previously [27,28]. In order to
enhance visualisation of lesions and lymph nodes, Niopam 300
(Bracco, Milan, Italy), a non-ionic, iodinated contrast medium, was
administered intravenously (IV) at 2ml/kg bodyweight. Scanswere
evaluated for the number and distribution of pulmonary lesions
across lung lobes and the presence of nodule cavitation, conglom-
eration, consolidation as an indicator of alveolar pneumonia and a
‘Tree-inebud’ pattern as an indicator of bronchocentric pneu-
monia. The lung-associated lymph nodes were assessed for
enlargement and the presence of necrosis.
2.6. Immune response analysis: Interferon-gamma (IFN-g) ELISpot

The M. tuberculosis-specific immune response was evaluated at
two weekly intervals throughout the study (Figure 1). Peripheral
blood mononuclear cells were isolated from heparin anti-
coagulated blood using standard methods. An IFN-g ELISpot assay
was used to estimate the numbers and IFN-g production capacity of
mycobacteria-specific T cells in PBMCs using a human/simian IFN-g
kit (MabTech, Nacka. Sweden), as described previously [29].
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Figure 1. Experiment
2.7. Necropsy

The necropsies were conducted either, four weeks (Group A) or
12 weeks (Group B) after aerosol exposure to M. tuberculosis
(Figure 1). Animals were anaesthetised and clinical data collected.
Blood samples were taken prior to euthanasia by intra-cardiac in-
jection of a lethal dose of anaesthetic (Dolelethal, V�etoquinol UK
Ltd, 140 mg/kg). A post-mortem examination was performed
immediately and gross pathological changes were scored using an
established system based on the number and extent of lesions
present in the lungs, spleen, liver, kidney and lymph nodes, as
described previously [20]. Samples of spleen, liver, kidneys and
tracheobronchial, inguinal and axillary lymph nodes were removed
and sampled for quantitative bacteriology. The lung, together with
the heart and attached tracheobronchial and associated lymph
nodes, were removed intact. The lymph nodes were measured and
examined for lesions. These were fixed by intra-tracheal infusion
with 10% neutral buffered formalin (NBF) using a syringe and 13CH
Nelaton catheter (J.A.K. Marketing, York, UK). The catheter tip was
inserted into each bronchus in turn via the trachea; the lungs were
infused until they were expanded to a size considered to be normal
inspiratory dimensions, and the trachea ligated to retain the fluid.
The infused lung was immersed in 10% NBF. In addition, samples of
kidneys, liver, spleen, and sub clavicular, hepatic inguinal and
axillary lymph nodes were fixed in 10% NBF.

2.8. Thoracic lymph node evaluation

At necropsy, eight thoracic lymph nodes (right and left cranial,
carinal, sub-clavicular, para-tracheal) were measured and scored
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for enlargement according to the system in Table 1A. Nodes
measuring 5 mm or more were considered to be enlarged. The
enlargement scores attributed to each individual node were sum-
med to provide a total score for the animal (maximum score ¼ 24).
In addition, the proportion of thoracic lymph nodes showing
enlargement in each animal was calculated: number of lymph
nodes measuring >5mm/8, where 8 ¼ the number of lymph nodes
evaluated.

2.9. Pathology studies

2.9.1. Gross examination following fixation
The fixed lungs were sliced serially and lesions counted as

described previously [27]. Each lung lobe was evaluated separately
and discrete lesions were counted in the parenchyma. Where le-
sions had coalesced, these were measured and recorded. Lung-
associated lymph nodes, particularly around the tracheal bifurca-
tion, were dissected and weighed. The remaining tissues were
examined during trimming.

2.9.2. Histopathological examination
A representative samples from each lung lobe (seven per an-

imal) and other organs, were processed to paraffin wax, sectioned
at 3e5 mm and stained with haematoxylin and eosin (HE). For
each lung lobe, tissue slices containing obvious lesions were
chosen for histological examination. Where gross lesions were
not visible, a sample was taken from a pre-defined anatomical
location from each lobe to establish consistency between animals.
Sections of lung-associated lymph nodes (trachea-bronchial at
the bifurcation and cranial and caudial to the bifurcation) and
other tissues were evaluated for the presence of tuberculous le-
sions. Lesions in the lung parenchyma were identified, cat-
egorised and counted as described previously [27]. Briefly, lesions
defined as “unorganised” (Types 1e3) were those lacking a pe-
ripheral cuff of lymphocytes, while “organised” lesions were
those with a cuff of lymphocytes (Types 4 and 5). In one HE
stained section from each lung lobe, granulomas types, as
described in Table 1B, were counted and recorded. Furthermore,
additional, morphological features were recorded: airway inva-
sion, lymphatic inflammation/involvement, arterial wall infiltra-
tion by inflammatory cells and granulomas in bronchovascular,
connective tissue. To evaluate the degree of necrosis in
Table 1
Pathology scoring systems.

