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Abstract In this paper, a hybrid artificial intelligent approach based on the clonal selection prin-

ciple of artificial immune system (AIS) and neural networks is proposed to solve multi-objective

programming problems. Due to the sensitivity to the initial values of initial population of antibodies

(Ab’s), neural networks is used to initialize the boundary of the antibodies for AIS to guarantee that

all the initial population of Ab’s is feasible. The proposed approach uses dominance principle and

feasibility to identify solutions that deserve to be cloned, and uses two types of mutation: uniform

mutation is applied to the clones produced and non-uniform mutation is applied to the ‘‘not so

good’’ antibodies. A secondary (or external) population that stores the nondominated solutions

found along the search process is used. Such secondary population constitutes the elitist mechanism

of our approach and it allows it to move towards the Pareto front.
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1. Introduction

The field of immunological computation (IC) or artificial im-

mune system (AIS) has been evolving steadily [10] since 1985.
In recent years, several researchers have developed computa-
tional models of the immune system that attempt to capture

some of its most remarkable features such as its self-organizing
capability [4].

The multi-objective immune system algorithm (MISA) can

be considered as the first real proposal of MOAIS in the liter-
ature [2]. In the first proposal of the algorithm, authors at-
tempted to follow the clonal selection principle very closely,

then the algorithm performances have been improved in a suc-
cessive version [4] sacrificing some of the biological metaphor.
The population is encoded by binary strings and it is initialized
randomly. The algorithm does not use explicitly a scalar index
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to define the avidity of a solution but some rules are defined for
choosing the set of antibodies to be cloned. The ranking
scheme uses the following criteria: (1) first feasible and non-

dominated individuals, then (2) infeasible nondominated indi-
viduals, finally (3) infeasible and dominated. The memory set
(called secondary population) is updated by the nondominated

feasible individuals. Because of this repository being limited in
size, an adaptive grid is implemented to enforce a uniform dis-
tribution of nondominated solutions [4,10].

The number of clones for the pool of best antibodies de-
pends on the antibody–antibody affinity. These best antibodies
are selected for a uniform mutation, with mutation probability
proportional to antibody–antigen affinity, according to the

ranking scheme, while the remaining population undergoes a
non-uniform mutation. Again, the ranking scheme is used as
criterion to reduce the population to its original cardinality

[11].
Neural network (NN) is a well known as one of powerful

computing tools to solve optimization problems. Due to mas-

sive computing unit neurons and parallel mechanism of neural
network approach it can solve the large-scale problem effi-
ciently and optimal solution can be obtained [13,16].

The other hand neural network (NN) approach is attended
as a new method for solving optimization problems, this meth-
od has a great charm because NN can solve large scale and
complex optimization problems in real time, and also is benefit

to search the global solution.
A general methodology for solving multi-objective nonlinear

programming (MONP) problems. In order to operationalize the

concept of Pareto-optimal solution, we should relate it to a famil-
iar concept. The most common strategy is to characterize Pareto-
optimal solutions in terms of optimal solutions of appropriate

nonlinear programming problems (NLPP). Among weighted
aggregation (WA) technique we can characterize multi-objective
programming problems (MOPs) into NLPPs [13,18].

We run neural networks based on weighted aggregation
method, with weights to determine the end points of the Pareto
front and the point that all objective functions has equal
weight. From these three point we deduce the range (the upper

and lower values) of each decision variable. This range used as
the input to AIS this modification makes AIS faster, and give
more accurate Pareto-optimal solutions.
2. Artificial immune systems

The natural immune system (NIS) has an amazing pattern

matching ability, used to distinguish between foreign cells
entering the body (referred to as non-self, or antigen (Ag))
and the cells belonging to the body (referred to as self). As

the NIS encounters antigen, the adaptive nature of the NIS
is exhibited, with the NIS memorizing the structure of these
antigen for faster future response the antigen [4].

