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Idiopathic pulmonary fibrosis (IPF) is a chronic lethal interstitial lung disease of unknown etiology.We previous-
ly reported that high plasma levels of vascular cell adhesion molecule 1 (VCAM-1) predict mortality in IPF sub-
jects. Here we investigated the cellular origin and potential role of VCAM-1 in regulating primary lung
fibroblast behavior. VCAM-1 mRNA was significantly increased in lungs of subjects with IPF compared to lungs
from control subjects (p=0.001), and it negatively correlatedwith twomarkers of lung function, forced vital ca-
pacity (FVC) and pulmonary diffusion capacity for carbon monoxide (DLCO). VCAM-1 protein levels were highly
expressed in IPF subjects where it was detected in fibrotic foci and blood vessels of IPF lung. Treatment of human
lung fibroblasts with TGF-β1 significantly increased steady-state VCAM1 mRNA and protein levels without af-
fecting VCAM1mRNA stability. Further, cellular depletion of VCAM-1 inhibitedfibroblast cell proliferation and re-
duced G2/M and S phases of the cell cycle suggestive of cell cycle arrest. These effects on cell cycle progression
triggered by VCAM1 depletion were associatedwith reductions in levels of phosphorylated extracellular regulat-
ed kinase 1/2 and cyclin D1. Thus, these observations suggest that VCAM-1 is a TGF-β1 responsivemediator that
partakes in fibroblast proliferation in subjects with IPF.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Idiopathic pulmonary fibrosis is a chronic lethal lung disease with
unknown cause andno cure [1,2]. IPF has theworst prognosis among in-
terstitial lung diseases (ILD) [3] with a median survival of 2.5 to 3 years
[4]. The principal hypothesis of IPF pathogenesis has been suggested to
be aberrant alveolar-re-epithelialization caused by repeated alveolar
epithelial injury [5]. The failure of proper wound healing is proposed
to be due to a complex array of mechanisms involving modifications
of fibroblast–myofibroblast transformation, epithelial cell apoptosis,
changes in hemostasis of cytokines, chemokines, and transforming
growth factor β1 (TGF-β1), all of which play critical roles in IPF patho-
genesis via promoting extracellularmatrix accumulation and phenotyp-
ic changes of fibroblasts and epithelial cells in IPF lungs [6–8].
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Vascular cell adhesion molecule 1 (VCAM-1) is an immunoglobulin
superfamily member [9] that is expressed in large and small blood
vessels after cytokine stimulation and mediates adhesion of lympho-
cytes, monocytes, eosinophils, and basophils to vascular endothelium.
VCAM-1 plays a critical role in the development of atherosclerosis and
rheumatoid arthritis [10], facilitates leukocyte-endothelial cell adhesion
and plays a role in signal transduction [11].We previously reported that
high VCAM-1 protein in peripheral blood levels of IPF patients predicts
mortality [12], but its mode of expression and putative role as a contrib-
utor to IPF pathogenesis remains unclear. In some studies there
has been limited success in detecting levels of VCAM-1 protein in IPF
lungs [13].

In this study, we demonstrate that VCAM-1 expression is elevated in
human IPF lung fibroblasts and that its expression is responsive to ac-
tions of a critical mediator of disease, TGF-β1. Interestingly, silencing
VCAM-1 mRNA inhibits fibroblast proliferation and impairs cell cycle
progression through depletion of specific signaling factors implicating
in cellular proliferation. In aggregate, these observations provide a
foundation for further studies on the mechanistic role of VCAM-1 in
IPF pathogenesis.
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Table 1
The demographic and clinical information of subjects from the Lung Tissues Research
Consortium.

