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a b s t r a c t

Let G be any unicyclic Hückel molecular graph with Kekulé structures on n vertices where
n ≥ 8 is an even number. In [W. Wang, A. Chang, L. Zhang, D. Lu, Unicyclic Hückel molecular
graphs with minimal energy, J. Math. Chem. 39 (1) (2006) 231–241], Wang et al. showed
that if G satisfies certain conditions, then the energy of G is always greater than the energy
of the radialene graph. In this paper we prove that this inequality actually holds under a
much weaker condition.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph with n vertices and A(G) be the adjacency matrix of G. The characteristic polynomial of G is defined as
that of A(G)

φG(λ) = det(λI − A(G)) =
n∑

i=0
ai(G)λn−i,

where I is the n by n identity matrix. Similarly, the eigenvalues of A(G) are defined to be the eigenvalues of G. Since A(G) is
symmetric, all eigenvalues are real numbers. Let λ1,λ2, . . . ,λn denote those eigenvalues, then the energy of G is defined as

E(G) =
n∑

i=1
|λi|.

The energy of a graph defined this way is a pure mathematical concept. But when a molecular graph is used to model
a π-electron system, the energy of the graph has been shown to be a good approximation of the binding energy of the
π-electrons. Here we just briefly review the motivation of this definition which has been well explained in [1]. Interested
readers should refer to [1] for more details. Within the framework of Hückel Molecule Orbit model, the total molecular
orbital energy of all π-electrons in a molecule is given by

Eπ = neα+ β
n∑

j=1
ηjλj,

where neα corresponds to the energy of ne isolated p-electrons, β is a constant, ηj is the number of π-electrons in the jth
molecular orbital, and λj’s are the eigenvalues of the corresponding molecular graph. Since we are only interested in the
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binding energy of the π-electrons, the only non-trivial part is E =
∑n

j=1 ηjλj. For most conjugated π-electron systems of
chemical interest, all bonding molecular orbitals are doubly occupied and all antibonding molecular orbitals are unoccupied.
This leads to the fact that ηj = 2 if λj > 0 and ηj = 0 if λj < 0. Hence E = 2

∑
λj>0 λj. Notice that for a simple graph,∑n

j=1 λj = trace(A(G)) = 0, then E =
∑n

j=1 |λj|.
The energy problems of some special graphs have been extensively investigated. For example, minimal energy problems

have been studied for the classes of acyclic conjugated molecules [10], trees with a given number of pendant vertices [9], and
trees with a given maximum degree [3], etc. Minimal energy problems of unicyclic graphs, i.e., graphs that contain exactly
one cycle, are usually harder than those of acyclic graphs. Hou [2] first considered it for general unicyclic graphs. Later Li and
Zhou studied this problem for bipartite unicyclic graphs with a given partition [4]. Recently, there have been two papers
[5,8] concerning the minimal energy of unicyclic molecular graphs with a perfect matching and several interest findings
have been presented.

Conjugated hydrocarbon molecules studied in the Hückel Molecule Orbit theory are usually represented by the carbon-
atom skeleton graphs whose maximum degree is less than four. In this paper, we study unicyclic Kekuléan Hückel molecular
graphs which in graph theory are simple unicyclic connected graphs with a perfect matching and maximum degree less than
four. The minimal energy problem of such molecular graphs was investigated in [7] and some partial results were obtained
(summarized in Section 2). The goal of this paper is to present a much stronger result.

Before proceeding, we introduce some notations. A matching in a graph is a set of edges with no shared end-vertices. A
matching is perfect if it consists of n

2 edges. A k-matching is a matching with k edges. The degree of a vertex is the number of
edges incident with it. As usual, Cl denotes a cycle with l vertices. ∆(G) and E(G) denote the maximum degree and the edge
set of a graph G, respectively. We use Hn to denote the set of unicyclic Kekuléan Hückel molecular graphs with n vertices. Let
G be a unicyclic graph with the unique cycle Cl. G−Cl is the graph obtained from G by deleting the vertices of Cl. For any graph
G and positive integer k, M(G, k) and m(G, k) represent the set and the number of k-matchings of G, respectively. Therefore
if G ∈ Hn, then M(G, n

2 ) 6= ∅ and m(G, n
2 ) ≥ 1. For convenience, we define m(G, 0) = 1 and m(G, k) = 0 for negative integer

k. For G ∈ Hn, we use MG to denote one arbitrarily selected perfect matching of G. Let φ ⊂ E(G) − MG, NM(φ) denotes the
set of edges of MG that are adjacent to φ. Two special graphs of Hn are needed. Here we follow the notations used in [7]. S

n
2
n

represents the graph obtained by attaching one pendant edge to each vertex of C n
2

, which is known as the radialene graph

in chemistry. R
n
2+1
n denotes the graph obtained by attaching one pendant edge to all but two consecutive vertices of C n

2+1.

