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Abstract

Concept lattices (also called Galois lattices) are an ordering of the maximal rectangles defined by a binary relation. In this
paper, we present a new relationship between lattices and graphs: given a binary Rlatmulefine an underlying graph
G g, and establish a one-to-one correspondence between the set of elements of the conceptRadticktbé set of minimal
separators of; g. We explain how to use the properties of minimal separators to define a sublattice, decompose a binary relation,
and generate the elements of the lattice.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

One of the important challenges in data handling is generating or navigating the concept lattice of a binary relation.

Concept lattices are well-studied as a classification[tdolare used in several areas of Database Managing, such as Object-
Oriented Databasg42], inheritance latticeR21,10], mining for association rulg43,32], generating frequent sq#l], and are
a promising aid for the rapidly emerging field of data mining for biological databases.

In this paper, we present a new paradigm for describing and understanding concept lattices, by equating the concepts of the
lattice with the set of minimal separators of an underlying graph.

The notion of minimal separator, introduced by Dirac in 1961 to characterize chordal §t8ptmeas been extensively studied
during the past decade on non-chordal grg@i3s22,29,2,4Q]and has yielded many new theoretical and algorithmical graph
results.

We apply some of these results to analyzing and decomposing a binary relation and the associated lattice. The mechanisms
involved are illustrated on a running example.

The paper is organized as follows:

Section 2 gives some preliminary notions on concept lattices and graph separators, and presents our example. For undefinec
notions, the reader is referred to the classical worf& tfand[17]. In Section 3, we define the underlying gra@h which we
use to represent a binary relatiBndescribe some of its properties, and explain how it relates to the concept I#itRe In
Section 4, we define a sublattice by making into a cligue a minimal separator of the underlying graph. Section 5 shows how to
use a clique minimal separator to decompose a binary relation. In Section 6, we compute the successors of an element. Sectior
7 addresses the algorithmic issue of generating all the elements of the lattice efficiently.
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2. Preliminaries
2.1. Concept lattices

Originally, the lattice defined by a binary relatiBwas known as the Galois latticeRfas described by Barbut and Monjardet
[1], and was studied by several mathematicians. Later Ganter and[¥]lentroduced the wider notion of ‘context’, renamed
these lattices as ‘concept lattices’, and studied them extensively, with many interesting results. When the terminologies between
these two tendencies differ, we will give both terms in the definitions below.
Given a finite set? of “properties” or “attributes” (which we will denote by lowercase letters) and a finit€ sét‘objects”
or “tuples” (which we will denote by numbers), a binary relatR®is a proper subset of the Cartesian prodéct ¢; the triple
(2, 0, R) is called acontext We will refer to the elements of the relation @ses and to the non-elements asroes Given a
subset?’ of 2 and a subseat’ of ¢/, we will say that the seR N (#’' x (') is asub-relationof R.

Definition 2.1. Given acontexC =(2, ¢, R), aconcepbr closed sebdf C, also called anaximal rectanglef R, is a sub-product
A x B C Rsuchthatvx € O — B,3y € A|(y,x)¢ R, andVx € Z — A,3Jy € B|(x,y) ¢ R. Ais called thententof the
conceptB is called theextent

Note that in general, a context will define an exponential number of concepts.

Example 2.2. # ={a, b, c,d, e, f}, 0 ={1, 2,3, 4,5, 6}. The table below describes binary relatiRn

al b|lc|d|el|f
1 X | X | X | X
2| x| x| X
3| x| x X
4 X | X
5 X | X
6| x

be x 12 andabf x 3 are maximal rectangles (conceptsfobcis theintentof rectanglebe x 12, and 12 itextent

A lattice is a partially ordered set in which every pdit, A’} of elements has both a lowest upper bound (denoted by
join(A, A”)) and a greatest lower bound, (denotechtigetA, A”), [11]), extending the notion of lowest common ancestor for a
pair of nodes in a tree.

Given a context = (2, 0, R), the concepts o, ordered by inclusion on the intents, define a lattice, calleaheept lattice
or Galois lattice A dual lattice is defined by inclusion on the extents. We represent a lattice by the Hasse diagram of the partial
ordering on all maximal rectangles: transitivity and reflexivity arcs are omitted. Concepts are often referretetoeagof
this lattice.

Such a lattice, sometimes referred to as a complete lattice, has a smallest element, chittdithelemeniand a greatest
element, called theop element

An elementd’ x B’ is said to be alescendantf elementd x B if A ¢ A’. An elementd’ x B’ is said to be auccessoof
elementA x B if A C A’ and there is no intermediate elemetit x B” such thatA ¢ A” c A’. The set of successors of an
element is called theoverof this element. The successors of the bottom element are eatiets

The notions opredecessgrancestorandco-atomare defined dually.

A path from bottom to top in the Hasse diagram is calledeximal chairof the lattice.
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| abcdef x@ |

| abf x 3 | | abcx2| | bcdex1|
[ abx23 | | bcx12 | [ cdx15 | [ dex14 |
[ ax236 | | bx123] | cx125] [ dx14§

@x 123456

Fig. 1. Concept lattice” (R) of relationR of Example 2.2.

Example 2.3. Fig. 1gives the concept lattice of the relation of our examplex 23 andbc x 12 are not comparablep x 23
is a successor of x 236,a x 236 is a predecessor @b x 23. The atoms of/(R) are:a x 236,b x 123,c x 125 andd x 145.
(¥ x 123456 x 123,bc x 12,abc x 2,abcdef x ¥) is a maximal chain of the lattice.

2.2. Graphs

The graphs used in this work are finite and undirected. A graph is deidbtedV, E); V is the vertex set|V| = n and
E C V2= {{x, yix,y € V,x # y}is the edge setE| =m. For X C V, G(X) denotes the subgraph induced ¥yn G.
The neighborhoodf vertexx (the set of verticey such thaky is an edge oE) is denoted by (x). If xyis an edge oE, we
say thatx andy seeeach other. FoX C V, N(X) = J,x (N (x)) — X. A cliqueis a setX of pairwise adjacent vertices (i.e.
Vx # y € X,xy € E). Anindependent sgisometimes called a stable set) is a Xeif pairwise non-adjacent vertices (i.e.
Vx #ye X, xy¢E).