In NIS research, four models of the NIS can be found:

� The classical view of the immune system is that the immune
system distinguishes between self and non-self, using lym-
phocytes produced in the lymphoid organs. These lympho-

cytes ‘‘learn’’ to bind to antigen.
� Clonal selection theory, where an active B-cell produces
antibodies through a cloning process. The produced clones

are also mutated.
� Danger theory, where the immune system has the ability to

distinguish between dangerous and non-dangerous antigen.
� Network theory, where it is assumed that B-cells form a net-
work. When a B-cell responds to an antigen, that B-cell

becomes activated and stimulates all other B-cells to which
it is connected in the network [12].

An artificial immune system (AIS) models some of the as-

pects of a NIS, and is mainly applied to solve pattern recogni-
tion problems, to perform classification tasks, and to cluster
data. One of the main application areas of AISs is in anomaly

detection, such as fraud detection, and computer virus detec-
tion [4,10].

2.1. Clonal selection theory

Any molecule that can be recognized by the adaptive immune
system is known as an Ag. When an animal is exposed to an
Ag, some subpopulation of its bone-marrow-derived cells

(B-lymphocytes) responds by producing Ab’s. Ab’s are mole-
cules attached primarily to the surface of B-cells whose aim
is to recognize and bind to Ag’s. Each B-cell secretes a single

type of Ab, which is relatively specific for the Ag. By binding
to these Ab’s and with a second signal from accessory cells,
such as the T-helper cell, the Ag stimulates the B-cell to prolif-

erate (divide) and mature into terminal (nondividing) Ab
secreting cells, called plasma cells. The process of cell division
(mitosis) generates a clone, i.e., a cell or set of cells that are the

progenies of a single cell. B-cells, in addition to proliferating
and differentiating into plasma cells, can differentiate into
long-lived B-memory cells. Memory cells circulate through
the blood, lymph, and tissues and, when exposed to a second

antigenic stimulus, commence to differentiate into plasma cells
capable of producing high-affinity Ab’s, preselected for the
specific Ag that had stimulated the primary response. Fig. 1

depicts the clonal selection principle.
The main features of the clonal selection theory [2,10] that

will be explored in this paper are:

(1) Proliferation and differentiation on stimulation of cells
with Ag’s.

(2) Generation of new random genetic changes, expressed
subsequently as diverse Ab patterns, by a form of accel-
erated somatic mutation (a process called affinity
maturation).

(3) Estimation of newly differentiated lymphocytes carrying
low-affinity antigenic receptors.

3. Multi-objective programming (MOP) problem

This section provides the necessary mathematical background

for MOP [8,17]. Consider a multi-objective programming
problem with k_objectives ðfiðxÞÞ; ðj ¼ 1; 2; . . . ; kÞ and n
decision variables ðxi ¼ 1; 2; . . . ; nÞ:
MOP:

Min FðxÞ ¼ ðf1ðxÞ; . . . ; fkðxÞÞ
Subject to

S ¼ fx 2 RnjgðxÞP 0; hðxÞ ¼ 0g ð1Þ



Figure 1 Clonal selection principle.

Figure 2 Geometrical representation of weighted method.
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where x 2 Rn, f : Rn ! Rk, is k-dimensional vector valued con-
tinuous functions of n variables, g ¼ ½g1; . . . ; gm�

T : Rn ! Rm,
is m-dimensional vector valued continuous functions of n vari-

ables and h ¼ ½h1; . . . ; hp�T : Rn ! Rp, is p-dimensional vector
valued continuous functions of n variables.

The k objectives are conflicted with each other. Therefore,

the target of MOP is to achieve a set of efficient solutions that
are called Pareto set. The related concepts of Pareto-optimal
solution, and weak Pareto-optimal solution [17].

Definition 1 (Pareto-optimal solution). x� is said to be Pareto-

optimal solution of MOP If there is no other feasible x such
that, for all j, j ¼ 1; 2; . . . ; k with strict inequality for at least
one j.