LTRC lung cohort Control IPF P-value

Age 63.6 ± 11.4 63.9 ± 8.2 NS
Female 27 (42.3%) 21 (25%) NA
Non-Caucasian 8 (7.33%) 9 (6.7%) NA
FEV1% 95.0 ± 12.62 70.4 ± 18.2.6 1.03E−25
FVC% 94.4 ± 13.12 63.38 ± 16.16 3.55E−38
DLCO % 84.05 ± 16.7 46.7 ± 17.8 5.96E−38

1)FVC = force vital capacity.
2)DLco = carbon monoxide diffusing capacity.
3)And FEV1 = forced expiratory volume in one second.
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2. Materials and methods

2.1. Materials

VCAM-1 antibody was obtained from Novus Biologicals (Littleton,
CO). Anti-collagen type 1 antibody was from Rockland (Limerick, PA).
β-actin antibody was purchased from Sigma-Aldrich (St. Louis, MO).
The cyclin D1, cyclin D2, cyclin D3, cdk2, cdk4 and cdk6 antibodies
were from Cell Signaling (Danvers, MA). The anti-ERK1/2, phospho-
ERK1/2, p38 and phospho-p38 antibodies were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA). The miRNA mini Kit was from
Qiagen (Louisville, KY). The primers for VCAM-1 and qRT-PCRwere pur-
chased from ABI (Foster City, CA). Recombinant human TGF-β was ob-
tained from R&D Systems (Minneapolis, MN). VCAM-1 shRNA was
purchased from Dharmacon (Lafayette, CO). The CytoSelect BrdU cell
proliferation ELISA kit was from Cell Biolabs (San Diego, CA). The Cell
Cycle Phase Determination Kit was obtained from Cayman (Ann
Arbor, MI). Western Lightning Plus ECL was from PerkinElmer (Boston,
MA). Actinomycin D was from Sigma (St. Louis, MO).

2.2. Microarrays

Primary lung tissues were isolated from normal (n = 109) and IPF
lungs (n = 134). Total RNA was extracted, labeled and hybridized to
Agilent 44 k whole human genome microarrays (Agilent Technologies,
Wilmington, DE). After cyclic-LOESS normalization, Genomica and
SAM were applied for statistical analysis. A 5% false discovery rate was
used for significance in microarray data.

2.3. RNA extraction and real-time PCR analysis

All patients were evaluated at the University of Pittsburgh Medical
Center, Pittsburgh, PA; the study was performed in accordance to the
protocols approved by the University of Pittsburgh Institutional Review
Board. The diagnosis of IPF was established on the basis of American
Thoracic Society (ATS) and European Respiratory Society (ERS) criteria
[14]. Clinical data were available through the Simmons Center Database
at the University of Pittsburgh. Smoking status was defined as previous-
ly described [15]. All patients signed informed consent to participate in
the study. Total cellular RNA was extracted from the lungs of eleven IPF
and eleven control subjects obtained from University of Pittsburgh
Health Sciences Tissue Bank (Pittsburgh, PA). RT-PCR was performed
according to the manufacturer's protocol as we described previously
[16].

2.4. Immunohistochemical analysis

Paraffin-embedded IPF and control lung tissue specimens were ob-
tained from the University of Pittsburgh Health Sciences Tissue Bank
(Pittsburgh, PA), and immunohistochemical analysis was performed
as previously described [17]. Briefly, the slides were deparaffinized in
xylene, ethanol, and rehydrated in phosphate-buffered saline (PBS),
blocked for 1 h in 10% bovine serum albumin and incubated with pri-
mary anti-VCAM-1 antibody overnight. Slides were then washed
with PBS three times and incubated with biotinylated donkey anti-
mouse secondary antibody (Jackson ImmunoResearch Laboratories
Inc., West Grove, PA) for 1 h. The images were visualized with an
Olympus CH2™ microscope and obtained using aDP25 camera
(Olympus America Inc., Melville, NY).

2.5. Cell culture, TGF-β1 stimulation and immunoblot analysis

Early passages (1–3) of primary normal human lung fibroblasts from
theUniversity of Pittsburgh Tissue bankwere cultured in F-12 (1×)me-
dium supplementedwith 10% fetal bovine serum (FBS) according to the
supplier's protocol. All experiments were performed on cells at 70–
80% confluence. Treatment with recombinant TGF-β1 (5 ng/ml)
was performed for 24 h. Immunoblots were performedwith antibod-
ies against VCAM-1 (1:1000), β-actin (1:10,000) and bands quanti-
tated and analyzed using ImageJ software.
2.6. Enzyme-linked immunosorbent assay (ELISA)