A. Thoracic lymph node enlargement score

Size (mm) Enlargement score

<5 0
5e10 1
>10e20 2
>20 3

B. Lung parenchyma lesion categorisation system

Lesion
type

Lesion characteristics

1 Small, diffuse foci of macrophages and lymphocytes with scattered
neutrophils and eosinophils lacking clearly defined boundaries

2 Larger unorganised lesions composed of similar inflammatory cells to
type 1 lesions, circumscribed foci forming a more defined, frequently
circular granuloma with variably demarcated borders.

3 Granulomas, characterised by nuclear pyknosis and karyorrhexis with
the loss of cellular architecture and the presence of focal necrosis.

4 Granulomas show evidence of organisation of lymphocytes to a
peripheral location

5 Granulomas show central necrosis
tracheobronchial lymph nodes, an HE stained section of an
enlarged node from each animal, was scanned digitally (3D His-
totech Panoramic 250) using “Panoramic Viewer software”
Version 1.15.2 SP 2 (3D Histotech Ltd, Budapest). The necrotic
areas within the scanned sections were defined and the resulting
surface area divided by the total surface area of the lymph node,
then multiplied by 100 to give a percentage.

2.10. Bacteriology

The spleen, kidneys, liver and tracheobronchial lymph nodes
were sampled for the presence of viable M. tuberculosis post-
mortem as described previously [14]. Weighed tissue samples
were homogenised in 2 ml of sterile water, then either serially
diluted in sterile water prior to being plated, or plated directly onto
Middlebrook 7H11 OADC selective agar. Plates were incubated for
3 weeks at 37 �C and resultant colonies were confirmed as
M. tuberculosis and counted.

2.11. Statistical analyses

Comparison of ex-vivo ELISpot assay responses was completed
using the area under the curve (AUC) of each animal's response
calculated using Sigmaplot version 10 (Systat Software Inc, Houn-
slow, UK). AUC values were compared between test groups using
the non-parametric ManneWhitney U test, Minitab version 15
(Minitab Ltd, Coventry, UK). Differences in the qualitative pathol-
ogy scores were compared between species and test groups using
the non-parametric ManneWhitney U test, Minitab version 15
(Minitab Ltd, Coventry, UK). The Spearman correlation test was
used to determine the level of correlation between study param-
eters using GraphPad Prism, version 5.01 (GraphPad Software Inc,
La Jolla, California, USA).

3. Results

3.1. Reproducible aerosol delivery of ultra-low doses of
M. tuberculosis

Exposure to ULD aerosols of M. tuberculosis resulted in an
established infection in all challenged animals. The presented and
estimated retained aerosol doses (Table 2) were consistent across
the rhesus and cynomolgus macaque species and between study
groups A and B which received aerosol challenge five weeks apart.
Whether grouped by species or study group, the average presented
dose was calculated as 24 or 25 cfu and the estimated retained dose
in the lung was 3 or 4 cfu.

The inoculum delivered by aerosol was also quantified as
lesion forming units (LFU) defined as the number of TB-induced
nodules counted from CT scans collected 3 weeks after aerosol
exposure, and was assumed to provide a measure of primary
lesions. The number of TB-induced nodules counted from CT
scans collected three weeks after aerosol exposure (LFU) was
similarly low and consistent across species (range: 1 to 10) with a
median of six nodules for all animals in the study and medians of
six nodules for rhesus and four nodules in cynomolgus ma-
caques. The number of LFU counted in animals in group A were
not significantly different to the number counted in animals in
group B for either species (rhesus macaque, p¼0.2857; cyn-
omolgus macaque, p ¼ 0.0857).

3.2. Clinical assessment post exposure

All macaques controlled disease after ULD aerosol challenge.
None of the animals of either species exhibited abnormal



Table 2
Aerosol challenge doses of M. tuberculosis delivered to rhesus and cynomolgus macaques.