2. Preliminaries

It is not easy to directly analyze each eigenvalue of a graph G. The Coulson integral formula [1] is a convenient tool to
overcome this difficulty

E(G) =
1
π

∫
∞

0

1
x2 ln

([n/2]∑
i=0

(−1)ia2i(G)x2i

)2

+

(
[n/2]∑
i=0

(−1)ia2i+1(G)x2i+1

)2 dx.

Let bi(G) = |ai(G)|. For unicyclic graphs, it can be shown [2] that

E(G) =
1
π

∫
∞

0

1
x2 ln

([n/2]∑
i=0

b2i(G)x2i

)2

+

(
[n/2]∑
i=0

b2i+1(G)x2i+1

)2 dx.

Given two unicyclic graphs G and H, a sufficient condition for E(G) > E(H) is to have bi(G) ≥ bi(H) for all i while
bi(G) > bi(H) for some i. All current results on extremal energies of unicyclic chemical graphs are based on this condition [2,
7,8,11].

However, sometimes this sufficient condition is too strong to be applicable. We will need a simple weaker sufficient
condition for our purpose. For any G ∈ Hn, define the polynomial

FG(x) =

 n
2∑

i=0
b2i(G)x2i

2

+

 n
2−1∑
i=0

b2i+1(G)x2i+1

2

.

Clearly, if FG(x) > FH(x) for all x > 0, then E(G) > E(H).
A lot of research have been carried out on generating the coefficients of the characteristic polynomial from the structure

of a graph. Among them the most elegant one is probably the method of Sachs [6]:

ai(G) =
∑
S∈Li

(−1)k(S)2c(S),

where Li denotes the set of Sachs graphs of G with i vertices, k(S) is the number of components of S, and c(S) is the number
of cycles contained in S.

A Sachs graph S is defined as a subgraph of G whose every component is either a K2 or a cycle. Using this fact, the following
useful relation between matching numbers and bi(G) can be shown.
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Lemma 2.1 ([2,7]). Let G be a unicyclic graph on n vertices with a cycle Cl.
(1) If l = 2r, then b2k(G) = m(G, k)+ 2(−1)r+1m(G− Cl, k− r) and b2k+1(G) = 0;
(2) If l = 2r + 1, then b2k(G) = m(G, k) and b2k+1(G) =

{
2m(G− Cl, k− r), 2k+ 1 ≥ l;
0, 2k+ 1 < l.

For any G ∈ Hn we let Ĝ denote the graph obtained from G by deleting the perfect matching MG first and then deleting
the isolated vertices. Since each k-matching φ of G can be decomposed into two parts φ1 and φ2 where φ1 ⊂ E(Ĝ) and
φ2 ⊂ MG − NM(φ1) (φ1 and φ2 could be ∅). It is easy to see that

m(G, k) =

 n

2
k

+ k∑
i=1

∑
φ1∈M(Ĝ,i)

 n

2
− |NM(φ1)|

k− i

 , (1)

where we use the convention
(

0
0

)
= 1 and

(
p
q

)
= 0 for any p < q. Clearly, for φ1 ∈ M(Ĝ, i), we have |NM(φ1)| ≤ 2i. While if

G ∼= S
n
2
n , then |NM(φ1)| = 2i.

The main results of [7] can be summarized as follows. Assume that n ≥ 6, S
n
2
n 6
∼= G ∈ Hn, and G contains a cycle Cl. Then

if one of the following conditions holds: (1) n
2 ≡ l ≡ 1 (mod 2) and l ≤ n

2 , (2) l 6≡ n
2 ≡ 0 (mod 4), (3) n

2 ≡ l ≡ 2 (mod4)

and l ≤ n
2 , then E(G) > E

(
S

n
2
n

)
. It is also proved in [7] that for n ≥ 6, if n

2 ≡ 3 (mod 4), l 6≡ 0 (mod 4), and l > n
2 , then

E(G) > E

(
R

n
2+1
n

)
. However it is not clear whether E(R

n
2+1
n ) > E(S

n
2
n ) under those conditions.

In next section, we are going to show that the above conditions can be significantly weakened. Essentially for n ≥ 8,

S
n
2
n 6
∼= G ∈ Hn, and G contains a cycle Cl. As long as l 6≡ 0 (mod 4), we have E(G) > E

(
S

n
2
n

)
. We will also show that

E

(
R

n
2+1
n

)
> E

(
S

n
2
n

)
in general.