An asteroidal tripleof vertices[25] is an independent set of three vertides, x2, x3} such that for every paifx;, x ;) of
vertices of this triple, there is a path framto x; which does not intersed (x), wherex; is the third vertex of the triple. A
graph is said to b&T-freeif it has no asteroidal triple of vertices. élaw is a subgraph isomorphic t%&1 3, a graph on four
verticesx1, x2, x3, x4 with only edgesc1.xp, x1x3 andx1x4.

We will also need the notion of minimal triangulation, which is the process of embedding a graph into a chordal graph by the
addition of an inclusion-minimal set of edges. A graph is said toHwmedal (or triangulated) if it contains no chordless induced
cycle of length strictly greater than three.

Definition 2.4 (Rose et al[34]). LetG = (V, E) be a non-chordal graplti = (V, E + F) is aminimal triangulationof G if
H is chordal and for all proper subsgt of F, graph(V, E + F’) fails to be chordal.

The basic notion we use in this work is that of minimal separator.

A separator Sf a connected grapB is a subset of vertices such that subgraqly — ) is disconnectedSis called arxy-
separatotif x andy lie in different connected components@tV — S); Sis called aninimal xy-separatoif Sis anxy-separator
and no proper subset 8fseparatex fromy. Finally, Sis called aminimal separatoif there is some paifx, y} of vertices such
thatSis a minimalxy-separator. Note that ify ¢ E, then the graph has at least one minixgabkeparator.

Example 2.5. In the graph fronFig. 2, S = {a, b} is anxy-separator and ayr-separators’ = {a} is also aryzseparatorSis a
minimal xy-separator, but not a minimgi-separator, sincg contains a smalleyzseparators’.

The following characterization is often used in graph papers:

Property 2.6. LetG = (V, E) be a connected graplet S be a vertex set. S is@nimal separatoof G iff there are at least two
distinct connected components A and B5@¢V — S) such thatv (A) = N(B) = S; A and B are calledull components.
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Fig. 2. Graph of example 2.5.

A separatolSis called aclique separatoif it is a separator and a clique; we will say that seguratea non-clique separator
Sif we add all missing edges necessary to make&o a clique.
A vertex is said to beniversalif it sees all the other vertices of the graph.

Property 2.7. A vertex is universal iff it belongs to all the minimal separators of the graph

Proof. Letx be a universal vertex of a grajgh= (V, E); suppose there is some minimal separ&which does not contaik;
let C be the component o (V — S) which x belongs to, leC’ be a second component 6fV — S), lety be a vertex oflC’:
clearly,xy ¢ E, which contradicts the assumption tkas universal inG.

Conversely, Lek be a vertex which is not universal; kgbe a vertex whick does not see: there must be a minimal separator
which separates fromy and therefore does not contain [

As a consequence of Property 2.7Xifs the set of universal vertices of gragh andSis a non-empty set of vertices, then
Sis a minimal separator of a connected componen® 6f — X) iff S U X is a minimal separator db. The set of universal
vertices of a graph can be found in linean®) time.

Definition 2.8. A subsetX of vertices is said to be @ique moduléff Vx,y € X, {x} UN(x) = {y} U N(y).

Belonging to a maximal clique module defines an equivalence relfiorand it is easy to show that the corresponding
partition can be computed in linear time using Hsu and Ma’s partition refinement alg¢gi@jmvhich is described on chordal
graphs, but works just as well on arbitrary graphs. In the rest of this paper, we will often refer to a maximal cliqueXesiule
if it was a vertex, with degregV (X)]|.

Definition 2.9. A vertexx is simplicial if N (x) is a clique, a maximal clique modul¢is simplicial if N (X) is a clique.

Simplicial vertices can be seen as the ‘opposite’ of universal ones, as illustrated by the following property, which is the mirror
of Property 2.7:

Property 2.10 (Berry[2]). A vertex is simplicial iff it belongs to no minimal separator of the graph

We will discuss simplicial vertices again in Section 3.

3. The co-bipartite graph underlying a binary relation

In a previous worK6], itis shown that the elements of the Galois lattice of the incidence relation of an undirected graph define
separators of the complement of the graph. This leads us to represent a given context by a graph constructed on the complemen
of the relation.

Definition 3.1. Let C = (2, O, R) be a context; we will define an associated underlying graph, derijeds follows Fig.
3):
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Fig. 3. Underlying grapl@ g of relationR of Example 2.2.

e The vertex setotiz isZ U 0.
e #and( are cliques.
e For avertexx of 2 and a vertey of ¢, there is arxy edge inG y iff (x, y) isnotin R

Note that only the edges between a verte’aind a vertex of’ are relevant and need be traversed when searching the graph;
thusmwill refer to |2 U (0| — |R|. In order to make our illustrations clearer, we will omit the internal edge® ahd ¢ in our
figures in the rest of this paper.

By construction, the grapti g we have just described belongs to the class of co-bipartite graphs. The graphs of this class
have several remarkable properties, such as being AT-free and claw-free. This class is also hereditary: any subgraph of a co-
bipartite graph which has more than one vertex is again co-bipartite. Moreover, since the relations we work on are considered as
non-empty, grapld z is always connected.

This ensures several nice properties on the minimal separators of co-bipartite graphs, which makes them easier to handle than
on more general graphs.

Lemma 3.2. An independent set in a co-bipartite graph is of size at most two

Proof. Suppose there exists a co-bipartite graph (V, E) with an independent sét C V of size three or more. By definition

of a co-bipartite graph/ can be partitioned into two cliques. Ascontains at least three vertices, at least two of them are in the
same clique, a contradiction]

Corollary 3.3. A co-bipartite graph is AT-free and claw-free

Corollary 3.4. Let G be a co-bipartite graph constructed on cliq@gsand (’; then every minimal separator S of G has exactly
2 connected componen®s and B the first of which contains only vertices@fand the second only vertices ©f

We can also give a characterization for the minimal separators in co-bipartite graphs, derived from Property 2.6:

Characterization 3.5. Let S be a vertex set of a co-bipartite graph= (V, E); S is a minimal separator of G i (V — §)
has exactly two connected components A and B suchMbaj = N(B) = S.

