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Abstract

Concept lattices (also called Galois lattices) are an ordering of the maximal rectangles defined by a binary relation. In this
paper, we present a new relationship between lattices and graphs: given a binary relationR, we define an underlying graph
GR , and establish a one-to-one correspondence between the set of elements of the concept lattice ofR and the set of minimal
separators ofGR . We explain how to use the properties of minimal separators to define a sublattice, decompose a binary relation,
and generate the elements of the lattice.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

One of the important challenges in data handling is generating or navigating the concept lattice of a binary relation.
Concept lattices are well-studied as a classification tool[1], are used in several areas of Database Managing, such as Object-

Oriented Databases[42], inheritance lattices[21,10], mining for association rules[43,32], generating frequent sets[41], and are
a promising aid for the rapidly emerging field of data mining for biological databases.

In this paper, we present a new paradigm for describing and understanding concept lattices, by equating the concepts of the
lattice with the set of minimal separators of an underlying graph.

The notion of minimal separator, introduced by Dirac in 1961 to characterize chordal graphs[13], has been extensively studied
during the past decade on non-chordal graphs[23,22,29,2,40], and has yielded many new theoretical and algorithmical graph
results.

We apply some of these results to analyzing and decomposing a binary relation and the associated lattice. The mechanisms
involved are illustrated on a running example.

The paper is organized as follows:
Section 2 gives some preliminary notions on concept lattices and graph separators, and presents our example. For undefined

notions, the reader is referred to the classical works of[11] and[17]. In Section 3, we define the underlying graphGR which we
use to represent a binary relationR, describe some of its properties, and explain how it relates to the concept latticeL(R). In
Section 4, we define a sublattice by making into a clique a minimal separator of the underlying graph. Section 5 shows how to
use a clique minimal separator to decompose a binary relation. In Section 6, we compute the successors of an element. Section
7 addresses the algorithmic issue of generating all the elements of the lattice efficiently.
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2. Preliminaries

2.1. Concept lattices

Originally, the lattice defined by a binary relationRwas known as the Galois lattice ofR, as described by Barbut and Monjardet
[1], and was studied by several mathematicians. Later Ganter and Wille[16] introduced the wider notion of ‘context’, renamed
these lattices as ‘concept lattices’, and studied them extensively, with many interesting results. When the terminologies between
these two tendencies differ, we will give both terms in the definitions below.

Given a finite setP of “properties” or “attributes” (which we will denote by lowercase letters) and a finite setO of “objects”
or “tuples” (which we will denote by numbers), a binary relationR is a proper subset of the Cartesian productP× O; the triple
(P,O, R) is called acontext. We will refer to the elements of the relation asones, and to the non-elements aszeroes. Given a
subsetP′ of P and a subsetO′ of O, we will say that the setR ∩ (P′ × O′) is asub-relationof R.

Definition 2.1. Given a contextC=(P,O, R), aconceptorclosed setofC, also called amaximal rectangleofR, is a sub-product
A × B ⊆ R such that∀x ∈ O − B, ∃y ∈ A | (y, x) /∈R, and∀x ∈ P − A, ∃y ∈ B | (x, y) /∈R. A is called theintentof the
concept,B is called theextent.

Note that in general, a context will define an exponential number of concepts.

Example 2.2. P = {a, b, c, d, e, f }, O = {1,2,3,4,5,6}. The table below describes binary relationR:

bc × 12 andabf × 3 are maximal rectangles (concepts) ofR. bc is theintentof rectanglebc × 12, and 12 itsextent.

A lattice is a partially ordered set in which every pair{A,A′} of elements has both a lowest upper bound (denoted by
join(A,A′)) and a greatest lower bound, (denoted bymeet(A,A′), [11]), extending the notion of lowest common ancestor for a
pair of nodes in a tree.

Given a contextC = (P,O, R), the concepts ofC, ordered by inclusion on the intents, define a lattice, called aconcept lattice
orGalois lattice. A dual lattice is defined by inclusion on the extents. We represent a lattice by the Hasse diagram of the partial
ordering on all maximal rectangles: transitivity and reflexivity arcs are omitted. Concepts are often referred to aselementsof
this lattice.

Such a lattice, sometimes referred to as a complete lattice, has a smallest element, called thebottom element, and a greatest
element, called thetop element.

An elementA′ × B ′ is said to be adescendantof elementA × B if A ⊂ A′. An elementA′ × B ′ is said to be asuccessorof
elementA × B if A ⊂ A′ and there is no intermediate elementA′′ × B ′′ such thatA ⊂ A′′ ⊂ A′. The set of successors of an
element is called thecoverof this element. The successors of the bottom element are calledatoms.

The notions ofpredecessor, ancestorandco-atomare defined dually.
A path from bottom to top in the Hasse diagram is called amaximal chainof the lattice.
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abf x 3 abc x 2

a x 236 b x 123 c x 125 d x 145

bcde x 1

de x 14cd x 15bc x 12ab x 23

abcdef   x

φ x 123456

φ

Fig. 1. Concept latticeL(R) of relationRof Example 2.2.