Exposure
group

Species Animal
identification
number

Presented
dose (cfu)

Estimated
retained
dose (cfu)

Lesion forming
units 3 weeks post-aerosol exposure

Group A Rhesus T7 24 3 6
T21 24 3 10
T26 25 4 6
T41 25 4 9

Cynomolgus 980BEEA 25 4 7
978AJB 23 3 7
970CIA 27 4 4
545ACEA 25 4 8

Group B Rhesus T51 21 3 1
T59 25 4 3
T64 24 3 6
T75 24 3 9

Cynomolgus 044HAFC 23 3 2
031 MN 28 4 1
406ADM 24 3 4
980ABAGB 23 3 4
406ADM 24 3 4
980ABAGB 23 3 4
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behaviour, signs of respiratory disease or coughing. However both
rhesus and cynomolgus macaques had minor losses in body weight
(<4% peak post exposure weight) over the first 4 weeks after
aerosol exposure. A trend for more, but non-significant (<10% peak
post challenge weight) weight loss was seen in rhesus macaques at
week 12, with three animals showing losses of between 2 and 8%;
by contrast, weight losses of <2% were seen in the cynomolgus
macaques. Body temperature, red blood cell haemoglobin con-
centrations and levels of inflammatory markers (ESR) remained
within normal range throughout the study period.

3.3. CT evaluation of pulmonary disease

Assessment of the number and distribution of TB-induced
nodules in the lungs from the CT scans at 3, 8 and 11 weeks after
aerosol exposure to M. tuberculosis showed an increase in nodule
numbers over time, which tended to be greater in rhesusmacaques.
Aerosol delivery led to the development of nodules in multiple lung
lobes by week 3; lesions were more prevalent in the right lung
lobes (14 of the 16macaques in the study) than in the left lung lobes
(8 of 16 macaques in the study), and distribution was similar be-
tween the species (Figure 2). Nodules were detected in previously
unaffected lung lobes in the cynomolgus and in the rhesus ma-
caques by eight and eleven weeks, respectively. Nodule cavitation
was observed in rhesus macaques from week 8 (Table 3,
supplementary Tables 1a and 1b), but not in cynomolgusmacaques.
Features of pneumonia (consolidation and a “tree-inebud” pattern)
were detected at similar frequencies in both species at weeks 3 and
8. Pneumoniawas detected in three rhesusmacaques at week 8 and
persisted through to week 11, whereas it was detected in three
cynomolgus macaques but persisted to week 11 in only one animal
(Table 3, supplementary Tables 1a and 1b).

The frequency of necrotic lymph nodes associated with the
lungs was similar between the macaque species, although a higher
frequency of enlarged lymph nodes was seen in the rhesus ma-
caques. Bronchial compression due to enlarged nodes was noted in
one animal of each species at week eight.

3.4. IFNg response to infection

An ex-vivo ELISPOT assay was applied at two weekly intervals
throughout the study to evaluate the M. tuberculosis-specific
immune response to infection. Response kinetics were similar in
the two macaque species with peak responses detected six weeks
after infection. However, the frequency of IFNg secreting cells
specific for TB antigens detected in rhesus macaques was higher
than the frequencies seen in cynomolgus macaques (Figure 3). AUC
analysis confirmed the difference in the PPD-specific response
between the species to approach significance in the first four week
period (p ¼ 0.05) and for the response to be significantly higher in
rhesus macaques during the 12 weeks (p ¼ 0.03) after aerosol
exposure. Responses to CFP10 and ESAT6 were not significantly
different between the species during the first four weeks after
infection. However, by 12 weeks, responses to ESAT6 in rhesus
macaques were significantly higher than the responses in the
cynomolgus macaques (p ¼ 0.03).

When all animals in the study were evaluated as a single group,
a significant correlation was found between the number of pul-
monary nodules identified on CT scans three weeks after aerosol
exposure and the AUC of the PPD-specific response measured
during the first four weeks after infection (p ¼ 0.01, r ¼ 0.61), and a
correlation that approached significance was seen with the
response to ESAT6 (p ¼ 0.06, r ¼ 0.548). The number of nodules
counted on the eight week CT scans positively correlated with the
AUC of the responses made in the eight week period after exposure,
although only the correlation with the CFP10-specific response
reached significance (p ¼ 0.0315, r¼0.7807). Correlations that
reached significance were not seen between the AUC of the PPD,
CFP10 or ESAT6 -specific responses measured during the first 12
weeks after infection in all study animals and the number of nod-
ules counted from the CT scans collected at week 12 (PPD, p ¼ 0.08,
r ¼ 0.67; ESAT6, p ¼ 0.097, r ¼ 0.6386; CFP10, p ¼ 0.152, r ¼ 0.5663).