We are now ready to prove our main result:

Main Theorem 3.6. LetC = (2, O, R) be a contexlet G g = (V, E) be the corresponding co-bipartite graght A # ¢} C 2,
B # ¢ C 0;thenA x Bis aconceptof Riff =V — (A U B) is a minimal separator of; 5.
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Fig. 4. Separatof = {a, d, e, f, 3, 4,5, 6} of Gp.

Proof. LetC = (2, (), R) be a contextG r = (V, E) the corresponding co-bipartite graph.

(1) LetA x B beaconceptdR withA @, B # @, andAUB # V,letS=V —(AUB) S=V — (AU B) is not empty. We
claim that for eacla € A, b € B, Sis a minimalab-separator 065 . First of all, Sis anab-separator: if there was an edge
abin Gg, then by definitiona, ») would not be irR and therefored x B would not be a concept. Next we will prove that
Sis minimal: suppose that it is not; by Property 2.6, w.l.0.g. there must be some vestéxsuch thaix sees no vertex of
B, which means thaty € B, (x, y) € R; Ax x B would be a rectangle d®, which contradicts the minimality of x B.

(2) Conversely, leSbe a minimal separator @ , let A andB be the connected components@fV — S). As connected
componentsA andB are not empty; as a separai®is not empty, theld U B # V. SinceVx € A,Vy € B, xy ¢ E and thus
(x,y) € R, we can conclude that x B is a rectangle dR. Supposei x B fails to be maximal: w.l.o.g8x € O —B,Vy € A,
(y,x) € R.Thusx € S and, inG g, x will see no vertex oA, so by Property 2.6 fails to be minimal, a contradiction.d

Definition 3.7. Let A x B be a concept of relatioR, let S = V — (A U B). We will say that minimal separat® represents
conceptA x B.

We can now reformulate Characterization 3.5 to show that, given only the intent or the extent of a concept, it is easy to infer
both parts of the concept:

Characterization 3.8. Let A x B be a rectangle of relation Rvith A # @, B # ¢,andA U B # 2 U (; thenA x B is a
concept iff inGg, N(A) = N(B).

Main Theorem 3.6 endows the minimal separators giwith a lattice structure. This structure is related to the lattice structure
of the so-called minimahb-separators of a graph shown by Escalantfl 4], which we will mention again in Section 7, and
also to the lattice structure of subsets of vertices describ§ti®$5,31,18,6]

From Main Theorem 3.6, we can deduce that a co-bipartite graph may have an exponential number of minimal separators,
since a concept lattice can have an exponential number of elements. It is well known that, for a giverPsihe tdrgest lattice
obtainable is the lattice describing all the subset?pfnd that the corresponding relation has exactly one zero in each column
and exactly one zero in each line (in this case, of coyegge= |(]). The corresponding co-bipartite graph with a maximum
number of minimal separators is thus the graph in whigh= || and each vertex o sees exactly one vertex 6f

Example 3.9.In Fig. 4 S = {a, d, e, f, 3, 4,5, 6} is a minimal separator of grapfig of Fig. 3 separatingC1 = {b, ¢} from
Cy ={1, 2}, andbc x 12 is a concept odRand an element of’(R). InGg, N({b,c}) = N({1, 2}) = S.

We will now discuss how special cases such as lines of zeroes or ones of the relation, or lattice notions such as join and meet
operations and atoms and co-atoms, can be interpreted in terms of graphs.

Interpretation of the lines of zeroes and lines of ones of the relation line (column or row) ozeroewf a binary relatiorR
corresponds to a universal vertex@p . Thus, according to Property 2.7, this line can be deleted Renthout modifying the
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set of concepts of?, O, R), and can likewise be deleted frofiiy without modifying the structure of the minimal separators of
the graph. We will use this remark in Section 5 when decomposing a relation.

If Rcontains a linex of ones thenx will be simplicial in G g and thus, by Property 2.10 will belong to no minimal separator of
G g. Therefore, it will appear in every concept@?, ¢, R) and can be removed froRito decrease the number of edges during
computation of the concepts.

Join and meet operationdt is easy, given two minimal separators@g, to find the join and meet of the concepts that they
represent.

Property 3.10. Let A1 x B1, A2 x Bp be two elements of the lattice. L&t =V — (A1 U By), let S =V — (A2 U Bp), let
Y=S1USo let/=(V-Y)nOandM = (V — Y) N 2; then Jis the extent ofoin(A1 x B1, A2 x Bp) and M is the intent
of Meet(A1 x By, A2 x B»).

This can be deduced from the following property:

Property 3.11 (Birkhoff [11]). Let A1 x B1, A2 x By be two elements of a concept lattice. ThHenU B> is the extent of
Join(A1 x By, A2 x Bp) andA1 U Ay is the intent ofMeet (A1 x B1, A2 x B).

Atoms and co-atomdn [5], the notion of moplex was introduced as a general definition of the extremity of a graph. It is
interesting to note that the moplexes of the underlying gragltorrespond precisely to the non-trivial extremities of the lattices:
its atoms and co-atoms.

Definition 3.12 (Berry and Bordaf5] ). A vertex seiX which defines a maximal cligue module, and such M@X) is a minimal
separator, is calledrmoplex

Property 3.13. Let R be arelation with no lines of ondst ¥ (R) be the corresponding concept lattjéet G g be the underlying
graph. IfA x B is an atom of#(R) then A is a moplex df ; if A x B is a co-atom of? (R), then B is a moplex daf ; there
are no other moplexes ii g.

Proof. LetC=(2, O, R) be a contextZ(R) the corresponding concept lattice, aiid = (V, E) the corresponding co-bipartite
graph.

