On Finite Abelian-by-Nilpotent Groups

ROLF BRANDL

Mathematisches Institut, Am Hubland 12,
D-8700 Würzburg, West Germany

Communicated by B. Huppert

Received June 24, 1982

A class \mathcal{H} of finite groups is called n-recognizable if a finite group all of whose n-generator subgroups belong to \mathcal{H} also belongs to \mathcal{H}. For example, the classes \mathcal{A} of finite abelian groups and \mathcal{N} of finite nilpotent groups are 2-recognizable. In [1] it has been proved that if \mathcal{H} is a $\{Q, S, D\}$-closed class of finite soluble groups which is n-recognizable for some $n \geq 2$ then the product $\mathcal{N} \mathcal{H}$ again is n-recognizable and, trivially, the class $\mathcal{A} \mathcal{H}$ is $(2n)$-recognizable. The question arises whether one can improve the latter result. However, in [5] it has been shown that the class $\mathcal{A} \mathcal{M}$ of all finite metabelian groups is 4-recognizable but not 3-recognizable.

In this note we shall present a sequence w_1, w_2, \ldots of laws in three variables such that the finite group G belongs to $\mathcal{A} \mathcal{N}$ if and only if $w_k(G) = 1$ for almost all k. In particular, $\mathcal{A} \mathcal{N}$ is 3-recognizable and we shall give an example showing that this result is best possible. In addition, it follows that every finite 3-metabelian group is abelian-by-nilpotent. This may be compared with a result of I. D. Macdonald [4] which states that the aforementioned groups are centre-by-metabelian.

The notation we shall use is fairly standard. In particular, for a word w, we denote by $w(G)$ the verbal subgroup of the group G with respect to w (see [6]). All groups considered in this paper are finite. Moreover, $\gamma_\infty(G)$ denotes the last term of the descending central series of G.

1. The Minimal Counterexamples

In this section we collect some information on groups which do not belong to a class of groups but all of whose proper subgroups and/or quotients do. The first result is well known.

Lemma 1 [3, pp. 281ff.]. Let Q be nonnilpotent and suppose that all proper subgroups of Q are nilpotent. Then Q is a semidirect product of a
normal Sylow p-subgroup A of Q with a cyclic q-subgroup $B = \langle b \rangle$ acting irreducibly on $A/\Phi(A)$. Moreover, A is a special p-group.

The following reduction lemma presents some results on minimal counterexamples for the class \mathcal{A}/\mathcal{N}. The second part has appeared in [2], but for the convenience of the reader we include an independent proof.

Lemma 2. Let G be a soluble group all of whose proper subgroups and quotients belong to \mathcal{A}/\mathcal{N} but $G \notin \mathcal{A}/\mathcal{N}$.

(a) If G is not metanilpotent then G is a semidirect product of its unique minimal normal subgroup $N = F(G)$ with a complement Q which is not nilpotent, but all of whose proper subgroups are. The normal Sylow subgroup of Q is elementary abelian or extraspecial.

(b) [2] If G is metanilpotent then G is a semidirect product of $F = F(G)$, which is a p-group, with a cyclic p'-group $Q = \langle a \rangle$. Furthermore, F' is the unique minimal normal subgroup of G and $F' \leq Z(F)$.

Proof. (a) This follows immediately from [1, Satz 2.9].

(b) By minimality, the Fitting subgroup F of G is a p-group. As G is metanilpotent, we have $G = FQ$, where Q is a nilpotent p'-group. Let $N = \gamma_\infty(G)$.

Assume that Q contains at least three maximal subgroups M_1, M_2, M_3. Let $A_i = \gamma_\infty(FM_i)$, so A_i is an abelian normal subgroup of G. As $G = FM_iFM_j$, we have $N = A_iA_j$ and so $A_i \cap A_j \leq Z(N)$ for all $i \neq j$.

We now prove $N = (A_1 \cap A_2)A_1$, which in turn implies that N is abelian contradicting the hypothesis on G. Now $N/A_i = C_{N/A_i}(Q) \times [N/A_i, Q] =: C_{i}/A_i \times B_i/A_i$. As G/B_i is nilpotent and $N = \gamma_\infty(G)$, we have $N/A_i = [N/A_i, Q]$ and so Q acts fixed point freely on N/A_i.