Definition 2 (Weak Pareto-optimal solution). x� 2 S is said to

be a weak Pareto-optimal solution if and only if there is no
other x 2 S such that fjðx�Þ < fjðxÞ for all j, j ¼ 1; 2; . . . ; k.
3.1. Weighted method for MOP problem

The weighted method [8] for the multi-objective optimization

problem is formulated as:

PðwÞ : Min
Xk
i¼1

wifiðxÞ

s:t: x 2 s; w 2W;

W ¼ w 2 Rkjwj P 0;
Xk
j¼1

wj ¼ 1

( ) ð2Þ
Multi-objective optimization runs are conducted with dif-

ferent weighting vector (W) in order to locate a set of points
on the Pareto front. This method is the simplest and the most
straight forward way of obtaining the Pareto-optimal front.
However, this method is associated with some major draw-

backs. Depending on the scaling of the different objectives
and the shape of the Pareto front, it is hard to select the
weighting. Another problem occurs when the solution space

is non-convex. In that case not all the Pareto-optimal solutions
can be obtained by solving the problem P(w). But in our study
we concentrate on the Convex MOP problems to avoid this

weakness of P(w) [6].
The solution of the single objective P(w) Eq. (2) (in a min-

imizing case) is shown in Fig. 2, where the shaded area denotes
the feasible region.

Theorem 1. If x� 2 S is an optimal solution of the weighting
problem P(w) where either W > 0, or x� is a unique optimal
solution, then x� is a Pareto-optimal solution of the MOP [8].

Theorem 2. Let the multi-objective optimization problem be

convex. If x� 2 S is an efficient solution of the MOP, then x�

is an optimal solution of the weighting problem P(w) for some
W ¼ ðw1;w2; . . . ;wkÞP 0 [8].
4. The multi-objective optimization neural network

To formulate the optimization problem in terms of a neural
network, the key step is to construct an appropriate energy
function E(z) such that the lowest energy state corresponds

to the intended optimal solution z�. Based on the energy func-
tion, we construct a gradient system of differential equations
which corresponds to a neural network [9,18].

The (MOP) is transformed via the weighted approach into
single nonlinear programming problem:
NLPP:

Min FðxÞ ¼
Xk
j¼1

wjfjðxÞ

s:t: giðxÞP 0; i ¼ 1; 2; . . . ;m

hl ¼ aTl x� bj; l ¼ 1; 2; . . . ; p

ð3Þ
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where W ¼ w 2 Rkjwi P 0;
Xk
i¼1

wi ¼ 1

( )

where fjðxÞ; j ¼ 1; 2; . . . ; k and giðxÞ 2 C2 (the Set of all contin-
uous function which possess the second derivatives) ði ¼
1; 2; . . . ;mÞ are convex functions, and the vectors falgl¼1;2;...;p
are linearly independent. We suppose throughout that NLPP
has an optimal solution, and is strongly consistent, i.e., there
exists x0 2 Rnsuch that giðx0Þ > 0, (i=1,2,. . .,m), hjðx0Þ ¼
0,(j=1,2,. . .,p) [7].

According to the result in Rao [15], the dual nonlinear pro-
gramming problem (DNPP) can formulated as follows:

DNLPP:

Maxx;k;l Lðx; k; lÞ; x 2 Rn

s:t: rLðx; k; lÞ ¼ 0

k P 0; l unrestricted in sign;

ð4Þ

where

k ¼ ðk1; k2; . . . ; kmÞT; l ¼ ðl1; l2; . . . ; lpÞ
T

Lðx; k; lÞ ¼ FðxÞ �
Xm
i¼1

kigiðxÞ �
Xp
j¼1

ljhjðxÞ � LðzÞ

rLðx; k; lÞ ¼ rFðxÞ �
Xm
i¼1

kirgiðxÞ �
Xp
j¼1

ljrhjðxÞ
Theorem 3. Suppose that x� is an optimal solution of convex
nonlinear programming problem (CNLPP), then there exists

ðk�; l�ÞT 2 Rmþp, such that ðx�; k�; l�ÞT, is an optimal solution
of dual problem for a specific value of W [15].