(1) Let A x B be an atom of?(R), represented by minimal separatoe= N(A) = N(B). Clearly, asA is a subset of?,
it is a clique. We claim thaf\ is a module: suppose that it is not. By Definition 2.8, there must existin A such that
N(x) # N(y). We can suppose w.l.0.g. that there exists a vdstex(® such thattb € E andyb ¢ E. As a consequence,
A x B has a predecessor, the intent of whicllisC A — {x} and the extent of which i8’ © B U {h}. Moreover, ag € A’
andR has no lines of ones}’ x B’ cannot be the bottom elememtx ¢ of R. Therefore,A x B fails to be an atom, a
contradiction. We can conclude, by Definition 3.12, tA@ a moplex.

A similar proof shows dually that it x B is a co-atom of? (R) thenB is a moplex.
Conversely, leA be a moplex ofG g, and letS = N(A) be the associated minimal separator. By Characterizatiors3.5,
defines two connected components, one of whidk the other will be denoteB, with N(B) = S.
Supposed C Z; by Characterization 3.8 x B is a concept ofZ(R). AsA # ¢ andR has no lines of zeroes, thenx B
is not the bottom element a¥ (R) and has thus at least one predecessoA &sa module, for alk, y € A, N(x) = N(y).
As a consequence, the only way of extendiig order to have a predecessordk B in the lattice is to remove all vertices
of A, which can only result if x ¢, the bottom element ¥’ (R). Thus,A x B is an atom of#(R). If A C @, we prove
dually thatB x A is a co-atom of?(R). O

@

~

4. Selecting a sublattice by saturating a minimal separator

Computing a minimal triangulation of a graph is an important problem, with many applications.

Recent work has shown that minimal separators could be used to compute a minimal triangulation, essentially by repeatedly
saturating a minimal separator of the grgp8,30,3] The process of saturating one minimal separator causes a number of other
minimal separators to disappear from the graph; this process was first introduf@3],land is extensively studied [80] and
[29] and its mechanism is described and usei@jn

In this Section, we will examine what happens to the lattice when a minimal separator of the underlying graph is saturated.
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Definition 4.1 (Kloks et al[23]). LetSandT be two minimal separators of gra@h T is said tocross Sf there are two different
connected componeng, andCo of G(V — §) such thatl’ N C1 # ¥ andT N Ca # 0.

Theorem 4.2(Parra [29]). A minimal separator of a graph G is a clique separator iff it does not cross any other minimal
separator of G

Property 4.3 (Parra and Schefflef30]). Let G be a graphlet S be a minimal separator of,&t G 5 denote the graph obtained
from G by saturating Shen T is a minimal separator @ s iff T is a minimal separator of G and T does not cross Sin G

We will use this result on our underlying graghg: saturating a minimal separat8rof G defines a new relatioR’, in
which for eachxy edge added t&, the corresponding elemet, y) is deleted fromR. According to Property 4.3, we expect
every concept of the resulting relatidt to be a concept of the original relatiéh

Theorem 4.4. Let R be a binary relatiorandG g the corresponding underlying co-bipartite graph. Let S be a minimal separator
of G g, representing concept x B in lattice Z(R), let R’ be the new relation obtained by saturating S. Then the following two
properties hold

(1) Concept lattice? (R’) can be obtained fron¥ (R) by removing all the elements which are not comparabla to B.
(2) Concept lattice? (R’) is a sublattice of the original lattice” (R).

To prove this, we will need the following Lemma, which establishes the relationship between non-crossing minimal separators
in a graph and comparable elements in a lattice.

Lemma 4.5. Let R be a binary relatioylet #(R) be the associated concept lattjead letG g be the corresponding underlying
co-bipartite graph. Let S and’ be minimal separators af g, let A x B and A’ x B’ respectively be the concepts which S
and S’ representthen S ands’” are non-crossing minimal separatorsGf iff A x B and A’ x B’ are comparable elements in
Z(R).

Proof. Let SandS$’ be two minimal separators, respectively representing coneepts? andA’ x B’.

(1) SupposesandsS’ are non-crossing. By Definition 4.1, this implies w.l.o.g. that A” # . ThenA’ € (A U B) and, as
A’ C2andB C 0, A’ C A. Thus,A x B is adescendant of’ x B’; these concepts are therefore comparable.

(2) Suppose&ands’ are crossing. By Definition 4.5,n A" = fandS’ N A # @; thenA’¢ A andAZ A”. As a consequence,
conceptsA x B andA’ x B’ are not comparable.[]

Proof (of Theorem 4.4). Let R be a relation,# (R) its concept latticeiG g the underlying graph, anla minimal separator of
Gg. Let R’ be the relation obtained froRby saturatingsand % (R’) its concept lattice. By Property 4.3, saturatBicauses to
disappear from the graph exactly those minimal separators which are non-crossiSghitis, by Lemma 4.5, concepts which
are not comparable with x B disappear fromZ(R). As a result,Z(R’) is a sublattice of”(R). O

Theorem 4.4 defines a process which enables us to restrict a binary rélati@nsub-relatiol®’ C R such that?(R’) is a
sublattice of# (R). This may prove important in many applications, as arbitrarily restricting a relation will not, in general, yield
a sublattice, and can even cause the resulting lattice to be larger than the original one; indeed, not much is known on the exact
mechanisms which govern the number of concepts defined by a given binary relation.

Example 4.6. Let us saturate separat®e= {a, d, ¢, f, 3, 4,5, 6} of G g in Fig. 4representing concept x 12. Edges:3, a6,
d4,d5, e4 and f 3 will be added Fig. 5).

Fig. 6gives the new relatioR’ obtainedFig. 7gives the sublattice” (R’) obtained. Saturatin§has caused concepts 236,
ab x 23,abf x 3,d x 145,cd x 15 andde x 14 to disappear from the lattice.

We will conclude this section by discussing the minimal triangulations gf as related to the minimal separator saturation
process.

We will first remark that by virtue of the results[ip7] and[29] on AT-free and claw-free graphs, all the minimal triangulations
of G g are proper interval graphs. (The reader is referref@5033] and[17] for the definitions of interval graphs and proper
interval graphs).