Example 2.3. Fig. 1gives the concept lattice of the relation of our example.ab × 23 andbc × 12 are not comparable,ab × 23
is a successor ofa × 236,a × 236 is a predecessor ofab× 23. The atoms ofL(R) are:a × 236,b× 123,c× 125 andd × 145.
(∅ × 123456,b × 123,bc × 12,abc × 2, abcdef × ∅) is a maximal chain of the lattice.

2.2. Graphs

The graphs used in this work are finite and undirected. A graph is denotedG = (V ,E); V is the vertex set,|V | = n and
E ⊆ V 2 = {{x, y}|x, y ∈ V, x �= y} is the edge set,|E| = m. ForX ⊂ V , G(X) denotes the subgraph induced byX in G.
Theneighborhoodof vertexx (the set of verticesy such thatxy is an edge ofE) is denoted byN(x). If xy is an edge ofE, we
say thatx andy seeeach other. ForX ⊂ V , N(X) = ⋃

x∈X(N(x)) − X. A clique is a setX of pairwise adjacent vertices (i.e.
∀x �= y ∈ X, xy ∈ E). An independent set(sometimes called a stable set) is a setX of pairwise non-adjacent vertices (i.e.
∀x �= y ∈ X, xy /∈E).

An asteroidal tripleof vertices[25] is an independent set of three vertices{x1, x2, x3} such that for every pair(xi , xj ) of
vertices of this triple, there is a path fromxi to xj which does not intersectN(xk), wherexk is the third vertex of the triple. A
graph is said to beAT-freeif it has no asteroidal triple of vertices. Aclaw is a subgraph isomorphic toK1,3, a graph on four
verticesx1, x2, x3, x4 with only edgesx1x2, x1x3 andx1x4.

We will also need the notion of minimal triangulation, which is the process of embedding a graph into a chordal graph by the
addition of an inclusion-minimal set of edges. A graph is said to bechordal(or triangulated) if it contains no chordless induced
cycle of length strictly greater than three.

Definition 2.4 (Rose et al.[34] ). LetG = (V ,E) be a non-chordal graph;H = (V ,E + F) is aminimal triangulationof G if
H is chordal and for all proper subsetF ′ of F, graph(V ,E + F ′) fails to be chordal.

The basic notion we use in this work is that of minimal separator.
A separator Sof a connected graphG is a subset of vertices such that subgraphG(V − S) is disconnected.S is called anxy-

separatorif xandy lie in different connected components ofG(V −S); Sis called aminimal xy-separatorif Sis anxy-separator
and no proper subset ofSseparatesx from y. Finally,Sis called aminimal separatorif there is some pair{x, y} of vertices such
thatS is a minimalxy-separator. Note that ifxy /∈E, then the graph has at least one minimalxy-separator.

Example 2.5. In the graph fromFig. 2, S = {a, b} is anxy-separator and anyz-separator.S′ = {a} is also anyz-separator.S is a
minimalxy-separator, but not a minimalyz-separator, sinceScontains a smalleryz-separatorS′.

The following characterization is often used in graph papers:

Property 2.6. LetG= (V ,E) be a connected graph, let S be a vertex set. S is aminimal separatorof G iff there are at least two
distinct connected components A and B ofG(V − S) such thatN(A) = N(B) = S; A and B are calledfull components.
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Fig. 2. Graph of example 2.5.

A separatorS is called aclique separatorif it is a separator and a clique; we will say that wesaturatea non-clique separator
S if we add all missing edges necessary to makeS into a clique.

A vertex is said to beuniversalif it sees all the other vertices of the graph.

Property 2.7. A vertex is universal iff it belongs to all the minimal separators of the graph.

Proof. Let x be a universal vertex of a graphG= (V ,E); suppose there is some minimal separatorSwhich does not containx;
let C be the component ofG(V − S) which x belongs to, letC′ be a second component ofG(V − S), let y be a vertex ofC′:
clearly,xy /∈E, which contradicts the assumption thatx is universal inG.

Conversely, Letx be a vertex which is not universal; lety be a vertex whichx does not see: there must be a minimal separator
which separatesx from y and therefore does not containx. �

As a consequence of Property 2.7, ifX is the set of universal vertices of graphG, andS is a non-empty set of vertices, then
S is a minimal separator of a connected component ofG(V − X) iff S ∪ X is a minimal separator ofG. The set of universal
vertices of a graph can be found in linear (O(m)) time.

Definition 2.8. A subsetX of vertices is said to be aclique moduleiff ∀x, y ∈ X, {x} ∪ N(x) = {y} ∪ N(y).

Belonging to a maximal clique module defines an equivalence relation[5], and it is easy to show that the corresponding
partition can be computed in linear time using Hsu and Ma’s partition refinement algorithm[20], which is described on chordal
graphs, but works just as well on arbitrary graphs. In the rest of this paper, we will often refer to a maximal clique moduleX as
if it was a vertex, with degree|N(X)|.

Definition 2.9. A vertexx is simplicial ifN(x) is a clique, a maximal clique moduleX is simplicial ifN(X) is a clique.

Simplicial vertices can be seen as the ‘opposite’ of universal ones, as illustrated by the following property, which is the mirror
of Property 2.7:

Property 2.10 (Berry [2] ). A vertex is simplicial iff it belongs to no minimal separator of the graph.

We will discuss simplicial vertices again in Section 3.