When relationships were evaluated in the rhesus and cyn-
omolgus species separately correlations between the AUC of the
responses measured in the four, eight or 12 week periods after
exposure, and nodule numbers from the CT scans at weeks three or
11 after exposure, did not reach significance.

3.5. Pathological evaluation of disease burden

Disease burdenwas evaluated four weeks after aerosol exposure
in four rhesus and four cynomolgus macaques, and 12 weeks after
exposure in the remaining eight animals. The gross pathology score
system did not reveal significant differences between the level of
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Figure 2. Number of TB-induced nodules counted from the CT scans collected from
rhesus (panel A1) and cynomolgus macaques (panel A2) in Group A (4 week study),
and rhesus (panel B) and cynomolus macaques (panel C) in group B (12 week study).
Grey fills shows the number of lesions in each lung lobe and black fills show the total
number of nodules in the lung.
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disease present in rhesus and cynomolgus macaques at either four
(p ¼ 0.47) or 12 weeks (p ¼ 0.06) after TB exposure (Figure 4A).
However, there was a trend for scores to increase over time in both
species and the difference seen at week 12 approached significance.

Gross lesion data following fixation and sectioning of the lung
lobes are summarised in Table 4, and supplementary table 2. In
rhesus macaques the mean number of discrete (10.8 ± 7.8 to
14 ± 22.5) and coalesced (3.8 ± 0.8 to 4.3 ± 2.9) lesions noted
increased between four and 12 weeks post challenge and



Figure 3. The frequency of M. tuberculosis-specific IFNg secreting cells measured by ex-vivo ELISpot following exposure to ultra-low dose TB aerosols in peripheral blood
mononuclear cells collected from rhesus macaques is shown in the panel on the left, and the panel on the right shows the frequencies in peripheral blood mononuclear cells
collected from cynomolgus macaques. Plots A1 and A2 show the profiles of PPD-specific IFNg secreting cells, Plots B1 and B2 show the profiles of CFP10-specific IFNg secreting cells,
and Plots C1 and C2 show the profiles of ESAT6-specific IFNg secreting cells. Aerosol exposure toM. tuberculosis at week 0 is indicated by the dotted line. PB1, 2, 3 indicate responses
determined on three occasions prior to exposure.

S. Sharpe et al. / Tuberculosis 96 (2016) 1e12 7
the mean volume of coalesced lesions increased from
9682 ± 4602 mm3 to 20,092 ± 21,293 mm3. By contrast, in the
cynomolgus macaques, the mean number of discrete lesions
decreased (19.3 ± 13.2 to 10.3 ± 7.2) between four and 12 weeks
post challenge. At four and 12 weeks post challenge, only three
coalesced lesions were observed at each time point; however,
the mean gross volume increased from 447 ± 539 mm3 to
1409 ± 1307 mm3.
Enlarged tracheo-bronchial and associated lymph nodes were
seen in both macaque species at four and 12 weeks after exposure
to ULD TB aerosols. Application of a qualitative scoring system to
evaluate the level of enlargement during gross examination
revealed non-significant trends for the enlargement to be greater in
rhesus than in cynomolgus at both four and 12 weeks post-
echallenge, and to increase over time in both species (Figure 4B).
The proportion of tracheo-bronchial lymph nodes showing
enlargement was greater in rhesus than in cynomolgus at both



Figure 4. Disease burden measured four or twelve weeks after ultra-low dose aerosol exposure determined using a qualitative gross pathology scoring system applied at necropsy
(plot A), tracheo-bronchial lymph node enlargement score (plot B) and the proportion of tracheo-bronchial lymph nodes showing enlargement (plot C) 4 and 12 weeks after
exposure to ultra-low dose TB aerosols.

Table 4
Histopathological evaluation of the lungs and tracheobronchial lymph nodes: Summary of findings.