A. Berry, A. Sigayret/ Discrete Applied Mathematics 144 (2004) 27—-42 35

Gr R > L ®)

minimal separator - -----3 closed set X B '
saturate S select sublattice
v v
AN o ,
GR R s L R)

Fig. 5. Relationships between relation, graph and lattice while saturating a separator.

a| bl c|d|el|f a|b|c| d| el f
1 X | X | X | X 1 X | X | X | X
2| x| x|x 2| x| x|x
3| x| x X 3 X
4 X | X 4
5 X | X ) X
6| x 6

R R

Fig. 6. Original relatiorR; new relationk’ defined by saturating minimal separaso« {a, d, e, f, 3, 4, 5, 6}.

| abcdef x @ | | abcdef x @ |

| abfx3| | abcx2| | bcdexll | abcx2| | bcdex1|
[ abx23 | [ bex12 | | cdx15 | | dex14 | | bexi12 |
[ ax236 | [ bx123] [ cx125] [ dx145] [ bx123 | [ cx125]

LR LR)

Fig. 7. Original lattice? (R); lattice #(R’) obtained by saturating the minimal separator which represents cancept 2.

Property 4.7. [Berry [2]] Given an input graph Gthe process of repeatedly choosing a minimal separator of G which is not a
cligue, and saturating ituntil all minimal separators are cliquegields a minimal triangulation of the input graph in less than n
steps. Moreovethis process characterizes the minimal triangulations oé&ch minimal triangulation H of G is characterized

by the minimal separators of.H
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abcdef x @

® x 123456

Fig. 8. Lattice obtained by computing a minimal triangulation of gréphof Fig. 3

Property 4.8. Computing a minimal triangulation af z by repeatedly saturating a non-clique minimal separator will result
in a proper interval graphG z» and a corresponding relatioR” such that# (R”) is a maximal chain of#(R).

Proof. This follows directly from Theorem 4.4, as the process of repeatedly removing all concepts not comparable to a concept
taken on some maximal chain will result in this chairi]

Property 4.9. There is a one-to-one correspondence between minimal triangulatiafig @hd maximal chains of?(R).

Proof. This follows from Properties 4.7 and 4.8, as a proper interval graph is a triangulated graph and as a minimal triangulation
H = (V,E+ F) ofagiven graptG = (V, E) is uniquely characterized by the set of minimal separatoks$. ofC]

Remark 4.10. A maximal chain of the concept lattice of cont&®, ¢/, R) has less than mif?| + |(|) elements and can be
obtained in less themsteps, according to Property 4.7. Since each time a minimal separator is saturated the number of concepts
decreases, the process of saturating a minimal separator, described by Theorem 4.4, can be repeated as many times as necesse
and can always result in a polynomial-sized sublattice. This may be very useful when the concept lattice is exponentially large,
because it allows the user to examine only a part d¥ig.(8).

5. Using minimal separators to decompose a binary relation and its lattice

In [39], Tarjan introduced the decomposition by clique separators of a graph. This process is defined by repeatedly copying
some clique separat&into each of the components it defines. This decomposition is proved to be unique and optimal when
only cliqgue minimal separators are ug@d], and can be described by the following general decomposition step:

Clique minimal separator decomposition Step 5.1Let G be a graphlet S be a clique minimal separator of, @efining
component€', Co, ..., Cy. Replace G withG1 = G(C1 U N(C1)), G2 = G(C2 U N(C2)), ... and Gy = G(Cy, U N(Cy)).

This decomposition has the remarkable property that it distributes the minimal separators into the subgraphs it defines.

Property 5.2 (Berry and Bordaf4]). Let G be a graphlet S be a clique minimal separator of 8t ¥ (G) be the set of minimal
separators of G. After a decomposition step of G jh&elements of’(G) — {S} are partitioned into the subgraphs obtained

In the case of co-bipartite graphs, the clique minimal separator decomposition process is considerably simplified by the fact
that each minimal separator defines only two connected components: Decomposition Step 5.1 on clique minimal Separator
defining componentd ¢ 2 andB C ¢, would yield subgraph&1 = Gr(A U N(A)) andG2 = Gr(B U N(B)). Since by
Characterization 3.8y (A) = N(B) =S, G1=Gr(A U S) andGo = Gr(B U S). Moreover, sincé&is a clique, the vertices
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of § N 2 are universal in graply g (A U S) and according to Property 2.7, they convey no information on minimal separators
and can be removed from the graph. The vertice$ of ¢ are likewise universal irG g (B U S), and can be removed. For a
co-bipartite graplG g derived from a binary relatioR, we will thus define a simplified decomposition step, which replazgs
with G1 = Gr(AU (SN O)) andGo = Gr(B U (S N 2)).

As a consequence of Property 5.2, computing the set of minimal separators of the original underlying gragh be
done separately on the smaller subgraphs defined by a decomposition step by a clique minimal séparititbe a minimal
separator 061 iff 71U (SN 2) is a minimal separator af g, 7> will be a minimal separator af» iff 7o U (SN @) is a minimal
separator of5 g. Thus the concepts & can be computed separately on the sub-relations defined. Moreover, it is cle@y that
contains all the minimal separators representing a concept which is an ancester Bf and thatG, contains all the minimal
separators representing a concept which is a descenddnkas.

In a co-bipartite graph, the presence of a clique minimal separator can be tested for in linear time, and the decomposition can
be computed in the same tirf26]. However, in general, there may not be any clique minimal separatpitWWe can combine
the discussion above with the results from Section 4 and artificially saturate a non-clique minimal separator, and then go on to
decompose the graph.

One of the remarkable property of co-bipartite graphs is that the edges added when saturating a minimal separator are not
copied into any of the subgraphs defined by the above decomposition, as edges would be added between & veftexdf
a vertex ofS N 2. Thus the decomposition step is the same whether or not the clique minimal separator used to decompose the
graph is “natural” or “artificial”.