3. The co-bipartite graph underlying a binary relation

In a previous work[6], it is shown that the elements of the Galois lattice of the incidence relation of an undirected graph define
separators of the complement of the graph. This leads us to represent a given context by a graph constructed on the complement
of the relation.

Definition 3.1. Let C = (P,O, R) be a context; we will define an associated underlying graph, denotedGR , as follows (Fig.
3):
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Fig. 3. Underlying graphGR of relationRof Example 2.2.

• The vertex set ofGR is P ∪ O.
• P andO are cliques.
• For a vertexx of P and a vertexy of O, there is anxyedge inGR iff (x, y) is not in R.

Note that only the edges between a vertex ofP and a vertex ofO are relevant and need be traversed when searching the graph;
thusmwill refer to |P ∪ O| − |R|. In order to make our illustrations clearer, we will omit the internal edges ofP andO in our
figures in the rest of this paper.

By construction, the graphGR we have just described belongs to the class of co-bipartite graphs. The graphs of this class
have several remarkable properties, such as being AT-free and claw-free. This class is also hereditary: any subgraph of a co-
bipartite graph which has more than one vertex is again co-bipartite. Moreover, since the relations we work on are considered as
non-empty, graphGR is always connected.

This ensures several nice properties on the minimal separators of co-bipartite graphs, which makes them easier to handle than
on more general graphs.

Lemma 3.2. An independent set in a co-bipartite graph is of size at most two.

Proof. Suppose there exists a co-bipartite graphG= (V ,E) with an independent setX ⊆ V of size three or more. By definition
of a co-bipartite graph,V can be partitioned into two cliques. AsX contains at least three vertices, at least two of them are in the
same clique, a contradiction.�

Corollary 3.3. A co-bipartite graph is AT-free and claw-free.

Corollary 3.4. Let G be a co-bipartite graph constructed on cliquesP andO; then every minimal separator S of G has exactly
2 connected components, A and B, the first of which contains only vertices ofP and the second only vertices ofO.

We can also give a characterization for the minimal separators in co-bipartite graphs, derived from Property 2.6:

Characterization 3.5. Let S be a vertex set of a co-bipartite graphG = (V ,E); S is a minimal separator of G iffG(V − S)

has exactly two connected components A and B such thatN(A) = N(B) = S.

We are now ready to prove our main result:

Main Theorem 3.6. LetC= (P,O, R) be a context, letGR = (V ,E) be the corresponding co-bipartite graph, letA �= ∅ ⊂ P,
B �= ∅ ⊂ O; thenA × B is a concept of R iffS = V − (A ∪ B) is a minimal separator ofGR .
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Fig. 4. SeparatorS = {a, d, e, f,3,4,5,6} of GR .

Proof. LetC = (P,O, R) be a context,GR = (V ,E) the corresponding co-bipartite graph.

(1) LetA×B be a concept ofR, withA �= ∅,B �= ∅, andA∪B �= V , letS =V − (A∪B) S =V − (A∪B) is not empty. We
claim that for eacha ∈ A, b ∈ B, S is a minimalab-separator ofGR . First of all,S is anab-separator: if there was an edge
ab in GR , then by definition(a, b) would not be inRand thereforeA×B would not be a concept. Next we will prove that
S is minimal: suppose that it is not; by Property 2.6, w.l.o.g. there must be some vertexx ∈ S such thatx sees no vertex of
B, which means that∀y ∈ B, (x, y) ∈ R; Ax × B would be a rectangle ofR, which contradicts the minimality ofA × B.

(2) Conversely, letSbe a minimal separator ofGR , let A andB be the connected components ofG(V − S). As connected
components,AandBare not empty; as a separator,Sis not empty, thenA∪B �= V . Since∀x ∈ A, ∀y ∈ B, xy /∈E and thus
(x, y) ∈ R, we can conclude thatA×B is a rectangle ofR. SupposeA×B fails to be maximal: w.l.o.g.∃x ∈ O−B, ∀y ∈ A,
(y, x) ∈ R. Thusx ∈ S and, inGR , xwill see no vertex ofA, so by Property 2.6,Sfails to be minimal, a contradiction.�

Definition 3.7. Let A × B be a concept of relationR, let S = V − (A ∪ B). We will say that minimal separatorS represents
conceptA × B.

We can now reformulate Characterization 3.5 to show that, given only the intent or the extent of a concept, it is easy to infer
both parts of the concept:

Characterization 3.8. LetA × B be a rectangle of relation R, with A �= ∅, B �= ∅, andA ∪ B �= P ∪ O; thenA × B is a
concept iff inGR , N(A) = N(B).

Main Theorem 3.6 endows the minimal separators ofGR with a lattice structure. This structure is related to the lattice structure
of the so-called minimalab-separators of a graph shown by Escalante in[14], which we will mention again in Section 7, and
also to the lattice structure of subsets of vertices described by[19,35,31,18,6].

From Main Theorem 3.6, we can deduce that a co-bipartite graph may have an exponential number of minimal separators,
since a concept lattice can have an exponential number of elements. It is well known that, for a given size ofP, the largest lattice
obtainable is the lattice describing all the subsets ofP, and that the corresponding relation has exactly one zero in each column
and exactly one zero in each line (in this case, of course,|P| = |O|). The corresponding co-bipartite graph with a maximum
number of minimal separators is thus the graph in which|P| = |O| and each vertex ofP sees exactly one vertex ofO.