IPF subjects (n= 48) and control subjects (n= 50) were evaluated
at the University of Pittsburgh Medical Center. Recruitment and data
collection has been previously described [18]. Smoking status was de-
fined as described in [15]. The demographic and clinical information of
subjects involved in this study are shown in Table 1 from the Lung Tis-
sues Research Consortium (LTRC) for the gene expression cohort and
Table 2 for the Pittsburgh plasma cohort. VCAM-1 levels were detected
using a VCAM-1 ELISA kit according to the manufacturer's protocol.
2.7. Cell proliferation

The proliferation of lung fibroblasts was detected using a CytoSelect
BrdU cell proliferation ELISA kit. To determine BrdU incorporation into
cellular DNA during cell proliferation, cells on a 96-well cell culture
plate were transfected with VCAM-1 shRNA or a control shRNA using
Effecten transfection reagent. After 12 h, medium was changed and
cells were incubated for an additional 24 h. An aliquot of BrdU was
then added to the medium and cells were incubated for an additional
3 h at 37 °C. After washing with PBS, cells were fixed for 30 min and
BrdU incorporation into total cellular DNA was determined using anti-
BrdU antibody following the manufacturer's instructions.
2.8. Cell cycle phase determination

To determine cell cycle progression, the lung fibroblasts were
transfected with VCAM-1 shRNA or control shRNA as described above
[19,20]. After transfection, cells were fixed and then stained with
propidium iodide for 30 min at room temperature in the dark. Cells in
individual cycle phases were analyzed by flow cytometry and captured
with a 488 nm excitation laser.
2.9. Bleomycin murine model of fibrosis

Male and female C57BL/6 mice (6 to 8 weeks old) are deeply
anesthetized and bleomycin at 3 U/kg (standard dose) or 1 U/kg (low
dose) or saline control was administered intratracheally in a volume
of 50 μL. Mice are sacrificed on day 14 with pentobarbital, and the
lungs are excised for determination of VCAM-1 content. All
procedures were executed in accordance with approved protocols
through the University of Pittsburgh Institutional Animal Care and Use
Committee.



Table 2
The demographic and clinical information of subjects from the Pittsburgh plasma cohort.

Pittsburgh plasma cohort Characteristics IPF

Age Years 64.8 ± 8.2
Female Sex Absolute/PEZRCENT % 17 (35.4%)
Non-Caucasian Absolute number 3(6.25%)
PFTs FEV1% 77.2 ± 18.8%

FVC% 68 ± 19.8%
DLCO% 48.2 ± 11%

4)FVC = force vital capacity.
5)DLco = carbon monoxide diffusing capacity.
6)FEV1 = forced expiratory volume in one second.
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2.10. Statistical analysis

The group comparisons between diseased and control subjects were
performed using an unpaired two-tailed Student's t-test for normally
distributed data. A level of p b 0.05 was considered statistically signifi-
cant. Spearman correlation tests were used for computation of VCAM-
1 mRNA correlation with pulmonary function tests utilizing Stata soft-
ware. The bands on immunoblots were quantified by using ImageJ,
and then densitometric ratios were calculated. The ratios data were sta-
tistically analyzed to discriminate their differences by using an unpaired
student t test. The immunoblot data were representatives of 3–5 sepa-
rate experiments.

3. Results

3.1. VCAM-1 mRNA levels in IPF subjects negatively correlate with pulmo-
nary function

Data mining of our previously published LTRC microarray data re-
vealed that VCAM1 is one of the most significantly expressed genes in
IPF lung [21,22]. Indeed, the steady-state VCAM-1 mRNA levels were
significantly increased in IPF lungs compared to controls (P = 0.0001)
Fig. 1. VCAM-1 mRNA levels are increased in IPF lungs and negatively correlate with pulmona
microarray profiling of lung tissues from IPF (IPF: n = 134) and control subjects (control:
[21,22]. B, C: Associations between continuous variables were established by a Spearman corre
software. For FVC association; rho = −0.2186, P = 0.0123 and for DLco; rho = −0.2074, P
(n=11) were measured using qRT-PCR analysis. Total cellular RNAwas extracted with Triazol
Data represent fold change inVCAM-1/S18A ratiowith a ratio for control cells taken as one fold. D
IPF groups.
(Fig. 1A). Analysis of potential correlation of VCAM-1 mRNA levels
with pulmonary function parameters revealed that there is a statis-
tically significant negative correlation between VCAM-1 and DLco
percent predicted (rho =−2, P= 0.02) and FVC percent predicted
(rho = − 0.22, P = 0.0121) (Fig. 1B and C, respectively) demon-
strating that increased VCAM-1 mRNA negatively correlates with
pulmonary function. To validate the microarray results, we
performed VCAM-1-specific qRT-PCR analysis of the independent
cohort consisting of 11 IPF and 11 control lung specimens. In agree-
ment with microarray data, VCAM-1 mRNA was significantly
increased in IPF lungs compared to controls (Fig. 1D). Taken to-
gether, these data demonstrate that VCAM-1 mRNA is increased
in IPF lung that correlates with worse pulmonary function.