We will thus define the following decomposition steps, which can use any minimal separator, whether it is a clique or not:

Co-bipartite graph decomposition Step 5.3.LetG  be the underlying graph of contex®, @, R),letS be aminimal separator
of Gg, defining componentd ¢ 2 and B C 0. ReplaceGr with G1 = Gr(A U (SN 0)) = Gr(A U (O — B)) and
G2=Gr(BUSNP)=Gr(BU(P — A)).

From Decomposition Step 5.3, we can derive a corresponding relation decomposition.

Relation decomposition Step 5.4Let Gy be the underlying graph of contef?, O, R), let #(R) be the associated concept
lattice, let S be a minimal separator @ , defining componentd ¢ 2 and B C (. Then R can be decomposed into two
sub-relationskR1 = R(A, (O — B)) andR2 = R((P — A), B) such that

(1) aconcepiX x Y of Ris an ancestor of conceptx B in Z(R) iff X x (Y — B) is a concept of relatio®1. The corresponding
sublattice ofZ(R), of whichA x B is the top contains exactly the conceptie intent of which is a subset of A also
contains exactly the concepthe extent of which will be a superset of B

(2) a conceptX x Y of R is a descendant of conceptx B in Z(R) iff (X — A) x Y is a concept of relatiorRy. The
corresponding sublattice a#’(R), of whichA x B is the bottomcontains exactly the conceptie extent of which is a
subset of Bit also contains exactly the conceptise intent of which will be a superset of A

Chances are the resulting sub-relations will be much smaller than the original one, and thus the queries on them much less
costly.

This process enables us to efficiently answer the following type of query:

“If we have a set of properties, (for example a set of symptoms in a medical database), which sub-relation should we work
on in order to define only the concepts which contain all the properties includéi in

To do this, we simply:

e compute the smallest concept, the intention of which contéjrmnd
e extract the sub-relation corresponding to the descendants of this concept.

Example 5.5. Let us use minimal separatSe={a, d, ¢, f, 3, 4, 5, 6} of Example 3.9. The corresponding lattice is givefig.
1in Section 2.S defines components = {b, ¢} and B = {1, 2}, thus representing concept x 12. SN ¢ = {3, 4, 5, 6} and
SN?={a,d,e, f}.

A decomposition step usingwill yield G1= Gr(C1 U (SN O))= Gr/({b, ¢, 3,4,5,6}) andGo = Gr(Co2U (SN P)) =
Gr(a,d, e, f,1,2}), as illustrated byFig. 9 where edges are omitted in cliqugsand ¢. The initial relationR and its
corresponding sub-relatiori® and R, obtained are given ifig. 10

With a linear-time pass dfi it will become clear that vertices 4 and 6 have also become universal and can be refigved.
11 shows the very restricted grap}“& finally obtained. The minimal separators@fl are{b, 3} and{c, 5}, corresponding to
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al d| e]| f
a|l b| c| d| el f
1 X | X

1| | x| x| x| X 9 | x
2| X | x| X
3| x| x X b|c
4 X | % 3| x
5 X | X 4
6| x 51 | X

6

Fig. 10. Relationg1 and R from decomposition of Example 5.5.

b c a de
5 3 1 2
Fig. 11. The very restricted grapbjiéi andG’2 obtained after a decomposition step by minimal separata¥ grin Example 5.5.

concepb x 3 andc x 5. In the global graph, putting componeni = {1, 2} back in will yield at no extra cost concepits< 123
andc x 125 of the original lattice. These are precisely the predecessérs>ofl 2.

In G2, vertexf has become universal, and a linear-time pass will show that vediaede now share the same neighborhood,
and can be contracted without loss of information on the minimal separators of the graph.

The resulting graplﬂ}’2 is also restricted to four vertices, and is showrrig. 11 Its minimal separators are represented by
a x 2 andde x 1, which, once we have put; = {b, ¢} back in, defines the concepi$c x 2 andbcde x 1, which are the

successors dic x 12.
The corresponding lattice decomposition is illustrateBio 12
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[ abedef xo |
[ abcdefxg | [ abcx2] [ bedex1
[ apfx3] [ abcx2]| [ bedex1] [_bexi2 |
[ abx23 | | bex12 | [ cdx15 | [ dexi4 |
[ax236] [ bx123] [ cx129 [ dx148
¢ x 123456

Fig. 12. Lattices obtained by decomposition step of Example 5.5.

6. Computing the cover of an element of the lattice

We will now use the classical properties of graphs to characterize the concepts which constitute the cover of an element of the

lattice.
We will need to define the concept ddminationin a graph:

Definition 6.1. A vertex x is said to bedominating(or strongly dominating) in graps if there is some vertey such that
N(y) C N(x). We will say that a maximal cligue modulis dominating if there is some vertexe N(X) — X such that
Vx € X, N(y) C N(x).Conversely we will say that a vertex or maximal clique moduteis-dominatingf it is not dominating.

Property 6.2. LetG = (V, E) be a co-bipartite graphlet X c V be a maximal clique module of,@&en X is a moplex iff X is
non-dominating

Proof. Let G = (V, E) be a co-bipartite graph and c vV a maximal clique module d&.

(1) Suppos«is amoplex;thewv (X) is a minimal separator inducing (by Characterization 3.5) a second connected component,
the neighborhood of which i (X); thusX is hon-dominating.

(2) Suppose« is non-dominating; the = V — (N(X) U X) has the same neighborhood>and thenN (X) is a minimal
separator; thuX is a moplex. O

Property 6.3. LetG g be the underlying graph of conte®, ), R), let X C 2 be a maximal clique module 6fg; thenN (X)
represents an atomwith intent X iff X is non-dominating irG g.

Proof. As we previously said, we consider only relations without any line of zeroes of or ones. Thus, we use Property 6.2 to
reformulate Property 3.13.0J

We can use Property 6.3 and the results from the previous section to compute the cover of a given £&lenm@nby
decomposing the lattice and thus obtaining a sublattice of whighB is the bottom element.