Example 3.9. In Fig. 4 S = {a, d, e, f,3,4,5,6} is a minimal separator of graphGR of Fig. 3 separatingC1 = {b, c} from
C2 = {1,2}, andbc × 12 is a concept ofRand an element ofL(R). In GR , N({b, c}) = N({1,2}) = S.

We will now discuss how special cases such as lines of zeroes or ones of the relation, or lattice notions such as join and meet
operations and atoms and co-atoms, can be interpreted in terms of graphs.

Interpretation of the lines of zeroes and lines of ones of the relation. Any line (column or row) ofzeroesof a binary relationR
corresponds to a universal vertex ofGR . Thus, according to Property 2.7, this line can be deleted fromRwithout modifying the
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set of concepts of(P,O, R), and can likewise be deleted fromGR without modifying the structure of the minimal separators of
the graph. We will use this remark in Section 5 when decomposing a relation.

If Rcontains a linexof ones, thenxwill be simplicial inGR and thus, by Property 2.10 will belong to no minimal separator of
GR . Therefore, it will appear in every concept of(P,O, R) and can be removed fromR to decrease the number of edges during
computation of the concepts.

Join and meet operations. It is easy, given two minimal separators ofGR , to find the join and meet of the concepts that they
represent.

Property 3.10. LetA1 × B1, A2 × B2 be two elements of the lattice. LetS1 = V − (A1 ∪ B1), let S2 = V − (A2 ∪ B2), let
Y = S1 ∪ S2, let J = (V − Y )∩O andM = (V − Y )∩P; then J is the extent ofJoin(A1 ×B1, A2 ×B2) and M is the intent
ofMeet(A1 × B1, A2 × B2).

This can be deduced from the following property:

Property 3.11 (Birkhoff [11] ). Let A1 × B1, A2 × B2 be two elements of a concept lattice. ThenB1 ∪ B2 is the extent of
Join(A1 × B1, A2 × B2) andA1 ∪ A2 is the intent ofMeet(A1 × B1, A2 × B2).

Atoms and co-atoms. In [5], the notion of moplex was introduced as a general definition of the extremity of a graph. It is
interesting to note that the moplexes of the underlying graphGR correspond precisely to the non-trivial extremities of the lattices:
its atoms and co-atoms.

Definition 3.12 (Berry and Bordat[5] ). A vertex setXwhich defines a maximal clique module, and such thatN(X) is a minimal
separator, is called amoplex.

Property 3.13. Let R be a relation with no lines of ones, letL(R) be the corresponding concept lattice, letGR be the underlying
graph. IfA×B is an atom ofL(R) then A is a moplex ofGR ; if A×B is a co-atom ofL(R), then B is a moplex ofGR ; there
are no other moplexes inGR .

Proof. LetC=(P,O, R) be a context,L(R) the corresponding concept lattice, andGR=(V ,E) the corresponding co-bipartite
graph.

(1) Let A × B be an atom ofL(R), represented by minimal separatorS = N(A) = N(B). Clearly, asA is a subset ofP,
it is a clique. We claim thatA is a module: suppose that it is not. By Definition 2.8, there must existx, y in A such that
N(x) �= N(y). We can suppose w.l.o.g. that there exists a vertexb in O such thatxb ∈ E andyb /∈E. As a consequence,
A×B has a predecessor, the intent of which isA′ ⊆ A−{x} and the extent of which isB ′ ⊇ B ∪ {b}. Moreover, asy ∈ A′
andR has no lines of ones,A′ × B ′ cannot be the bottom element∅ × O of R. Therefore,A × B fails to be an atom, a
contradiction. We can conclude, by Definition 3.12, thatA is a moplex.

A similar proof shows dually that ifA × B is a co-atom ofL(R) thenB is a moplex.
(2) Conversely, letA be a moplex ofGR , and letS = N(A) be the associated minimal separator. By Characterization 3.5,S

defines two connected components, one of which isA; the other will be denotedB, with N(B) = S.
SupposeA ⊆ P; by Characterization 3.8,A×B is a concept ofL(R). AsA �= ∅ andRhas no lines of zeroes, thenA×B

is not the bottom element ofL(R) and has thus at least one predecessor. AsA is a module, for allx, y ∈ A, N(x)=N(y).
As a consequence, the only way of extendingB in order to have a predecessor ofA×B in the lattice is to remove all vertices
of A, which can only result in∅ × O, the bottom element ofL(R). Thus,A × B is an atom ofL(R). If A ⊆ O, we prove
dually thatB × A is a co-atom ofL(R). �

4. Selecting a sublattice by saturating a minimal separator

Computing a minimal triangulation of a graph is an important problem, with many applications.
Recent work has shown that minimal separators could be used to compute a minimal triangulation, essentially by repeatedly

saturating a minimal separator of the graph[23,30,3]. The process of saturating one minimal separator causes a number of other
minimal separators to disappear from the graph; this process was first introduced by[23], and is extensively studied in[30] and
[29] and its mechanism is described and used in[8].