3.2. VCAM-1 protein levels are elevated in IPF lungs

To determine whether increased VCAM-1 mRNA levels result in
elevated expression of protein, we next compared VCAM-1 protein
levels in the plasma and lungs of IPF and non-diseased (control) sub-
jects. Comparison of plasma from 48 IPF and 50 control subjects using
VCAM-1 ELISA assays demonstrated that VCAM-1 protein levels were
significantly higher in the IPF cohort (Fig. 2A). Levels of immunoreactive
VCAM-1 were almost undetectable at baseline in control lungs. Similar-
ly, analysis of whole lung tissue from four IPF and four control subjects
showed a 3-fold increase in VCAM-1 protein levels in IPF lungs (Figs. 2B,
C). To confirm our findings, we performed analysis of whole lung tissues
frommicewith bleomycin-induced lung fibrosis. We found that VCAM-
1 levels were modestly increased in bleomycin-treated mice compared
to control lungs (Fig. 2D). Collectively, these data demonstrate that the
VCAM-1 protein levels are elevated in both the plasma and lungs of IPF
subjects and in a murine lung model of fibrosis.

3.3. VCAM-1 expression, cellular localization and regulation by TGF-β1

To determine the cell types responsible for VCAM-1 expression in
IPF lungs, we performed immunohistochemical analysis of lung tissue
ry function. A. VCAM-1 expression levels were extracted from publically available data by
n = 109). VCAM-1 is up-regulated in IPF subjects compared to control (*P = 0.0001)
lation analysis and the regression lines have been fitted in two-way scatterplots by Stata
= 0.02. D: VCAM-1 mRNA levels in lungs of control subjects (n = 11) and IPF subjects
. The mitochondrial ribosomal protein S18A (MRPS18A) was used as an internal standard.
ata are expressed asmeans±SEusing an unpaired students t-test *P b 0.003 for controls vs



