The Effect of Delays on the Permanence for Lotka-Volterra Systems

LANSUN CHEN, ZHENGYI LU AND WENDI WANG*
Institute of Mathematics, Academia Sinica
Beijing 100080, P.R. China

(Received January 1995; accepted February 1995)

Abstract—In this note, two examples are given to show that delays can make two-species Lotka-Volterra cooperative systems possessing an unbounded solution. This result indicates that unlike the two-species prey-predator or competitive systems, delays in cooperative ones are not harmless in the sense of permanence. These examples also give a negative answer to a recent conjecture for general n-species Lotka-Volterra delay systems proposed in [1, p. 310].

Keywords—Lotka-Volterra systems, Discrete delay, Unbounded solutions.

Stability of Lotka-Volterra delay systems has been studied by a lot of authors. Most of the papers consider the situation at which undelayed intraspecific competitions are present. In these cases, either a Liapunov-Razumikhin functional is used or comparison theorems can be applied to obtain global attractivity of a positive equilibrium point. Essentially, the point is a global attractor if the undelayed intraspecific competition dominates over the delayed intra- (and inter-) specific competition. If the system has no undelayed intraspecific competitions, in general case, the global attractivity of a positive equilibrium point, or even the weaker property of stability-permanence of the system, is not easy to investigate. In this note, we will consider the latter case, i.e., the following two-species Lotka-Volterra delay system

\[
\begin{align*}
\dot{x}_1(t) &= x_1(t) [r_1 - a_{11} x_1(t - \tau_{11}) + a_{12} x_2(t - \tau_{12})], \\
\dot{x}_2(t) &= x_2(t) [r_2 + a_{21} x_1(t - \tau_{21}) - a_{22} x_2(t - \tau_{22})],
\end{align*}
\]

with initial conditions

\[
x_i(t) = \phi_i(t) \geq 0, \quad t \in [-\tau_0, 0]; \quad \phi_i(0) > 0, \quad i = 1, 2,
\]

where \(x_i\) represents the density of species \(i\), and \(r_i\) the reproduction rate, \(\tau_{ij} \geq 0 (i, j = 1, 2)\) the constant time lag, and \(\tau_0 = \max \{\tau_{ij}\}\). \(a_{ij} (i, j = 1, 2)\) is nonzero constant with \(a_{ii} > 0 (i = 1, 2)\) and \(\phi_i(t) (i = 1, 2)\) continuous on \([-\tau_0, 0]\).

If all the delays \(\tau_{ij}\) are zero, then system (1) will simplify to an autonomous system of the form

\[
\begin{align*}
\dot{x}_1(t) &= x_1(t) [r_1 - a_{11} x_1(t) + a_{12} x_2(t)], \\
\dot{x}_2(t) &= x_2(t) [r_2 + a_{21} x_1(t) - a_{22} x_2(t)].
\end{align*}
\]

In the sequel, system (3) is supposed to have a positive equilibrium point \(x^* = (x_1^*, x_2^*)\) which is also a positive one of system (1). It is well known [2] that system (3) is globally stable (we say
the system to be globally stable if \(x^*\) is globally stable in the system) if and only if the species interaction matrix \(A = (a_{ij})_{2 \times 2}\) satisfies the following condition (C):

\[
\text{Condition (C): } a_{11}a_{22} - a_{12}a_{21} > 0.
\]

DEFINITION 1. System (1) is permanent if there is a compact region \(K\) in the interior of \(\mathbb{R}^2_+ = \{x|x_i \geq 0; i = 1, 2\}\) such that all the solutions \(x(t) = (x_1(t), x_2(t))\) of system (1) with initial conditions (2) ultimately enter \(K\).

Recently, the permanence and global attractivity of the positive equilibrium point \(x^*\) of system (1) with \(\tau_{11} + \tau_{22} = 0\) are discussed under the Condition (C) or some stronger ones in [1,3–7].

RESULT 1. [6]. In the prey-predator case, i.e., \(a_{12}a_{21} < 0\), Condition (C) implies the permanence of system (1).

REMARK 1. In fact, [6] considered a prey-predator system with arbitrarily finite number of delays which includes system (1) as a special case.

RESULT 2. [5,7]. In the competitive case, i.e., \(a_{12} < 0\) and \(a_{21} < 0\), Condition (C) implies the permanence of system (1).

REMARK 2. The system considered in [7] also has arbitrarily finite number of delays.

REMARK 3. In both the above two cases, the delays are harmless for the permanence of system (1) which means that delayed system (1) remains to be permanent for any delays \(\tau_{ij}\). Note that for system (3), the permanence is equivalent to the global stability.

RESULT 3. [5]. In the competitive case as in Result 2, if, furthermore, \(\max\{\tau_{11}, \tau_{22}\}\) is small enough, then Condition (C) implies that positive equilibrium \(x^* = (x_1^*, x_2^*)\) is a global attractor for system (1).

If \(\tau_{11} = \tau_{22} = 0\), we know the following result.

RESULT 4. [8]. In the cooperative case, i.e., \(a_{12} > 0\) and \(a_{21} > 0\), Condition (C) guarantees the global attractivity of the positive equilibrium \(x^* = (x_1^*, x_2^*)\).

A natural problem from these known results is whether the Condition (C) ensures the permanence of system (1) in general. In fact, this problem is included in a recent conjecture which was proposed by Kuang in [1, p. 310] as follows.

ASSUMPTION 1. Assume that \(\mu_{ij}\) are nondecreasing and \(\mu_{ij}(0^+) - \mu_{ij}(-\tau^-) = 1\). Then

\[
\dot{x}_i(t) = x_i(t) \left[r_i - \sum_{j=1}^{n} a_{ij} \int_{-\tau}^{0} x_j(t + \theta) d\mu_{ij}(\theta) \right]
\]

is permanent if and only if

\[
\dot{x}_i(t) = x_i(t) \left[r_i - \sum_{j=1}^{n} a_{ij} x_j(t) \right]
\]

is permanent.
Unfortunately, the following two examples will show that the answer to our problem is negative. This implies that Kuang’s conjecture is not true.

Example 1.

\[
\begin{align*}
\dot{x}_1(t) &= x_1(t) \left[1 - x_1(t-2) + e^{-1} x_2(t-1)\right], \\
\dot{x}_2(t) &= x_2(t) \left[1 + e^{-1} x_1(t-1) - x_2(t-2)\right].
\end{align*}
\]

System (4) with initial condition (2) has an unbounded solution \(x(t) = (x_1(t), x_2(t)) = (e^t, e^t)\) if \(\phi_i(t) = e^t\). In this case, both diagonal delays are larger than off-diagonal ones. The following example shows that even if one of the diagonal delays is smaller than the off-diagonal delays, the system can also have an unbounded solution.

Example 2.

\[
\begin{align*}
\dot{x}_1(t) &= x_1(t) [1 - x_1(t-1) + e x_2(t-2)], \\
\dot{x}_2(t) &= x_2(t) \left[1 + e^{-3} x_1(t-2) - x_2(t-5)\right].
\end{align*}
\]

Clearly, the unbounded solution given in Example 1 is also an unbounded one for system (5).

Concluding Remark. From the known results (Results 1, 2, 3 and 4) and the proposed examples (Examples 1 and 2), it seems that the delay effect on the permanence is more difficult to analyze for the cooperative systems than for the competitive or prey-predator ones. For two-species cooperative ones, it seems that the relationship of the magnitude of the diagonal delays and that of the off-diagonal ones will determine the permanence and global attractivity of the delay system (1).

References