In this Section, we will examine what happens to the lattice when a minimal separator of the underlying graph is saturated.
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Definition 4.1 (Kloks et al.[23] ). LetSandTbe two minimal separators of graphG;T is said tocross Sif there are two different
connected componentsC1 andC2 of G(V − S) such thatT ∩ C1 �= ∅ andT ∩ C2 �= ∅.

Theorem 4.2(Parra [29] ). A minimal separator of a graph G is a clique separator iff it does not cross any other minimal
separator of G.

Property 4.3 (Parra and Scheffler[30] ). Let G be a graph, let S be a minimal separator of G, letGS denote the graph obtained
from G by saturating S; then T is a minimal separator ofGS iff T is a minimal separator of G and T does not cross S in G.

We will use this result on our underlying graphGR : saturating a minimal separatorSof GR defines a new relationR′, in
which for eachxy edge added toS, the corresponding element(x, y) is deleted fromR. According to Property 4.3, we expect
every concept of the resulting relationR′ to be a concept of the original relationR.

Theorem 4.4. Let R be a binary relation,andGR the corresponding underlying co-bipartite graph. Let S be aminimal separator
ofGR , representing conceptA×B in latticeL(R), letR′ be the new relation obtained by saturating S. Then the following two
properties hold:

(1) Concept latticeL(R′) can be obtained fromL(R) by removing all the elements which are not comparable toA × B.
(2) Concept latticeL(R′) is a sublattice of the original latticeL(R).

To prove this, we will need the following Lemma, which establishes the relationship between non-crossing minimal separators
in a graph and comparable elements in a lattice.

Lemma 4.5. Let R be a binary relation, letL(R) be the associated concept lattice, and letGR be the corresponding underlying
co-bipartite graph. Let S andS′ be minimal separators ofGR , let A × B andA′ × B ′ respectively be the concepts which S
andS′ represent; then S andS′ are non-crossing minimal separators ofGR iff A× B andA′ × B ′ are comparable elements in
L(R).

Proof. LetSandS′ be two minimal separators, respectively representing conceptsA × B andA′ × B ′.

(1) SupposeSandS′ are non-crossing. By Definition 4.1, this implies w.l.o.g. thatS ∩ A′ �= ∅. ThenA′ ⊆ (A ∪ B) and, as
A′ ⊆ P andB ⊆ O, A′ ⊆ A. Thus,A × B is a descendant ofA′ × B ′; these concepts are therefore comparable.

(2) SupposeSandS′ are crossing. By Definition 4.1,S ∩ A′ �= ∅ andS′ ∩ A �= ∅; thenA′�A andA�A′. As a consequence,
conceptsA × B andA′ × B ′ are not comparable.�

Proof (of Theorem 4.4). LetRbe a relation,L(R) its concept lattice,GR the underlying graph, andSa minimal separator of
GR . LetR′ be the relation obtained fromRby saturatingSandL(R′) its concept lattice. By Property 4.3, saturatingScauses to
disappear from the graph exactly those minimal separators which are non-crossing withS. Thus, by Lemma 4.5, concepts which
are not comparable withA × B disappear fromL(R). As a result,L(R′) is a sublattice ofL(R). �

Theorem 4.4 defines a process which enables us to restrict a binary relationR to a sub-relationR′ ⊂ R such thatL(R′) is a
sublattice ofL(R). This may prove important in many applications, as arbitrarily restricting a relation will not, in general, yield
a sublattice, and can even cause the resulting lattice to be larger than the original one; indeed, not much is known on the exact
mechanisms which govern the number of concepts defined by a given binary relation.

Example 4.6. Let us saturate separatorS = {a, d, e, f,3,4,5,6} of GR in Fig. 4representing conceptbc × 12. Edgesa3, a6,
d4, d5, e4 andf 3 will be added (Fig. 5).

Fig. 6gives the new relationR′ obtained.Fig. 7gives the sublatticeL(R′) obtained. SaturatingShas caused conceptsa×236,
ab × 23,abf × 3, d × 145,cd × 15 andde × 14 to disappear from the lattice.

We will conclude this section by discussing the minimal triangulations ofGR , as related to the minimal separator saturation
process.

We will first remark that by virtue of the results in[27] and[29] onAT-free and claw-free graphs, all the minimal triangulations
of GR are proper interval graphs. (The reader is referred to[25,33] and[17] for the definitions of interval graphs and proper
interval graphs).
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Fig. 5. Relationships between relation, graph and lattice while saturating a separator.

Fig. 6. Original relationR; new relationR′ defined by saturating minimal separatorS = {a, d, e, f,3,4,5,6}.

abf x 3 abc x 2

a x 236 b x 123 c x 125 d x 145
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b x 123 c x 125
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bc x 12
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   x 123456φ

φ

(R) (R′ )

Fig. 7. Original latticeL(R); latticeL(R′) obtained by saturating the minimal separator which represents conceptbc × 12.

Property 4.7. [Berry [2]] Given an input graph G, the process of repeatedly choosing a minimal separator of G which is not a
clique, and saturating it, until all minimal separators are cliques, yields a minimal triangulation of the input graph in less than n
steps. Moreover, this process characterizes the minimal triangulations of G: each minimal triangulation H of G is characterized
by the minimal separators of H.
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abc x 2

b x 123

bc x 12

abcdef x

   x 123456φ

φ

Fig. 8. Lattice obtained by computing a minimal triangulation of graphGR of Fig. 3.