Fig. 2. Plasma VCAM-1 levels are increased in IPF subjects. A. Plasma VCAM-1 (ng/ml) was assayed in control subjects (n= 50) and IPF (n= 48) subjects using an ELISA assay. Approx-
imately equal sample sizes were used in each group and the comparison between each group was computed using an unpaired Student t-test. (P=0.0003, mean= 737.2979 and SD=
186.8587 for IPF and mean= 596.735 and SD= 178.8378 for controls). B, C. Whole lung tissue lysates were obtained from IPF lungs and control lungs as described in the Materials and
methods section. Protein levels of VCAM-1 and collagen 1 (Col1, positive control) were determined by immunoblotting. Shown is a representative immunoblot for VCAM1, Col1, and β-
actin as a loading control. The bands were quantified by ImageJ and the ratios are presented in panel C showing fold change in IPF lungs compared to control lungs. D. Control (C) or
bleomycin (BL) treated mice (n = 3 mice/group) were euthanized, VCAM-1 protein levels in whole lung were detected by immunoblotting (inset) and bands quantitated
densitometrically (below).
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specimens from four IPF subjects and four control lungs. In control lung,
VCAM-1 was poorly, if at all, detected in distal lung tissue (Fig. 3A). Im-
portantly, VCAM-1 protein levels were markedly higher in IPF lungs
with predominant localization in fibrotic areas (Fig. 3A, arrows) with
additional positive staining detected in lung vessels (Fig. 3B, right
panel) highlighting that lung fibroblasts are one major site of VCAM-1
expression in IPF lungs. To confirm our findings, we examined primary
human fibroblasts isolated from IPF and control lungs. As seen in Fig. 4A
andB, IPFfibroblasts had higher VCAM-1protein compared to cells from
control lung donors. Of note, treatment of control lung fibroblasts with
Fig. 3. Expression of VCAM-1 protein in IPF lung. A. Paraffin embedded IPF and control lungswer
used to identify the target protein on the lung tissue slides. The IPF lung show staining in endo
stitium (yellow arrowheads). No staining was detected with the non-immune isotype control (
IPF lung vessels (V) (arrow) was detected and lack of staining was observed in control lung ve
TGF-β1, a crucial mediator of IPF pathogenesis increased VCAM-1 pro-
tein levels 4-fold in lung fibroblasts (Fig. 4C, D) suggesting that
fibroblast-responsive up-regulation of VCAM-1 in IPF lungs may be
caused by TGF-β1. Todeterminewhether the increased VCAM-1 protein
level is indeed induced by mRNA translation, total RNA was extracted
from cells and real time PCR was performed. TGF-β1 triggered a
several-fold increase in the VCAM-1 transcript that was maximal at
6 h of analysis (Fig. 4E). The response of VCAM-1mRNAwas still robust
at 12 and 24 h of analysis after TGF-β1 exposure but was of lower mag-
nitude. Additional analysis of VCAM-1 mRNA stability were conducted
e incubated overnight in primary antibody at 4 °C. An appropriate secondary antibodywas
thelial cells (black arrows), airway epithelial cells (red arrowheads) and cells in the inter-
magnification ×100, yellow inset bar = 100 μm). B. Brown staining for VCAM-1 protein in
ssels.



Fig. 4. Expression of VCAM-1 protein in primary lung fibroblasts. A–B. Control and IPF human lung fibroblasts were cultured and harvested at 70–80% confluence. VCAM-1 protein was
examined by immunoblotting. Collagen 1 served as positive control for IPF lung fibroblasts and β-actin was used as a loading control of individual samples. The immunoblot shown is
a representative of three independent experiments. In (B) individual bands were analyzed densitometrically and corrected for loading and densitometric ratios are shown as a bar
graph. *P b 0.05 for control vs IPF groups. C–D. Lung fibroblasts were cultured and stimulated with TGF-β1 (5 ng/ml) for 24 h. The bands on immunoblots were quantified by ImageJ
and densitometric ratios shown in Figure D. Statistical analysis was performed by using an unpaired student t-test. *P = 0.0018 for control vs TGF-β1 groups. Data shown are represen-
tatives of 3–5 independent experiments. E. Lung fibroblasts were cultured and stimulated with or without TGF-β1 (E) for 24 h. F. Lung fibroblasts were cultured in the presence of acti-
nomycin D (ActD)with orwithout the inclusion of TGF-β1 (5 ng/ml) in the culturemedium for various time points as shown. In both (E) and (F) total cellular RNAwas extracted and real
time PCR was performed to assay VCAM-1 mRNA as shown. The data represents three separate experiments except panel (F), n = 2.
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using actinomycin D (Fig. 4F). VCAM-1 transcript exhibited a t ½ of ~6 h
and the stability of the mRNA was not significantly altered by
exogenous TGF-β1 administration. Taken together, these results suggest
that TGF-β1 released in IPF lung robustly increases VCAM-1 gene
transcription rather than modulating the lifespan of its transcript in
human lung fibroblasts.