To entertain general inequality constraints, we can easily
generalize Lemma 1 in Leung et al. [9] and obtain the following
theorems:

Theorem 4. Suppose gðxÞ 2 Rm; gðxÞ 2 C1 (the set of continu-
ously differentiable function). Then

gðxÞP 0 () 1

2
gðxÞTðgðxÞ � jgðxÞjÞ ¼ 0 ð5Þ

and 1
2
gðxÞTðgðxÞ � jgðxÞjÞ 2 C1; where jxj ¼ ðjx1j; jx2j; . . . ;

jxnjÞT [7].

By Theorem 4, general inequality constraints can easily be
transformed into equality constraints, and after the transfor-
mation, differentiability of the function is the same as that of

gðxÞ. It is easy to prove that 1
2
gðxÞTðgðxÞ � jgðxÞjÞ is a convex

function when g(x) is a concave function.

Theorem 5. x�and ðx�; k�; l�ÞT are optimal solutions of NLPP
and DNLPP, respectively, for a specific value of W, if and only

if

Fðx�Þ ¼ Lðx�; k�; l�Þ; rLðx�; k�; l�Þ ¼ 0

gðx�ÞP 0; hðx�Þ ¼ 0; k� P 0; l� unrestricted in sign

k�Tgðx�Þ ¼ 0 ð6Þ

and the set of vectors rhlðx�Þ are linearly independent.

Proof. By the duality theorem of the nonlinear programming
[15] and Kuhn Tucker optimality condition of convex nonlin-
ear programming [15], Theorem 3 can be immediately

obtained.

By Theorems 4 and 5, the energy function of Convex NLP

can be constructed as follows:

EðzÞ ¼ Eðx; k; lÞ ¼ 1

2
kTgðxÞ
� �2 þ 1

2
krxLðx; k; lÞk2

þ 1

2
gðxÞTðgðxÞ � jgðxÞjÞ þ 1

2
kAx� bk2 þ 1

2
kTðk� jkjÞ

ð7Þ

where z ¼ ðxT; kT; lTÞT 2 Rnþmþp. Every term of the right-hand
side of Eq. (7) being zero corresponds to every equality or
inequality being satisfied in Eq. (6) and EðzÞP 0. Thus E(z)

is differentiable function by Leung et al. [9]. h

Theorem 6. z� ¼ ðx�; k�; l�ÞT is zero point of EðzÞ () z� is an
optimal solution of NLPP and DNLPP (i.e., x� and
ðx�; k�; l�ÞT are optimal solutions of NLPP and DNLPP for a

specific value of W, respectively).

Proof. By Theorem 4, z� ¼ ðx�; k�; l�ÞT is zero point of
EðzÞ () z� satisfies Eq. (6). By Theorem 5, z� satisfies Eq.

(6) () x� and ðx�; k�; l�ÞT are Pareto-optimal solutions of
NLPP and DNLPP for a specific value of W, respectively.

Therefore, Theorem 6 is proved. h

Employing the unified idea in Leung et al. [9],we can use the

gradient system to construct the following multi-objective neu-
ral network for solving a convex multi-objective optimization
problems:

dz

dt
¼ �rEðzÞ ð8Þ

Using the formula of computing gradients in Leung et al.
[9], the multi-objective neural network as in Eq. (8) can be

written in details as follows:

dx

dt
¼ �rxEðzÞ ¼ �kTgðxÞ:rgðxÞTk�rgðxÞTðgðxÞ � jgðxÞjÞ

� r2
xxLðzÞrxLðzÞ � ATðAx� bÞ

dk
dt
¼ �rkEðzÞ ¼ �kTgðxÞ:gðxÞ þ rgðxÞrxLðzÞ � ðk� jkjÞ

dl
dt
¼ �rlEðzÞ ¼ ArxLðzÞ

ð8’Þ

where r2
xxLðzÞ is the Hessian matrix of the function L(z) with

respect to x. Suppose rEðzÞ is Lipschitz continuous, then the
initial value problem of differential equations in Eq. (8) has a
unique solution because the function in the right hand side of

differential Eq. (8) or (8)0 are continuous, these equations can
easily be achieved by hardware implementation of the net-
work. Therefore, it is a feasible neural network [2,7].
5. The proposed approach