Theorem 6.4. A conceptd’ x B’ covers a concepd x B iffin G, = G(B U (2 — A)) there is some non-dominating maximal
cliqgue module X such that’ = X + A.

For complexity considerations, we need to remark that a maximal clique m¥dfleninimum degree is non-dominating,
and that finding the set of vertices which dominate a given maximal clique mdwla be done in linear time by checking for
universal vertices iV (X).

Our strategy for finding the set of non-dominating maximal clique modulé&szofs the following:

(1) compute in linear time all the maximal clique modulesif and contract them;
(2) choose a vertexof minimum degree in the resulting graph;
(3) compute in linear time the set of vertices which dominate
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(4) Removex and the vertices which dominatdrom the graph and go back to Step 2.

This requires @n) time per non-dominated maximal clique module computed.

In Fig. 3 the set of maximal clique modules is exactly the set of vertices. Vertieeslf are dominating € dominatesd
andf dominates botla andb). N(a) = {b,c,d, e, f,1,4,5}, N(b) ={a,c,d, e, f,4,5,6}, N(c) ={a,b,d, e, f,3,4,6}, and
N()={a,b,c,e, f, 2,3, 6}, which defines the atoms of (R) as:a x 236, b x 123 ¢ x 125 andd x 145.

7. Generating the concepts

Recent work has been done on the efficient generation of the concepts defined by a binary relation. One may want to generate
and store all the concepfa8], or simply encounter each at least once, without storing &) or one may want to compute
the concepts along with their structure, i.e. the arcs of the Hasse diagram of the[1&}ice

In parallel, recent work has been done to generate all the minimal separators or all the mirgeparators of a graph
[38,22,7,36)

As an illustration of the use that can be made of our new paradigm, we will show how we can easily match the current best
worst time complexities for concept generation using graph results.

When generating and storing the concepts, the current best complexity is Hel] bgnd is Gn?) per concept.

Let us use our underlying grapfiz as described in Section 3, and add two simplicial verticesdy, such thatx is a
neighbor of all vertices of?, y of all vertices of@. It is easy to see that the set of minimal separators of this new graph is exactly
{2}U{0}U L (GR), whereZ (G ) is the set of minimal separators@fz . Using the results frorf86], who claim a complexity
of O(n?) time per minimalxy-separator to generate and store them, we can easily generate and store all the coftapts of
O(n2) time per concept, noting thi@6] claims a better space complexity thi@8].

Wheg generating the concepts without storing them, the current best-time complexity is held by &yaead is Q|2?||0)),

i.e. O(n°).

For this, we will use the results from Section 6 to recursively compute the cover of each element in a depth-first fashion. Since
the lattice is of height at most such a DFS will require only polynomial space. By the results from Section 6, each element
will be generated by its predecessor in lineap{) time. A given element will be generated as many times as its number of
predecessors, which is at m¢gt], as a depth-first traversal easily enables to know whether an encountered element has already
been processed. Singe< |2|.|0|, each element will be generated ir(||@2| |0]), which matches the complexity 5], noting
that we generated the Hasse diagram, wheEsidoes not.

Note that our more recent wo[87,9] uses this process with an adequate data structure maintained which enables us to obtain
a better complexity of Qn) per generated concept, plug/:) per maximal chain of the lattice traversed by the recursive
depth-first algorithm and the corresponding spanning tree.

8. Conclusion

Though specific problems such as minimizing the number of times a database is accessed remain to be translated in terms of
graph separators, we have presented a new approach to answering queries on the concept lattice of a binary relation, which use
a rapidly growing toolbox: the theory of minimal separation in undirected graphs.

We can expect that this approach will create a bridge between the two fields of concept lattice theory and undirected graph
theory, and yield new results in both fields.

As noted by one of our referees, which we thank for these remarks, there is a one-to-one correspondence between the maximal
chains of the lattice (corresponding to Guttman scales) and the maximal sub-Ferrers relations, which should be investigated in
view of our results. It would also be interesting to examine the relationships between concepts, minimal separators, maximal
bicliques and minimal hypergraph traversals, which are known to be different facets of the same object.

Moreover, we feel that since the minimal separators of a graph seem to describe the structure of the graph, we have contributed
to show a strong semantic aspect behind the concepts defined by a binary relation.

Several open questions arise from the issues discussed in this paper.

It is not known whether the set of non-dominant vertices can be computed in less than linear time per vertex, but improving
this would also improve the complexity of the algorithmic process described in Section 7.

Likewise, efficiently computing the set of minimal separators which cross a given minimal se@asatold result in a better
generation algorithm for concepts.

We have illustrated the use of clique minimal separator decomposition, but other minimal separator-preserving decompositions
would directly yield decompositions of a binary relation and of the associated lattice. Conversely, other known decompositions
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of binary relations might lead to new hole and anti-hole preserving graph decompositions, an important problem in the context
of perfect graphs.

Finally, it would be interesting to characterize the binary relations which define a polynomial number of concepts, or the
graphs which have a polynomial number of minimal separators; this might help the users of databases to maintain manageable
binary relations.