Group mean (range)

Species No. of pulmonary lesions Coalesced volume of pulmonary lesions (mm3) Lymph node necrosis (%)

Discrete Coalesced

Week 4 Week 12 Week 4 Week 12 Week 4 Week 12 Week 4 Week 12

Rhesus 10.8 (3e23) 14 (0e53) 3.8 (3e5) 4.3 (1e8) 9682 (4840e17040) 20,092 (3510e56,677) 40.4 (13.9e65.1) 57.3 (43.6e68.7)
Cynomolgus 19.8 (8e42) 10.3 (2e21) 0.8 (0e2) 0.8 (0e1) 447 (0e1320) 1409 (0e3549) 37.6 (26.3e56.3) 29.5 (0.2e46.8)
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weeks four (p ¼ 0.0360) and 12 (p ¼ 0.102), and over time more
tracheo-bronchial lymph nodes became enlarged in both species
but differences did not reach significance (Figure 4C). Following
fixation, the combined weights of the three heaviest, tracheo-
bronchial lymph nodes in the rhesus macaques were 18.0 g and
20.8 g at four and 12 weeks post challenge, respectively. In cyn-
omolgus macaques, the values were 10.6 g and 9.4 g, respectively.

Microscopic findings are illustrated in Figure 5. TB lesions were
present in the lungs of all animals at four and twelve weeks post-
echallenge. In general, all lesion types were observed in the ma-
jority of animals at both time points, with Type 5 lesions beingmost
frequent. In the cynomolgus macaques at four weeks post chal-
lenge, lesions were infrequent and often well demarcated
(Figure 5A). By contrast, in rhesusmacaques at the same time point,
large, irregular areas of coalesced lesions with poorly demarcated
borders were often noted (Figure 5B) as well as discrete lesion
types. By 12 weeks post challenge, in the cynomolgus macaques,
lesion size had generally decreased compared to the early time
point (Figure 5C), although some coalesced lesions were still noted.
However, in the rhesus macaques, large, coalescing areas were
more prominent than at four weeks post challenge (Figure 5D),
with scattered, discrete lesions also present. Small, cavitatory le-
sions (Figure 5D) were noted infrequently involving the airways in
two animals. Additional, microscopic features, comprising airway
invasion (Figure 5B, D, E), lymphatic involvement/inflammation
(Figure 5E), vascular wall invasion by inflammatory cells (Figure F),
and the presence of granulomas in broncho-vascular connective
tissue (Figure 5E and F), were present at both four and 12 weeks
post challenge in the lungs of rhesus macaques, but with reduced
frequency at the latter time point. In the cynomolgus macaques,
these features were also observed at four weeks post challenge;
however, by 12 weeks, evidence of airway invasion was absent and
lymphatic involvement/inflammation and the presence of granu-
lomas in broncho-vascular connective tissue was reduced. There
was no difference in the frequency of vascular invasion by inflam-
matory cells between the species.

The tracheobronchial lymph nodes examined from all animals at
both time points were enlarged, with marked effacement of
normal, nodal architecture by granulomatous inflammatory cells
and prominent, caseous necrosis. The percentage of the lymph
node surface area showing necrosis increased with time in both
species (Table 4, supplementary Table 2), and was higher in the
rhesus macaques compared to the cynomolgus macaques, although
these differences did not reach statistical significance.

The prevalence of disease in extra-pulmonary tissues was
similar between the species. In the rhesus macaques four weeks
post challenge, tuberculous lesions were noted in the spleen (two
out of four), liver (three out of four) and subclavicular lymph node
(three out of four). At 12 weeks, lesions were noted in the spleen
(one out of four), liver (four out of four), kidneys (two out of four),
subclavicular lymph node (two out of four) and parietal pleura (two
out of two examined). In the cynomolgus macaques at four weeks
post challenge, extra-pulmonary lesions were observed in the
spleen (three out of four), liver (three out of four), subclavicular
lymph node (two out of four), right axillary lymph node (two out of
four) and hepatic lymph node (two out of two examined). At 12
weeks post challenge, lesions were seen in the spleen (two out of
four), liver (one out of four) and subclavicular lymph node (one out
of three examined). All other tissues examined were negative for
the presence of tuberculous lesions.