The algorithm run in two stages, the first one run neural net-

workswith a random initial input based on theweightedmethod
with three points which is the end points and the midpoint of
weights. The second stage uses the output of neural networks
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as the input to AIS which has taken ideas from the clonal selec-
tion principle, [1,4]modeling the fact that only the highest affinity
antibodies will proliferate. Antibodies, in our case, are repre-

sented by binary strings that encode the decision variables of
the problem to be solved. However, we do not use a population
of antigens, but only Pareto dominance and feasibility to iden-

tify solutions that deserve to be cloned. Additionally, our ap-
proach uses mutation [4] (uniform mutation is applied to the
clones and non-uniform mutation is applied to the ‘‘not so

good’’ antibodies, as we will see later on). We also use a second-
ary (or external) population that stores the nondominated solu-
tions found along the search process. Such secondary
population is the elitist mechanism most commonly adopted in

multi-objective optimization, and it allows us to move towards
the Pareto front [3].

5.1. The algorithm

The proposed algorithm for solving multi-objective immune
system algorithm (MISA) based on NN is as follow:

Neural network simulation algorithm [13]

[Step 1] InitializationLet t ¼ 0. Randomly choose initial vec-

tor xðtÞ 2 Rn; kðtÞ 2 Rm; lðtÞ 2 Rp;Dt > 0 (for exam-
ple, Dt ¼ 0:0001Þ and error e ¼ 10�9.

[Step 2] Transform the of MOP into NLPP Eq. (3)
[Step 3] Computation of gradient:

uðtÞ ¼ rxEðzÞ ¼ kTgðxÞ � gðxÞTkþrgðxÞT½gðxÞ � jgðxÞj�

þ r2
xxLðzÞrxLðzÞ þ ATðAx� bÞ

vðtÞ ¼ rkEðzÞ ¼ kTgðxÞ � gðxÞ � rgðxÞrxLðzÞ þ ½k� jkj�

wðtÞ ¼ rlEðzÞ ¼ �ArxLðzÞ

[Step 4] States updating:

xðtþ DtÞ ¼ xðtÞ � Dt:uðtÞ kðtþ DtÞ
¼ kðtÞ � Dt � vðtÞlðtþ DtÞ ¼ lðtÞ � Dt � wðtÞ

[Step 5] Calculate:

s ¼
Xn
i¼1

u2i ðtÞ; r ¼
Xm
j¼1

v2j ðtÞ; q ¼
Xp
j¼1

w2
j ðtÞ

[Step 6] Stopping rule:
if s < e; r < e and q < e, then output xðt þ DtÞ;
kðt þ DtÞ, lðt þ DtÞ into the input file of MISA;

otherwise let t ¼ t þ Dt and go to Step 3.

MISA simulation algorithm

[Step 1] Initialization based on NN output.

[Step 2] Sorting population according to dominance.
[Step 3] Choose the ‘‘best’’ antibodies to be cloned.
[Step 4] Cloning ‘‘best’’ antibodies.
[Step 5] Appling a uniform mutation to the clones.

[Step 6] Appling a non uniform mutation to the ‘‘not so
good’’ antibodies.

[Step 7] Returns the population size to its original value.

[Step 8] Repeat this process from Step 2 during a certain (pre-
determined) number of times.
6. Experiments

In order to validate our approach, five benchmark functions

which reported in the standard evolutionary multi-objective
optimization literature [5,14].