3. Main results

Lemma 3.1. If n ≥ 6 is an even number and S
n
2
n 6
∼= G ∈ Hn, then there exists a 2-matching φ ∈ Ĝ both edges of which are adjacent

to a common edge of MG.

Proof. Let Cl = u1, u2, . . . , ul = u0 be the unique cycle of G. We consider the following three cases.
Case 1: MG ∩ E(Cl) = ∅.

Since MG is a perfect matching, there exist l vertices v1, v2, . . . , vl 6∈ Cl such that uivi ∈ MG. Notice that ∆(G) ≤ 3 and
G 6∼= S

n
2
n , then there is a vertex w 6∈ Cl adjacent to some vi. Clearly φ = {ui−1ui,wvi} is a 2-matching of Ĝ and both ui−1ui and

wvi are adjacent to viui ∈ MG.
Case 2: MG ∩ E(Cl) 6= ∅ and l = 3.

Without loss of generality, we assume that u1u2 ∈ MG.
If d(u1) = 3, then there exists a vertex v 6∈ Cl and vu1 ∈ Ĝ. Hence φ = {vu1, u2u3} is a 2-matching of Ĝ, and both vu1 and

u2u3 are adjacent to u1u2 ∈ MG.
If d(u2) = 3, the claim can be similarly proved.
If d(u1) = d(u2) = 2, then d(u3) = 3. So there exists a vertex v 6∈ Cl such that vu3 ∈ MG. Since n ≥ 6, then d(v) > 1. Let

w ∈ N(v)/{u3}. Then φ = {wv, u1u3} is a 2-matching of Ĝ and both wv and u1u3 are adjacent to vu3 ∈ MG.
Case 3: MG ∩ E(Cl) 6= ∅ and l ≥ 4.

Assume that uiui+1 ∈ MG. Then φ = {ui−1ui, ui+1ui+2} is a 2-matching of Ĝ, and both ui−1ui and ui+1ui+2 are adjacent to
uiui+1 ∈ MG. �

From Lemma 3.1 we immediately have the following result.

Corollary 3.2. If n ≥ 6 is an even number and S
n
2
n 6
∼= G ∈ Hn, then there is a 2-matching φ ∈ Ĝ such that |NM(φ)| ≤ 3.

It was shown that S
n
2
n is the minimal graph of Hn in terms of matching numbers.

Lemma 3.3 ([7]). If n ≥ 6 and G ∈ Hn, then m(G, k) ≥ m
(
S

n
2
n , k

)
for all k.

But we need a stronger inequality for our analysis.

Lemma 3.4. If n ≥ 8 is an even number and S
n
2
n 6
∼= G ∈ Hn, then for 2 ≤ k ≤ n

2 − 1 we have

m(G, k) ≥ m
(
S

n
2
n , k

)
+

 n

2
− 3

k− 2

 .
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Proof. From the proof of Lemma 2 of [7] we know m
(
Ĝ, i

)
≥ m

(
Ŝ

n
2
n , i

)
for all i. Now we take a closer look at m

(
Ĝ, 2

)
−

m
(
Ŝ

n
2
n , 2

)
. Since ∆(G) ≤ 3, then ∆(Ĝ) ≤ 2. Therefore every component of Ĝ is either a path or a cycle. Because G 6∼= S

n
2
n so

Ĝ 6∼= C n
2

. Hence at least one component of Ĝ is a path. Every edge of Ĝ is adjacent to at most two other edges while a pendant

edge of a path is adjacent to at most one other edge. On the other hand, every edge of Ŝ
n
2
n = C n

2
is adjacent to exactly two

other edges. Hence m
(
Ĝ, 2

)
≥ m

(
Ŝ

n
2
n , 2

)
+ 1.

Then it follows from (1) and |NM(ψ)| = 2i for ψ ∈ M(S
n
2
n , i)that

m(G, k)− m
(
S

n
2
n , k

)
=

k∑
i=1

∑
φ∈M(Ĝ,i)

 n

2
− |NM(φ)|

k− i

− k∑
i=1

∑
ψ∈M

(
Ŝ
n
2
n ,i

)
 n

2
− 2i

k− i



=

k∑
i=1

∑
φ∈M(Ĝ,i)

 n

2
− |NM(φ)|

k− i

− k∑
i=1

m
(
Ŝ

n
2
n , i

) n

2
− 2i

k− i

 .