3.6. Extra-pulmonary organ-specific bacterial burden

The level of bacterial burden was evaluated in the liver, spleen,
kidneys and tracheobronchial lymph nodes in all animals. A similar
frequency of isolation from tissues and level of bacterial burdenwas
seen across the species at week four and twelve together with a
trend for less frequent isolation from tissues collected from animals



Figure 5. Examples of microscopic changes in the lung. (A) Animal 980BEEA (cynomolgus macaque, 4 weeks pc). Type 5 lesion with central necrosis; well demarcated from
surrounding parenchyma. Calibration bar ¼ 500 mm. HE. (B) Animal T7, (rhesus macaque, 4 weeks pc). Large, coalescing area of granulomatous inflammation with airway invasion
(arrow). Calibration bar ¼ 500 mm HE. (C) Animal 044HAFC (cynomolgus macaque, 12 weeks post challenge). Small, well demarcated, Type 5 lesion. Calibration bar ¼ 500 mm. HE.
(D) Animal T64 (rhesus macaque, 12 weeks post challenge). Irregular, large area of coalescing, granulomatous inflammation with airway invasion (arrow). Calibration bar ¼ 500 mm.
HE. (E) Animal 980BEEA (cynomolgus macaque, 4 weeks post challenge). Broncho-vascular, granulomatous inflammation with lymphatic involvement (asterisks) and airway in-
vasion (arrow). Calibration bar ¼ 200 mm HE. (F) Animal T75 (rhesus macaque, 12 weeks post challenge). Granulomatous inflammation in broncho-vascular connective tissue,
surrounding and infiltrating arteries. Calibration bar ¼ 200 mm. Inset, arterial wall infiltration by inflammatory cells. Calibration bar ¼ 50 mm HE.
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at week twelve than week four in both species (Table 5).
M. tuberculosis was most commonly isolated from the tracheo-
bronchial lymph nodes, which showed the highest cfu/g burden of
the tissues assessed.

4. Discussion

Well characterised animal models that can accurately predict
the effectiveness of vaccines are critical to achieving the goal of an
improved TB vaccine. There is a consensus that the challenge dose
used to evaluate vaccine efficacy should be a balance between a
dose sufficiently low to simulate natural human exposure to
M. tuberculosiswhilst retaining the ability to reliably infect all of the
challenged animals. This study has established that ultra-low dose
infection of macaques via the aerosol route can be reproducibly
achieved. Following exposure to aerosols containing <28 cfu
M. tuberculosis Erdman, animals were estimated to have retained a
dose of three or four bacilli in the lungs. These estimates are sup-
ported by the findings from CT scans taken three weeks after
exposure, that show amedian number of six TB-induced nodules in
the lungs of each animal in the group. As the aerosolisation process
creates mono-dispersed particles, it can be assumed that TB bacilli



Table 5
Frequency of isolation of M. tuberculosis from tissues.

Species Week pc No. per group Mtb isolated (N ¼ 4)

Spleen Kidney Liver Tracheobronchial LN Blood Urine

Rhesus 4 4 4 2 4 0 0
Cynomolgus 4 4 3 3 4 0 1
Rhesus 12 2 3 2 4 0 0
Cynomolgus 12 3 2 2 3 0 1
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are delivered individually to the lung; thus, the number of nodules
seen three weeks after exposure reflects the retained dose, as each
nodule is highly likely to have been initiated by a single bacillus
[30]. Lesions were identifiedmore frequently in the right lung lobes
than the left lobes, and this may be a characteristic of the bronchial
anatomy inmacaques leading to preferential distribution of the low
presented dose. The aerosol dose was highly reproducible within
and between the macaque species, and between replicate aerosol
challenges separated by five weeks, demonstrating the high degree
of control over experimental parameters offered by aerosol infec-
tion using our aerosol infection protocols.

The dose delivered in this study was lower than any of those
used in previously reported studies of experimental aerosol TB
infection. Studies in rhesusmacaques conducted between 1966 and
1975 described the use of aerosol doses of M. tuberculosis between
11 and 50 cfu [8e10,31], and studies reported from 2002 have used
larger aerosol doses of up to 500 cfu [14,20,32,34]. The only report
of M. tuberculosis aerosol exposure to cynomolgus macaques used
doses in excess of 30 cfu [20]. The inoculum size used in the present
study is also lower than those reported inmacaque studies inwhich
M. tuberculosiswas delivered either by intra-tracheal installation or
intra-bronchial placement, where typically low dose models use
25 cfu [19,30,33,35e38] and higher dose models typically use
inoculum sizes ranging between 50 and 3000 cfu
[11,13,19,21,39e41]. Therefore, this is the first description of the
development of TB disease in both rhesus and cynomolgus ma-
caques following exposure to doses of less than 10 cfu of
M. tuberculosis and provides the first opportunity to directly
compare the outcome of a very low dose infection between the two
macaque species.