Property 4.8. Computing a minimal triangulation ofGR by repeatedly saturating a non-clique minimal separator will result
in a proper interval graphGR′′ and a corresponding relationR′′ such thatL(R′′) is a maximal chain ofL(R).

Proof. This follows directly from Theorem 4.4, as the process of repeatedly removing all concepts not comparable to a concept
taken on some maximal chain will result in this chain.�

Property 4.9. There is a one-to-one correspondence between minimal triangulations ofGR and maximal chains ofL(R).

Proof. This follows from Properties 4.7 and 4.8, as a proper interval graph is a triangulated graph and as a minimal triangulation
H = (V ,E + F) of a given graphG = (V ,E) is uniquely characterized by the set of minimal separators ofH. �

Remark 4.10. A maximal chain of the concept lattice of context(P,O, R) has less than min(|P| + |O|) elements and can be
obtained in less thenn steps, according to Property 4.7. Since each time a minimal separator is saturated the number of concepts
decreases, the process of saturating a minimal separator, described by Theorem 4.4, can be repeated as many times as necessary,
and can always result in a polynomial-sized sublattice. This may be very useful when the concept lattice is exponentially large,
because it allows the user to examine only a part of it (Fig. 8).

5. Using minimal separators to decompose a binary relation and its lattice

In [39], Tarjan introduced the decomposition by clique separators of a graph. This process is defined by repeatedly copying
some clique separatorS into each of the components it defines. This decomposition is proved to be unique and optimal when
only clique minimal separators are used[24], and can be described by the following general decomposition step:

Clique minimal separator decomposition Step 5.1.Let G be a graph, let S be a clique minimal separator of G, defining
componentsC1, C2, . . . , Ck . Replace G withG1 = G(C1 ∪ N(C1)), G2 = G(C2 ∪ N(C2)), . . . andGk = G(Ck ∪ N(Ck)).

This decomposition has the remarkable property that it distributes the minimal separators into the subgraphs it defines.

Property 5.2 (Berry and Bordat[4] ). Let G be a graph, let S be a cliqueminimal separator of G, letS(G) be the set of minimal
separators of G. After a decomposition step of G by S, the elements ofS(G)− {S} are partitioned into the subgraphs obtained.

In the case of co-bipartite graphs, the clique minimal separator decomposition process is considerably simplified by the fact
that each minimal separator defines only two connected components: Decomposition Step 5.1 on clique minimal separatorS,
defining componentsA ⊂ P andB ⊂ O, would yield subgraphsG1 = GR(A ∪ N(A)) andG2 = GR(B ∪ N(B)). Since by
Characterization 3.8,N(A) = N(B) = S, G1 = GR(A ∪ S) andG2 = GR(B ∪ S). Moreover, sinceS is a clique, the vertices
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of S ∩ P are universal in graphGR(A ∪ S) and according to Property 2.7, they convey no information on minimal separators
and can be removed from the graph. The vertices ofS ∩ O are likewise universal inGR(B ∪ S), and can be removed. For a
co-bipartite graphGR derived from a binary relationR, we will thus define a simplified decomposition step, which replacesGR

with G1 = GR(A ∪ (S ∩ O)) andG2 = GR(B ∪ (S ∩ P)).
As a consequence of Property 5.2, computing the set of minimal separators of the original underlying graphGR can be

done separately on the smaller subgraphs defined by a decomposition step by a clique minimal separator:T1 will be a minimal
separator ofG1 iff T1 ∪ (S ∩P) is a minimal separator ofGR , T2 will be a minimal separator ofG2 iff T2 ∪ (S ∩O) is a minimal
separator ofGR . Thus the concepts ofRcan be computed separately on the sub-relations defined. Moreover, it is clear thatG1
contains all the minimal separators representing a concept which is an ancestor ofA × B, and thatG2 contains all the minimal
separators representing a concept which is a descendant ofA × B.

In a co-bipartite graph, the presence of a clique minimal separator can be tested for in linear time, and the decomposition can
be computed in the same time[26]. However, in general, there may not be any clique minimal separator inGR . We can combine
the discussion above with the results from Section 4 and artificially saturate a non-clique minimal separator, and then go on to
decompose the graph.

One of the remarkable property of co-bipartite graphs is that the edges added when saturating a minimal separator are not
copied into any of the subgraphs defined by the above decomposition, as edges would be added between a vertex ofS ∩ O and
a vertex ofS ∩ P. Thus the decomposition step is the same whether or not the clique minimal separator used to decompose the
graph is “natural” or “artificial”.

We will thus define the following decomposition steps, which can use any minimal separator, whether it is a clique or not:

Co-bipartite graph decomposition Step 5.3.LetGR be theunderlyinggraphof context(P,O, R), letSbeaminimal separator
of GR , defining componentsA ⊂ P and B ⊂ O. ReplaceGR with G1 = GR(A ∪ (S ∩ O)) = GR(A ∪ (O − B)) and
G2 = GR(B ∪ (S ∩ P)) = GR(B ∪ (P − A)).

From Decomposition Step 5.3, we can derive a corresponding relation decomposition.