3.4. VCAM-1 regulates lung fibroblast proliferation

To investigate the physiologic role of VCAM-1 in human fibroblasts,
we focused on cell proliferation given the role of TGF-β1 in cell growth
and repair. Cells were transfected with a control shRNA or VCAM-1
shRNA and BrdU labeling were quantitated. Compared to lung fibro-
blasts treated with control shRNA, VCAM-1 shRNA showed ~47% lower
BrdU incorporation (Fig. 5A). We next assayed the effects of VCAM-1
depletion on cell cycle progression and observed that cells transfected
with VCAM-1 shRNA exhibited an increase in G0/G1 coupled to reduced
G2/M and S-phase compared to control lung fibroblasts (Fig. 5B). To
evaluate potential mechanisms of VCAM-1 depletion, we assayed im-
munoreactive levels of several mediators of proliferative signaling
(Fig. 5C,D). Indeed, cells transfected with VCAM-1 shRNA showed re-
duced levels of phosphorylated p38, extracellular signal-regulated ki-
nase ½ (ERK½) (Fig. 5C) and reducedmass of cyclin D1 (Fig. 5D). The
results suggest that VCAM-1 abundance modulates specific regulato-
ry components involved in fibroblast growth.

4. Discussion

The mechanisms whereby VCAM-1 levels are elevated in IPF and
how this adhesion molecule might contribute to the pathobiology of
disease are not well understood. The new findings from this study
include (i) the demonstration of a negative correlation between lung
VCAM-1 transcripts and pulmonary function, (ii) the identification
that VCAM-1 protein expression is elevated in fibroblasts isolated
from human IPF lungs, (iii) that VCAM-1 protein mass is increased in
response to a pro-fibrotic regulator, TGF-β1 through a mechanism that
is independent of effects on VCAM-1 mRNA stability, and (iv) that si-
lencing VCAM-1 expression inhibits fibroblast proliferation by inducing
G0/G1 cell cycle arrest. These observations provide a biologic framework
for future studies investigating the molecular regulation of this adhe-
sion molecule at the level of gene transcription in IPF models.

Our previous work indicated that up-regulated VCAM-1 protein
levels in the peripheral blood of IPF subjects are associated with in-
creased mortality and is in line with the association of this biomolecule
with disease risk, outcome, and severity [12]. However, to date, the
source of VCAM-1 in the circulation was unknown in IPF subjects. We
found that in addition to peripheral blood, VCAM-1mRNA is also signif-
icantly upregulated in lung tissues from IPF patients compared to a
control cohort. Given that IPF subjects may have pulmonary vascular
hypertension, our data are consistent with prior observations showing
that serumVCAM-1 also predicts the risk for vascular disease [23]. Inter-
estingly, studies in systemic sclerosis report that increased VCAM-1 in
serum is also associated with pulmonary involvement and pulmonary
hypertension thus supporting a potential mechanistic role for this pro-
tein [24,25]. VCAM-1 is also observed in atopic asthmawhere it is relat-
ed to disease activity [26].While our data show significant differences in
VCAM-1 protein and mRNA expression between IPF subjects and con-
trol subjects, we are aware of the limitations associatedwith a relatively
small sample size for the group of subjects tested for validation of mi-
croarray datasets with IPF and control (n = 11/group). Despite this
shortcoming, we were able to show consistently that an increase in
IPF VCAM-1 protein in plasma using the existing cohort was sufficient



Fig. 5. VCAM-1 cellular depletion decreases fibroblast proliferation by impairing cell cycle progression. A. Human lung fibroblasts were transfected with control shRNA or VCAM-1 shRNA
and proliferation of cells was assessed using BrdU labeling as described in the Materials and methods section. Significantly reduced BrdU incorporation was observed in VCAM-1 shRNA
transfected cells (*P= b 0.05 in shRNA control vs VCAM-1 shRNA). B. VCAM-1 cellular depletion was conducted as in (A). VCAM-1 silencing on cell cycle progressionwas then determined
infibroblasts after depleting the adhesionmolecule. Significantly reduced S phase andG2/Mphasewere observed inVCAM-1 shRNA transfected cells (P= b 0.05) versus control shRNA. C-
D. Human lung fibroblasts were cultured, transfected and harvested at 70–80% confluence as described above using shRNA. Cell lysates were harvested and processed for immunoblot
analysis of indicated cell signaling proteins and key proteins involved in cell cycle regulation. The data are representative of n = 2 separate experiments.
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to detect significant differences in VCAM-1 lung levels using immuno-
blot analysis. Given that lung mRNA VCAM-1 levels in IPF subjects neg-
atively correlate with pulmonary function and VCAM-1 is shed during
inflammation [27], these data suggest that the lung is one potential res-
ervoir of blood-derived VCAM-1 that may be predictive of disease
severity.