Let φ1 be the special 2-matching of Ĝ mentioned in Corollary 3.2. We then have

m(G, k)− m
(
S

n
2
n , k

)

≥

k∑
i=1

∑
φ∈M(Ĝ,i),φ6=φ1

 n

2
− |NM(φ)|

k− i

+
 n

2
− 3

k− 2

− k∑
i=1

m
(
Ŝ

n
2
n , i

) n

2
− 2i

k− i


≥

k∑
i=1,i6=2

m
(
Ĝ, i

) n

2
− 2i

k− i

+ (m (
Ĝ, 2

)
− 1

) n

2
− 4

k− 2

+
 n

2
− 3

k− 2

− k∑
i=1

m
(
Ŝ

n
2
n , i

) n

2
− 2i

k− i


≥

k∑
i=1,i6=2

m
(
Ĝ, i

) n

2
− 2i

k− i

+ m
(
Ŝ

n
2
n , 2

) n

2
− 4

k− 2

+
 n

2
− 3

k− 2

− k∑
i=1

m
(
Ŝ

n
2
n , i

) n

2
− 2i

k− i


≥

k∑
i=1,i6=2

(
m
(
Ĝ, i

)
− m

(
Ŝ

n
2
n , i

)) n

2
− 2i

k− i

+
 n

2
− 3

k− 2


≥

 n

2
− 3

k− 2

 . �

Now we can prove our main results.

Theorem 3.5. If n ≥ 8 is an even number, S
n
2
n 6
∼= G ∈ Hn, and the length l of the cycle of G satisfies l 6≡ 0 (mod 4), then

E(G) > E

(
S

n
2
n

)
.

Proof. We consider three cases.
Case 1: n

2 ≡ 0 (mod 4).
See [7] for proof.

Case 2: n
2 ≡ 1, or 3 (mod 4). That is n

2 ≡ 1 (mod 2).

Since n ≥ 8, n
2 = 2h+1 for some h ≥ 2. From Lemma 2.1(2) we have b2k

(
S

n
2
n

)
= m

(
S

n
2
n , k

)
for all k, b2h+1

(
S

n
2
n

)
= 2. Since

S
n
2
n − Cl consists of n

2 isolated vertices, by Lemma 2.1(2) again, we have b2k+1

(
S

n
2
n

)
= 0 for k 6= h.

Since l 6≡ 0 (mod 4), then by Lemmas 2.1 and 3.3 we get b2k(G) ≥ m(G, k) ≥ b2k

(
S

n
2
n

)
≥ 0 for all k. Moreover, considering

k = h and k = h+ 1, from Lemma 3.4 we have

b2h(G)− b2h

(
S

n
2
n

)
≥ m(G, h)− m

(
S

n
2
n , h

)
≥

(
2h− 2
h− 2

)
> 1,

and

b2h+2(G)− b2h+2

(
S

n
2
n

)
≥ m(G, h+ 1)− m

(
S

n
2
n , h+ 1

)
≥

(
2h− 2
h− 1

)
> 1.
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Therefore for any x > 0,

FG(x) =

(
2h+1∑
k=0

b2k(G)x2k

)2

+

(
2h∑
k=0

b2k+1(G)x2k+1

)2

≥

(
2h+1∑
k=0

b2k(G)x2k

)2

≥

 2h+1∑
k=0,k6=h,h+1

b2k(G)x2k
+ b2h(G)x2h

+ b2h+2(G)x2h+2

2

>

 2h+1∑
k=0,k6=h,h+1

b2k(S
n
2
n )x2k

+ (b2h(S
n
2
n )+ 1)x2h

+ (b2h+2(S
n
2
n )+ 1)x2h+2

2

≥

(
2h+1∑
k=0

b2k

(
S

n
2
n

)
x2k
+ x2h

+ x2h+2

)2

≥

(
2h+1∑
k=0

b2k

(
S

n
2
n

)
x2k
+ 2x2h+1

)2 (
since x2h

+ x2h+2
≥ 2x2h+1

)

≥

(
2h+1∑
k=0

b2k

(
S

n
2
n

)
x2k

)2

+

(
2x2h+1

)2

= F
S
n
2
n

(x),

which leads to E(G) > E

(
S

n
2
n

)
.

Case 3: n
2 ≡ 2 (mod 4).

Since n ≥ 8, n
2 = 4h+ 2 for some h ≥ 1. From Lemma 2.1(1) we know that b2k+1

(
S

n
2
n

)
= 0 for all k, and

b2k

(
S

n
2
n

)
= m

(
S

n
2
n , k

)
+ 2m

(
S

n
2
n − C n

2
, k− 2h− 1

)

=


m
(
S

n
2
n , k

)
, k 6= 2h+ 1,

m
(
S

n
2
n , 2h+ 1

)
+ 2, k = 2h+ 1.