Relation decomposition Step 5.4.LetGR be the underlying graph of context(P,O, R), letL(R) be the associated concept
lattice, let S be a minimal separator ofGR , defining componentsA ⊂ P andB ⊂ O. Then R can be decomposed into two
sub-relationsR1 = R(A, (O − B)) andR2 = R((P − A),B) such that:

(1) a conceptX×Y of R is an ancestor of conceptA×B inL(R) iff X×(Y −B) is a concept of relationR1.The corresponding
sublattice ofL(R), of whichA × B is the top, contains exactly the concepts, the intent of which is a subset of A; it also
contains exactly the concepts, the extent of which will be a superset of B.

(2) a conceptX × Y of R is a descendant of conceptA × B in L(R) iff (X − A) × Y is a concept of relationR2. The
corresponding sublattice ofL(R), of whichA × B is the bottom, contains exactly the concepts, the extent of which is a
subset of B; it also contains exactly the concepts, the intent of which will be a superset of A.

Chances are the resulting sub-relations will be much smaller than the original one, and thus the queries on them much less
costly.

This process enables us to efficiently answer the following type of query:
“If we have a set of propertiesX, (for example a set of symptoms in a medical database), which sub-relation should we work

on in order to define only the concepts which contain all the properties included inX?”
To do this, we simply:

• compute the smallest concept, the intention of which containsX, and
• extract the sub-relation corresponding to the descendants of this concept.

Example 5.5. Let us use minimal separatorS={a, d, e, f,3,4,5,6} of Example 3.9. The corresponding lattice is given inFig.
1 in Section 2.Sdefines componentsA = {b, c} andB = {1,2}, thus representing conceptbc × 12. S ∩ O = {3,4,5,6} and
S ∩ P = {a, d, e, f }.

A decomposition step usingSwill yield G1= GR(C1 ∪ (S ∩ O))= GR′({b, c,3,4,5,6}) andG2 = GR(C2 ∪ (S ∩ P)) =
GR′({a, d, e, f,1,2}), as illustrated byFig. 9 where edges are omitted in cliquesP andO. The initial relationR and its
corresponding sub-relationsR1 andR2 obtained are given inFig. 10.

With a linear-time pass ofG1 it will become clear that vertices 4 and 6 have also become universal and can be removed.Fig.
11 shows the very restricted graphG′

1 finally obtained. The minimal separators ofG′
1 are{b,3} and{c,5}, corresponding to
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Fig. 9. GraphsG1 andG2 from decomposition of Example 5.5 (the internal edges ofP andO are omitted).

Fig. 10. RelationsR1 andR2 from decomposition of Example 5.5.

b c

5 3 2

a de

1

Fig. 11. The very restricted graphsG′
1 andG′

2 obtained after a decomposition step by minimal separator onGR in Example 5.5.

conceptb× 3 andc× 5. In the global graph, putting componentC2 = {1,2} back in will yield at no extra cost conceptsb× 123
andc × 125 of the original lattice. These are precisely the predecessors ofbc × 12.

In G2, vertexf has become universal, and a linear-time pass will show that verticesdandenow share the same neighborhood,
and can be contracted without loss of information on the minimal separators of the graph.

The resulting graphG′
2 is also restricted to four vertices, and is shown inFig. 11. Its minimal separators are represented by

a × 2 andde × 1, which, once we have putC1 = {b, c} back in, defines the conceptsabc × 2 andbcde × 1, which are the
successors ofbc × 12.

The corresponding lattice decomposition is illustrated inFig. 12.
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abf x 3 abc x 2
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Fig. 12. Lattices obtained by decomposition step of Example 5.5.

6. Computing the cover of an element of the lattice

We will now use the classical properties of graphs to characterize the concepts which constitute the cover of an element of the
lattice.

We will need to define the concept ofdominationin a graph:

Definition 6.1. A vertex x is said to bedominating(or strongly dominating) in graphG if there is some vertexy such that
N(y) ⊂ N(x). We will say that a maximal clique moduleX is dominating if there is some vertexy ∈ N(X) − X such that
∀x ∈ X,N(y) ⊂ N(x). Conversely we will say that a vertex or maximal clique module isnon-dominatingif it is not dominating.

Property 6.2. LetG= (V ,E) be a co-bipartite graph, letX ⊂ V be a maximal clique module of G; then X is a moplex iff X is
non-dominating.

Proof. LetG = (V ,E) be a co-bipartite graph andX ⊂ V a maximal clique module ofG.

(1) SupposeX is a moplex; thenN(X) is a minimal separator inducing (by Characterization 3.5) a second connected component,
the neighborhood of which isN(X); thusX is non-dominating.

(2) SupposeX is non-dominating; thenY = V − (N(X) ∪ X) has the same neighborhood asX and thenN(X) is a minimal
separator; thusX is a moplex. �

Property 6.3. LetGR be the underlying graph of context(P,O, R), letX ⊂ P be a maximal clique module ofGR ; thenN(X)

represents an atom, with intent X, iff X is non-dominating inGR .

Proof. As we previously said, we consider only relations without any line of zeroes of or ones. Thus, we use Property 6.2 to
reformulate Property 3.13.�

We can use Property 6.3 and the results from the previous section to compute the cover of a given elementA × B, by
decomposing the lattice and thus obtaining a sublattice of whichA × B is the bottom element.