The results indicated below when using the following

parameters for MISA: population size = 100, number of grid
subdivisions = 25, size of the external population = 100.

The problems chosen from the benchmark domains are BNH

used by Binh andKorn, SRNused by Srinivas, Deb [14],M_OU
by Cvetkovic, M_LOC by Kita, M_3OU by Viennet [5].

Problem 1 (BNH).

Min f1ðxÞ ¼ 4x2
1 þ 4x2

2

f2ðxÞ ¼ ðx1 � 5Þ2 þ ðx2 � 5Þ2

s:t: g1ðxÞ ¼ ðx1 � 5Þ2 þ x2
2 6 25

g2ðxÞ ¼ ðx1 � 8Þ2 þ ðx2 þ 3Þ2 P 7:7
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The output of NN indicates that the range of variables will
0 6 x1 6 5 and 0 6 x2 6 3. Pareto front using MISA based
NN shown in Fig. 3.

Problem 2 (SRN).

Min f1ðxÞ ¼ ðx1 � 2Þ2 þ ðx2 � 1Þ2 þ 2

f2ðxÞ ¼ 9x1 � ðx2 � 1Þ2

s:t: g1ðxÞ ¼ x2
1 þ x2

2 6 225

g2ðxÞ ¼ �x1 þ 3x2 P 10

The output of NN indicates that the range of variables will
�12 6 x1 6 12 and �10 6 x2 6 10. Pareto front using MISA
based NN shown in Fig. 4.
Problem 3 (M_UC).

Max f1ðxÞ ¼ sin x2
1 þ x2

2 � 1
� �

f2ðxÞ ¼ sin x2
1 þ x2

2 þ 1
� �

s:t: 0 6 x1 6 3p=4

0 6 x2 6 3p=4

The output of NN indicates that the range of variables will

0 6 x1 6 2 and 0 6 x2 6 2. Pareto front using MISA based
NN shown in Fig. 5.

Problem 4 (M_LOC).

Max f1ðxÞ ¼ �x2
1 þ x2

f2ðxÞ ¼ x1=2þ x2 þ 1

s:t: g1ðxÞ ¼ x1=6þ x2 6 13=2

g2ðxÞ ¼ x1=2þ x2 6 15=2

g3ðxÞ ¼ 5x1 þ x2 6 30

The output of NN indicates that the range of variables will
0 6 x1 6 5 and 3 6 x2 6 7. Pareto front using MISA based
NN shown in Fig. 6.

Problem 5 (M_3OU).

Min f1ðxÞ ¼ x2
1 þ ðx2 � 1Þ2

f2ðxÞ ¼ x2
1 þ ðx2 þ 1Þ2 þ 1

f3ðxÞ ¼ ðx1 � 1Þ2 þ x2
2 þ 2

s:t � 2 6 x1 6 2 � 2 6 x2 6 2

The output of NN indicates that the range of variables will
0 6 x1 6 2 and �1 6 x2 6 2. Pareto front using MISA based

NN shown in Fig. 7.
7. Conclusion

We have presented a hybrid multi-objective optimization algo-
rithm based on the clonal selection principle and neural net-
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works. The approach is able to produce results similar or bet-
ter than those generated by other evolutionary algorithms after
determining the max and min values with NN and use it to ini-

tialize population with at least feasible antibodies which help
MISA to find the Pareto-optimal solution more accurate and
more faster. Our approach uses an affinity measure to control

the amount of mutation to be applied to the antibodies. Affin-
ity in this case, is defined in terms of nondominance and feasi-
bility. This affinity measure, combined with the secondary

population are used to distribute nondominated solutions in
a uniform way.

The approach proposed also uses a very simple mechanism
to deal with constrained test functions, and our results indicate

that such mechanism, despite its simplicity, is effective in
practice.

All calculations are carried by Matlab 7.2 program for NN

and VC++ 2008 for MISA, and are run on Laptop 2 GHz/
1 Gb RAM/Windows XP, the solution take small number of
iterations.
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