Let H/K be a Q-chief-factor of N/A_i. As FM_i/A_i is nilpotent, we have $1 \neq H/K \cap Z(FM_i/K)$ and so $M_i \leq C_0(H/K)$. By the above, we have $M_i = C_0(H/K)$. Hence for $i \neq j$ the Q-chief-factors of N/A_i and N/A_j are pairwise nonisomorphic and our claim follows from the theorem of Jordan-Hölder.

So Q has at most two maximal subgroups and therefore it is cyclic. The remaining statements are obvious.

The following result on minimal simple groups is well known.

Lemma 3. Let $G = \operatorname{PSL}(3, 3)$ or $G = Sz(q)$. Then G has a soluble subgroup which is not in \mathcal{A}/\mathcal{N}.
2. The Main Result

In order to state the main result of this note, we first introduce the laws we shall deal with.

Definition. Let x, y, z be variables and let k be some positive integer. Then $b_k(x, y, z) = [[x, y z], [y, x z]]$ and $c_k(x, y, z) = [[x, y], [x, z]]$.

It is obvious that each group in \mathcal{N} satisfies almost all laws $b_k = 1$ and $c_k = 1$. The converse of this statement is also true and this is the content of

Theorem. Let G be a finite group. Then the following are equivalent:

(i) G belongs to \mathcal{N},

(ii) G satisfies almost all laws $b_k = 1$ and $c_k = 1$.

The proof that (ii) implies (i) involves studying a counterexample G of least possible order. By minimality, every proper subgroup and factor group of G belongs to \mathcal{N}. In the first part of the proof we assume that G is soluble, so Lemma 2 is applicable.

The following result may be of independent interest.

Lemma 4. Let H be a group and let a be a fixed point free automorphism of H. Then there exists a positive integer k such that $[x, ka] = x$ for all $x \in H$.

Proof. Let $x \in H$. As H is finite, there exist positive integers r, s with $r < s$ and $[x, a] = [x, a]$. If for $y, z \in H$ we have $[y, a] = [z, a]$ then, by $C_n(a) = 1$, we get $y = z$. So $x = [x, a]$ for $t = s - r$. The result follows by taking k to be the least common multiple of all such t.

Lemma 5. Let Q be as in Lemma 1 and assume that A is nonabelian special. Then there exists $a \in A \setminus Z(A)$ and some positive integer k with $a = [a, kb]$.

Proof. Let $\bar{Q} = Q/Z(A)$ and let $a_0 \in A \setminus Z(A)$. By Lemma 4 there is some k with $\bar{a}_0 = [\bar{a}_0, kb]$, so $[a_0, kb] = a_0 z$ for some $z \in Z(A)$. Let $a = a_0 z$. Then, as $[Z(A), B] = 1$, we have $[a, kb] = [a_0, kb] = a_0 z = a$ as required.

We are now in a position to deal with the first type of minimal counterexample.

Lemma 6. Let G be as in Lemma 2(a). Then $b_k(G) \cdot c_k(G) \neq 1$ for infinitely many k.

Proof. By Lemma 4 and Lemma 5 there exists an element $1 \neq a \in A$ with
\[a = [a, b] \] for some positive integer \(k \). We divide the proof into two parts according to whether or not \(b \) acts fixed point freely on \(N \).

First, assume that \(C_N(b) = 1 \). As clearly \(A \) acts faithfully on \(N \), there exists \(1 \neq n \in N \) with \([n, a] \neq 1 \). By Lemma 4 there is some \(k \) with \([n, k^2] = n \). So for \(k = k_1 k_2 \) we have \([a, k^2 b] = a \) and \([n, k^2 b] = n \). Finally, we arrive at \(b_k(n, a, b) = ([n, k^2 b], [a, k] b] = [n, a] \neq 1 \) proving our assertion in this case as there obviously exist infinitely many such \(k \).

Now let \(C_N(b) \neq 1 \) and select \(1 \neq n \in C_N(b) \). Then \([n a, k, b] = [a, k, b] = a \).

This gives

\[
\begin{align*}
c_{k_1}(n a, a, b) &= [[n a, k_1 a], [n a, k_1 b]] \\
&= [[n, k_1 a]^a, a] \\
&= [n, k_1, a]^a.
\end{align*}
\]

Now \(c_{k_1}(G) = 1 \) would imply \([n, k_1, a] = 1 \) and, as the orders of \(N \) and \(A \) are coprime, this gives \([n, a] = 1 \), contradicting the choice of \(n \).