References

[1] M. Barbut, B. Monjardet, Ordre et classification. Classiques Hachette, 1970.
[2] A. Berry, Désarticulation d’'un graphe, Ph.D. Dissertation, Université Montpellier 11, 1998.
[3] A. Berry, A wide-range efficient algorithm for minimal triangulation, in: Proceedings of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA'99),Baltimore, MD, January, 1999, pp. 860—861.
[4] A. Berry, J.-P. Bordat, Clique minimal separator decomposition, Research Report 97-213, LIRMM, 1997.
[5] A. Berry, J.-P. Bordat, Separability generalizes Dirac’s theorem, Discrete Appl. Math. 84 (1998) 43-53.
[6] A. Berry, J.-P. Bordat, Orthotreillis et séparabilité dans un graphe non-orienté, Math. Informatique et Sci. Humaines 146 (1999) 5-17.
[7] A. Berry, J.-P. Bordat, O. Cogis, Generating all the minimal separators of a graph, Internat. J. Foundations of Comput. Sci. 11 (2000) 397
—404.
[8] A. Berry, J.-P. Bordat, Asteroidal triples of moplexes, Discrete Appl. Math. 111 (2001) 219-229.
[9] A. Berry, J.-P. Bordat, A. Sigayret, Concepts can't afford to stammer, in: Proceedings of JIM'03,Metz, France, September, 2003.
[10] A. Berry, A.Sigayret, Maintaining class membership information, Proceedings Workshop MASPEGHI (MAnaging of
SPEcialization/Generalization Hlerarchies) LNCS proceedings of OOIS 02 (Object-Oriented Information Systems), 2002.
[11] G. Birkhoff, Lattice Theory, American Mathematical Society, 3rd Edition, 1967.
[12] J.-P. Bordat, Calcul pratique du treillis de Galois d'une correspondance, Math. Informatique et Sci. Humaines 96 (1986) 31-47.
[13] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76.
[14] F. Escalante, Schnittverbande in Graphen, Abh. Math. Sem. Univ. Hamburg 38 (1972) 199-200.
[15] B. Ganter, Two basic algorithms in concept analysis, Preprint 831, Technische Hochschule Darmstadt, 1984.
[16] B. Ganter, R. Wille, Formal Concept Analysis, Springer, Berlin, 1999.
[17] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[18] M. Hager, On Halin-lattices in graphs, Discrete Math. 47 (1983) 235—-246.
[19] R. Halin, Uber trennende Eckenmengen in Graphen und den Mengerschen Satz, Math. Ann. 157 (1964) 34—41.
[20] W.-L. Hsu, T.-H. Ma, Substitution decomposition on chordal graphs and its applications, SIAM J. Comput. 28 (1999) 1004—-1020.
[21] M. Huchard, H. Dicky, H. Leblanc, Galois lattice as a framework to specify building class hierarchies algorithms, Theoret. Informat. Appl.
34 (2000) 521-548.
[22] T. Kloks, D. Kratsch, Listing all minimal separators of a graph, SIAM J. Comput. 27 (1998) 605-613.
[23] T. Kloks, D. Kratsch, J. Spinrad, Treewidth and pathwidth of cocomparability graphs of bounded dimension, Res. Rep. 93-46, Eindhoven
University of Technology, 1993.
[24] H.-G. Leimer, Optimal decomposition by clique separators, Discrete Math. 113 (1993) 99-123.
[25] C.G. Lekkerkerker, J.Ch. Boland, Representation of a finite graph by a set of intervals on Real Line, Fund. Math. 51 (1962) 45—-64.
[26] D. Meister, Minimale Triangulationene AT-freier Graphen, Diplomarbeit, Friedrich-Schiller Universitéat Jena, October, 2000.
[27] R.H. Méhring, Triangulating graphs without asteroidal triples, Discrete Appl. Math. 64 (1996) 281-287.
[28] L. Nourine, O. Raynaud, A fast algorithm for building lattices, Inform. Process. Lett. 71 (1999) 199-204.
[29] A. Parra, Structural and algorithmic aspects of chordal graph embeddings, Ph.D. Dissertation, Technische Universitat Berlin, 1996.
[30] A. Parra, P. Scheffler, How to use the minimal separators of a graph for its chordal triangulation, Proceedings of the 22nd International
Colloquium on Automata, Languages and Programming (ICALP '95), Lecture Notes in Comput. Sci. 944 (1995) 123-134.
[31] N. Polat, Treillis de séparation des graphes, Can. J. Math. XXVIII-4 (1976) 725-752.
[32] J.L. Pfaltz, C.M. Taylor, Scientific Knowledge Discovery through Iterative Transformation of Concept Lattices, Workshop on Discrete
Mathematics for Data Mining, in: Proceedings of the Second SIAM Workshop on Data Mining,Arlington, VA, April, 2002.
F.S. Roberts, Indifference graphs, in: F. Harary (Ed.), Proof Techniques in Graph Theory, Academic Press, New York, 1969, pp. 139-146.
D. Rose, R.E. Tarjan, G. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976) 146—-160.
G. Sabidussi, Weak separation lattices of graphs, Canad. J. Math. 28 (1976) 691-734.
H. Shen, Separators are as simple as cutsets, Asian Computer Science Conference, Purket, Thailand, December 10-13, 1999; Lecture Note
in Comput. Sci. 172 (1999) 347-358.
[37] A. Sigayret, Data mining: une approche par les graphes, Ph.D. thesis, Université Clermont-Ferrand Il (France, 2002) DU1405 - EDSPIC
269.
[38] H. Sheng, W. Liang, Efficient enumeration of all minimal separators in a graph, Theoret. Comput. Sci. 180 (1997) 169-180.
[39] R.E. Tarjan, Decomposition by clique separators, Discrete Math. 55 (1985) 221-232.
[40] I. Todinca, Aspects algorithmiques des triangulations minimales des graphes, Ph.D. Dissertation, Ecole Normale Supérieure Lyon, France,
1999.
[41] P. Valtchef, R. Missaoui, R. Godin, A Framework for Incremental Generation of Frequent Closed Item Sets, in: Proceedings of the 2nd
SIAM Workshop on Data Mining,Arlington, VA, April, 2002.

[33
[34
[35
[36



42 A. Berry, A. Sigayret/ Discrete Applied Mathematics 144 (2004) 27—-42

[42] A. Yahia, L. Lakhal, J.-B. Bordat, Designing Class Hierarchies of Object Database Schemes, Proceedings 13e journées Bases de Donnéés
avancées (BDA'97), 1997.

[43] M.J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, New Algorithms for Fast Discovery of Association Rules, in: Proceedings of the Third
International Conference on Database Systems for Advanced Applications,April, 1997.



	Representing a concept lattice by a graph
	Introduction
	Preliminaries
	Concept lattices
	Graphs

	The co-bipartite graph underlying a binary relation
	Selecting a sublattice by saturating a minimal separator
	Using minimal separators to decompose a binary relation and its lattice
	Computing the cover of an element of the lattice
	Generating the concepts
	Conclusion
	References