Sequential images collected using CT scanning in vivo revealed
the development of progressive disease in the rhesus macaques
whereas, the disease in cynomolgus macaques generally appeared
to be more controlled, even 12 weeks after challenge. Similarly,
results of analyses applied post mortemwere indicative of a higher
level of pulmonary disease in the rhesus macaques than in the
cynomolgus macaques at both four and 12 weeks after challenge.
The rhesus possessed higher numbers of lesions, coalesced lesions
of greater volume, an increased frequency of microscopic disease
features, and a higher level of tracheobronchial lymph node
involvement, with nodes showing more enlargement and necrosis.
The discrete and coalesced lesions in both species were of similar
appearance and generally reflected those described previously
[22,27,42], suggesting that the disease initiated following exposure
to very low dose aerosols resembles that initiated following expo-
sure to larger doses of M. tuberculosis. The difference in the disease
burden induced following infection between the species primarily
correlates with that described in previous studies reporting that
after inoculation with larger numbers of cfu, where cynomolgus
macaques are generally considered to be relatively resistant to
tuberculosis and will develop active, chronic or latent TB [11,33,35]
depending on strain, dose and route. In contrast, rhesus macaques
appear to be more susceptible [11,20] and progressive disease has
been reported to develop after low dose challenge [9,38,43]. The
small groups sizes used and the short duration of the study re-
ported here may have limited the ability to demonstrate statisti-
cally significant differences between the species, and this time
coursewas not designed to evaluate whether the immune response
of the macaques in this study could have gained sufficient control
over the disease to result in latency. Understanding the differences
in outcome of TB infection in rhesus and cynomolgus macaques is
essential for future study design and refinement enabling the se-
lection of the most appropriate species to address the study aims.

The number of TB bacilli encountered during challenge by the
macaques in this study is more akin to the levels encountered
during natural transmission than those used in high dose challenge
systems [13,14,42]. Whilst this potentially provides a more realistic
test for efficacy afforded by new vaccines, the ability to demon-
strate efficacy within a model is dependent on the sensitivity and
relevance of the readouts used to discriminate between vaccinated
and unvaccinated test groups. Following infection initiated with
larger numbers of bacilli, marked changes in clinical parameters
occur as the disease progresses, such as, loss of body weight,
elevation of body temperature and levels of inflammatory markers
[11,13,14,33,35], and in this situation, clinical measures provide a
valuable readout of vaccine efficacy. However, the macaques in this
study did not exhibit abnormal behaviours or marked clinical signs
when infection was initiated with very low numbers of bacilli.
Therefore, in very low dose models, changes in clinical parameters
may not be sufficiently discriminatory meaning that alternative,
more sensitive approaches to evaluate disease burden are required.

Computed tomography allowed the identification of changes
in vivo that provided the only clinical measure that was able to
identify differences in disease development between the macaque
species during this study, and thus provided a critical tool for
evaluation of disease burden during the course of an experimental
infection. The correlation seen in this study between pulmonary
burden measured as number of nodules on CT scans, and the early
IFNg immune response, supports the hypothesis that the initial
response to challenge, as measured by ELISPOT, reflects the antigen
load. Whilst computed tomography undoubtedly provides a sen-
sitive measure of disease development, further work is required to
determine whether the readout used in this study would be suffi-
cient to provide a measure of vaccine efficacy, or whether the
additional metabolic activity measures provided by PET-CT will be
required [23]. The frequency of M. tuberculosis antigen-specific
IFNg-secreting cells measured by ELISPOT in the rhesus macaques
in this study were at similar levels to those measured after high
dose challenge [14] and further supports the use of the ULD model
for the study of potential immune correlates and biomarkers.

This study has established proof of concept for the reproducible
delivery of very low dose aerosols of M. tuberculosis to rhesus and
cynomolgus macaques and described differences in disease
outcome between the species. This will enable the development of
a more refined model of M. tuberculosis infection that will be a
valuable addition to the portfolio of models already in use to
evaluate the efficacy of novel tuberculosis vaccines and therapeu-
tics. Such a model would have advantages over high dose challenge
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models not only due to its increased relevance to human infection,
but also with regard to the improvement in the welfare of animals
used in the efficacy studies through reduction of the disease
burden.
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