Because the cellular origin of VCAM-1 in pulmonary tissue may be
linked to IPF disease pathogenesis, we further identified that VCAM-1
protein is expressed predominantly by IPF fibroblasts in fibrotic foci
and is sensitive to TGF-β1 stimulation. Because TGF-β1 is a well-
recognized driver of fibrotic lung remodeling, it is possible that
increased VCAM-1 protein or mRNA concentrations in the peripheral
bloodmay serve as an indicator of active fibrotic lung remodeling. Inter-
estingly, high level expression of VCAM-1 inmouse lungs was observed
in a murine model of radiation-induced pulmonary fibrosis, and its
expression was significantly reduced after pulmonary manganese su-
peroxide dismutase treatment, suggesting that at least in experimental
chronic lung injury VCAM-1 levels might serve as an additional bio-
marker to monitor effects of anti-oxidant therapeutic intervention [28].

Not surprisingly, in addition to fibrotic foci and early-passage lung
IPF fibroblasts, we found increased VCAM-1 levels in lung vessels in
human IPF lung. Up-regulation of VCAM-1 is a sensitivemarker of endo-
thelial responses to oxidative stress. Further, vascular pathology is
observed in IPF subjects with pulmonary hypertension [29,30]. While
a mechanistic role of VCAM-1 in IPF is not yet fully elucidated, its role
as a signaling molecule in other cell types is well documented [31,32].
As an example, hypoxic exposure up-regulates VCAM-1 together with
other adhesion molecules, triggering an array of pro-inflammatory
signaling events in pulmonary arteries [33]. Many of these signaling
events are reversed during normoxia, but may be accentuated by medi-
ators expressed in IPF. In this regard, TGF-β1, an integral mediator of
pulmonary fibrosis, displays cross-talk with VCAM-1 raising a potential
signaling mechanism that may be relevant in human IPF linked to in-
creased adhesion molecules. The link between VCAM1 expression and
TGF-β1, identified by us in IPF fibroblasts, raises the possibility that
TGFβ1may be a driving stimulus that alters VCAM-1 expression leading
to both fibrosis and vascular pathology [34].

VCAM-1 transcripts are known to be upregulated by pro-
inflammatory stimuli [35,36]. Here we observed a robust increase
in both VCAM-1 mRNA and protein levels in response to exogenous
TGF-β1 in human fibroblasts. The VCAM-1 mRNA lifespan was rel-
atively short (t ½ ~ 6 h) consistent with the half-life of the tran-
script in synovial fibroblasts [35]. Interestingly, unlike the effects
of IL-4 and TNF-α that induce VCAM-1 mRNA by stabilizing its
transcripts, our data suggest that TGF-β1 triggers an increase in
mRNA synthesis in human lung fibroblasts [35]. Our data also con-
trasts with findings of others in astrocytes where TGF-β1 inhibits
TNF-α and IL-1β induction of VCAM-1 mRNA [36]. The ability of
TGF-β1 that is centrally involved in IPF pathogenesis to elicit adhe-
sion molecule expression in our studies also raises additional ques-
tions as to the physiological role of transcriptionally activated
VCAM-1 on modulating fibroblast phenotypic behavior. We found
that depletion of endogenous VCAM-1 results in a decrease in fibro-
blast growth and reduction in levels of key signaling molecules im-
plicated in cell survival and cycle progression. These results are
consistent with observations elsewhere showing that VCAM-1 li-
gation activates ERK 2 resulting in increased expression of cyclin
D1 [37]. Whether VCAM-1 is a bona fide molecular target for ther-
apeutic intervention will require additional studies in preclinical
models. These results do not exclude small molecule VCAM-1 in-
hibitors or biologics against adhesion molecules. In fact, studies
are underway targeting the VCAM-1 co-receptor, α4β1 integrin,
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in neoplasia supporting a role of this molecular apparatus in acti-
vating cell survival pathways [38]. However, given its promiscuous
roles in numerous biological processes, the present data together
with findings of others suggest a potential role of VCAM-1 as a bio-
marker in IPF and an upstream signaling molecule that regulates
the fibroblast phenotype rather than a pharmaceutical target.
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