On the other hand, because l 6≡ 0 (mod 4), we have b2k(G) ≥ m(G, k). Hence from Lemma 3.3 we know that if k 6= 2h+ 1,

then b2k(G) ≥ m(G, k) ≥ m
(
S

n
2
n , k

)
= b2k

(
S

n
2
n

)
. While if k = 2h+ 1, then by Lemma 3.4 we have

b4h+2(G) ≥ m(G, 2h+ 1)

≥ m
(
S

n
2
n , 2h+ 1

)
+

(
4h− 1
2h− 1

)
> m

(
S

n
2
n , 2h+ 1

)
+ 2

= b4h+2

(
S

n
2
n

)
.

So E(G) > E

(
S

n
2
n

)
. �

In [7], E
(
R

n
2+1
n

)
was also used as a lower-bound for the energies of some graphs in Hn. But it was not clear in [7] whether

R
n
2+1
n is a better candidate than S

n
2
n as the minimal energy graph of Hn. We have the following result.

Theorem 3.6. If n ≥ 8 is an even number, then E

(
R

n
2+1
n

)
> E

(
S

n
2
n

)
.

Proof. Note that R
n
2+1
n contains a cycle C n

2+1. If n
2 + 1 6≡ 0 (mod 4), then from Theorem 3.5 we have E

(
R

n
2
n + 1

)
> E

(
S

n
2
n

)
.

Now we assume that n
2 + 1 ≡ 0 (mod 4). Since n ≥ 8, then n

2 = 4h+ 3 for some h ≥ 1.
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From Lemma 2.1(1), we know that b2k+1

(
R

n
2+1
n

)
= 0 for all k and

b2k

(
R

n
2+1
n

)
= m

(
R

n
2+1
n , k

)
− 2m

(
R

n
2+1
n − C n

2+1, k− (2h+ 2)

)

=


m
(
R

n
2+1
n , k

)
, k 6= 2h+ 2,

m
(
R

n
2+1
n , 2h+ 2

)
− 2, k = 2h+ 2.

Again from Lemma 2.1, we have b2k

(
S

n
2
n

)
= m

(
S

n
2
n , k

)
for all k and

b2k+1

(
S

n
2
n

)
= 2m

(
S

n
2
n − C n

2
, k− (2h+ 1)

)
=

{
0, k 6= 2h+ 1,
2, k = 2h+ 1.

Now we compare b2k

(
R

n
2+1
n

)
and b2k

(
S

n
2
n

)
. Using Lemma 3.3 we get b2k

(
R

n
2+1
n

)
≥ b2k

(
S

n
2
n

)
for k 6= 2h + 2. Considering

k = 2h+ 1 and k = 2h+ 2, by Lemma 3.4 we have

b4h+2

(
R

n
2+1
n

)
− b4h+2

(
S

n
2
n

)
= m

(
R

n
2+1
n , 2h+ 1

)
− m

(
S

n
2
n , 2h+ 1

)
≥

(
4h

2h− 1

)
> 1,

and

b4h+4

(
R

n
2+1
n

)
− b4h+4

(
S

n
2
n

)
= m

(
R

n
2+1
n , 2h+ 2

)
− m

(
S

n
2
n , 2h+ 2

)
− 2 ≥

(
4h
2h

)
− 2 > 1.

Therefore for any x > 0,

F
R
n
2+1
n

(x) =

(
4h+3∑
k=0

b2k

(
R

n
2+1
n

)
x2k

)2

>

(
4h+3∑
k=0

b2k

(
S

n
2
n

)
x2k
+ x4h+2

+ x4h+4

)2

≥

(
4h+3∑
k=0

b2k

(
S

n
2
n

)
x2k
+ 2x4h+3

)2

≥

(
2h+1∑
k=0

b2k(S
n
2
n )x2k

)2

+ (2x4h+3)2

= F
S
n
2
n

(x),

which leads to E

(
R

n
2+1
n

)
> E

(
S

n
2
n

)
. �

Remark. The assumption l 6≡ 0 (mod 4) in Theorem 3.5 cannot be dropped. As a simple example, consider the following
graph. For any even number n ≥ 6, let An denote the graph obtained by attaching a path with n − 4 edges onto C4. Clearly,

An ∈ Hn. Direct calculations with n up to 24 show that E(An) < E

(
S

n
2
n

)
when 6 ≤ n ≤ 16, while E(An) > E

(
S

n
2
n

)
when

n ≥ 18. Based on the numerical findings, we conjecture that E(An) − E

(
S

n
2
n

)
is an increasing function of n. We leave this

conjecture and the goal of fully solving the case when l is divisible by 4 as our future research topics.
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