Theorem 6.4. A conceptA′ ×B ′ covers a conceptA×B iff in G2 =G(B ∪ (P−A)) there is some non-dominating maximal
clique module X such thatA′ = X + A.

For complexity considerations, we need to remark that a maximal clique moduleX of minimum degree is non-dominating,
and that finding the set of vertices which dominate a given maximal clique moduleX can be done in linear time by checking for
universal vertices inN(X).

Our strategy for finding the set of non-dominating maximal clique modules ofGR is the following:

(1) compute in linear time all the maximal clique modules ofGR and contract them;
(2) choose a vertexx of minimum degree in the resulting graph;
(3) compute in linear time the set of vertices which dominatex.



40 A. Berry, A. Sigayret /Discrete Applied Mathematics 144 (2004) 27–42

(4) Removex and the vertices which dominatex from the graph and go back to Step 2.

This requires O(m) time per non-dominated maximal clique module computed.
In Fig. 3, the set of maximal clique modules is exactly the set of vertices. Verticese and f are dominating (e dominatesd

andf dominates botha andb). N(a) = {b, c, d, e, f,1,4,5}, N(b) = {a, c, d, e, f,4,5,6}, N(c) = {a, b, d, e, f,3,4,6}, and
N(d) = {a, b, c, e, f,2,3,6}, which defines the atoms ofL(R) as:a × 236, b × 123, c × 125 andd × 145.

7. Generating the concepts

Recent work has been done on the efficient generation of the concepts defined by a binary relation. One may want to generate
and store all the concepts[28], or simply encounter each at least once, without storing them[15], or one may want to compute
the concepts along with their structure, i.e. the arcs of the Hasse diagram of the lattice[12].

In parallel, recent work has been done to generate all the minimal separators or all the minimalxy-separators of a graph
[38,22,7,36].

As an illustration of the use that can be made of our new paradigm, we will show how we can easily match the current best
worst time complexities for concept generation using graph results.

When generating and storing the concepts, the current best complexity is held by[28], and is O(n2) per concept.
Let us use our underlying graphGR as described in Section 3, and add two simplicial verticesx andy, such thatx is a

neighbor of all vertices ofP, y of all vertices ofO. It is easy to see that the set of minimal separators of this new graph is exactly
{P}∪ {O}∪S(GR), whereS(GR) is the set of minimal separators ofGR . Using the results from[36], who claim a complexity
of O(n2) time per minimalxy-separator to generate and store them, we can easily generate and store all the concepts ofR in
O(n2) time per concept, noting that[36] claims a better space complexity than[28].

When generating the concepts without storing them, the current best-time complexity is held by Ganter[15], and is O(|P2||O|),
i.e. O(n3).

For this, we will use the results from Section 6 to recursively compute the cover of each element in a depth-first fashion. Since
the lattice is of height at mostn, such a DFS will require only polynomial space. By the results from Section 6, each element
will be generated by its predecessor in linear (0(m)) time. A given element will be generated as many times as its number of
predecessors, which is at most|P|, as a depth-first traversal easily enables to know whether an encountered element has already
been processed. Sincem< |P|.|O|, each element will be generated in O(|P2||O|), which matches the complexity of[15], noting
that we generated the Hasse diagram, whereas[15] does not.

Note that our more recent work[37,9]uses this process with an adequate data structure maintained which enables us to obtain
a better complexity of O(m) per generated concept, plus O(nm) per maximal chain of the lattice traversed by the recursive
depth-first algorithm and the corresponding spanning tree.

8. Conclusion

Though specific problems such as minimizing the number of times a database is accessed remain to be translated in terms of
graph separators, we have presented a new approach to answering queries on the concept lattice of a binary relation, which uses
a rapidly growing toolbox: the theory of minimal separation in undirected graphs.

We can expect that this approach will create a bridge between the two fields of concept lattice theory and undirected graph
theory, and yield new results in both fields.

As noted by one of our referees, which we thank for these remarks, there is a one-to-one correspondence between the maximal
chains of the lattice (corresponding to Guttman scales) and the maximal sub-Ferrers relations, which should be investigated in
view of our results. It would also be interesting to examine the relationships between concepts, minimal separators, maximal
bicliques and minimal hypergraph traversals, which are known to be different facets of the same object.

Moreover, we feel that since the minimal separators of a graph seem to describe the structure of the graph, we have contributed
to show a strong semantic aspect behind the concepts defined by a binary relation.

Several open questions arise from the issues discussed in this paper.
It is not known whether the set of non-dominant vertices can be computed in less than linear time per vertex, but improving

this would also improve the complexity of the algorithmic process described in Section 7.
Likewise, efficiently computing the set of minimal separators which cross a given minimal separatorSwould result in a better

generation algorithm for concepts.
We have illustrated the use of clique minimal separator decomposition, but other minimal separator-preserving decompositions

would directly yield decompositions of a binary relation and of the associated lattice. Conversely, other known decompositions
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of binary relations might lead to new hole and anti-hole preserving graph decompositions, an important problem in the context
of perfect graphs.

Finally, it would be interesting to characterize the binary relations which define a polynomial number of concepts, or the
graphs which have a polynomial number of minimal separators; this might help the users of databases to maintain manageable
binary relations.
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