The second type of a minimal counterexample needs some more preparatory remarks.

Lemma 7. Let \(G \) be as in Lemma 2(b) and let \(N = \gamma_r(G) \). Then \(a \) acts fixed point freely on \(N/N' \).

Proof. This follows from an argument similar to that used in the proof of Lemma 2(b).

Now we rule out the second type of minimal counterexample.

Lemma 8. Let \(G \) be as in Lemma 2(b). Then \(b_k(G) \neq 1 \) for infinitely many \(k \).

Proof. As \(N = \gamma_r(G) \) is nonabelian, we can select \(n_1, n_2 \in N \) with \([n_1, n_2] \neq 1 \). By Lemma 7 and Lemma 4 there exists a positive integer \(u \) with \([n_i, a] \equiv n_i \pmod{N'} \), so \([n_i, a] = n_i w_i \) for some suitable \(w_i \in N' \) \((i = 1, 2)\). Then

\[
\begin{align*}
b_u(n_1, n_2, a) &= [[n_1, a], [n_2, a]] \\
&= [n_1 w_1, n_2 w_2] \\
&= [n_1, n_2] \neq 1, \quad \text{as} \quad N' \leq Z(N).
\end{align*}
\]

In proving the Theorem it suffices by Lemma 6 and Lemma 8 to show that a finite group satisfying almost all laws \(b_k = 1 \) and \(c_k = 1 \) is soluble. A minimal counterexample to this assertion clearly is a minimal simple group (see [7]).
LEMMA 9. Let \(q = p^k \geq 4 \) be a prime power. Then \(b_k(\text{PSL}(2, q)) \neq 1 \) for all \(k \).

Proof. By assumption there exists \(r \in \text{GF}(q) \) with \(r^2 \neq 1 \). The following can be easily verified:

\[
\begin{bmatrix}
(1, 1), (r^{-1}, 0)
\end{bmatrix}
= \begin{bmatrix}
1, \quad (1 - r^2)^k
\end{bmatrix}
\]
\[
\begin{bmatrix}
(1, 0), (r^{-1}, 0)
\end{bmatrix}
= \begin{bmatrix}
1, \quad 0
\end{bmatrix}
\]
\[
\begin{bmatrix}
(1, 1), (0, r)
\end{bmatrix}
= \begin{bmatrix}
(r^{-2} - 1)^k, \quad 1
\end{bmatrix}
\]

This implies

\[
b_k \left(\begin{bmatrix}
(1, 1), (1, 0)
\end{bmatrix}, \begin{bmatrix}
1, \quad 0
\end{bmatrix}, \begin{bmatrix}
(r^{-1}, 0)
\end{bmatrix} \right) \neq \pm 1.
\]

The proof of the Theorem now is complete as by Lemma 3 the remaining minimal simple groups are no minimal counterexamples.

COROLLARY. Let \(G \) be a finite group all of whose 3-generator subgroups belong to \(\mathcal{N} \). Then \(G \in \mathcal{N} \).

Proof. This follows from the Theorem as in the sequences of words there are only three variables.

Another Corollary provides some information on 3-metabelian groups.

COROLLARY. Let \(G \) be a (finite) 3-metabelian group. Then \(\gamma_\infty(G) \) is abelian.

3. AN EXAMPLE

In view of the Corollaries stated above the question arises whether \(\mathcal{N} \) is 2-recognizable. This, however, is not the case as the following shows.

EXAMPLE. Let \(p \) be an odd prime and let \(N = \langle x, y \rangle \) be the nonabelian group of order \(p^3 \) and exponent \(p \). One easily verifies that there exists an automorphism \(z \) of \(N \) inverting the two generators \(x, y \). Let \(G \) be the split extension of \(N \) with \(\langle z \rangle \).

Then \(\gamma_\infty(G) = N \) is not abelian, so \(G \notin \mathcal{N} \). But every proper subgroup or quotient has order dividing \(2p^2 \) or \(p^3 \) and so lies in \(\mathcal{N} \). Also the group \(G \) cannot be generated by two elements as can be seen by considering \(G/\Phi(N) \). This shows that \(\mathcal{N} \) is not 2-recognizable and so our result is best possible.

