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An addition formula, Pythagorean identity, and generating function are obtained
for orthogonal homogeneous polynomials of several real variables. Application is
made to the study of series of such polynomials. Results include an analog of the
Funk-Hecke theorem.  © 1999 Academic Press

1. POLYNOMIAL IDENTITIES

Let Z* denote the vector space of real homogeneous polynomials of
degree k in n real variables. Suppose x = (x;, x,,...,x,) and X =
(x4, X5, ..., x,_1). Then every polynomial p(x) €.#* has a unique repre-
sentation of the form

k
p(x) = Z x;];pk—j(f)’
j=0

where p,_ (%) €.2. Thus
k

5: = Z ‘Sr{—lv (1)

j=0
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where 8% = dim.Z*. In [8, p. 139] it is shown that

8 =

n

(") -

If p eZ* then

p(x) = Z caxa'
la|=k
where « denotes the n-tuple of non-negative integers («;, @,, ..., @,),

lal=a; + a, + - +a

n'
and

[e3

a a Qy L.,
X =xMx52 X,

n

On the vector space .7 of real polynomials in n variables, define the inner
product

(p.q9) =p(%)q(X)lxo. (2)
where

J g d J
and

Jd 0% g 9
A2)- £ i
lal=

ax “Ixp dxge dx,
n [2] it was shown that if p €., then

((xpy1 + 2,9, + = +x,9,)", p(¥)) = klp(x). (3)

This identity was then used in [2] to obtain the following addition formula
for orthogonal homogeneous polynomials:
If {p” , is an orthonormal basis for Z*, then

(Xyy1 +x29, + - +x yn = k! ij(x)P,(Y) (4)

Our first result is a generalization of this addition formula.
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THEOREM 1. Suppose {p].}j'i'f1 cZ* and {q].}j‘sj1 cZ* are normalized
biorthogonal systems with respect to the inner product (2), and let x =
(x5, %5, .., x,) R, y =y, yy,...,y,) € R". Then

Sk

(Xyy1 + X9, + - +x yn = k! ZP, x)q](y) (5)
j=1

Proof. Since {p]}]5 , and {q]}f"1 are normalized biorthogonal systems
each are linearly independent sets [8, Section 86]. In particular, {p}
forms a basis for #*. Thus, there exist coefficients c; (y) such that

Sk
(11 + 20,0, + - +x,,)" Z ¢;(y)pi(x).

Appealing to the biorthogonality, we then have

((x1Y1 Xy, + oo +xnyn)k’qj(x)) = Cj()’)-
Further, since g; is a homogeneous polynomial of degree &, it follows from
(3) that
((xlh T Xy, + +xnyn)k'qj(x)) = k!q/‘(Y)1

which completes the proof.
As a corollary, we have a generalization of the Pythagorean identity
obtained in [2]:

CoroLLARY. If {p, ].5:51 cZ* and {qj}j‘llfl c#Z* are bi-orthonormal, then

5/{
" 1
ij(s)‘lj(s) = I (6)
j-1 '
foralls = (s;,s,,...,s,) on the unit sphere s? + s + -+ +s? = 1.

We next obtain the converse of Theorem 1.

THEOREM 2. Suppose {p; j‘s:"k L €ZF is a linearly independent set of poly-
nomials, and

3’”

(X1y1 + X205 + = +x,5,) “ = k! ZP, x)q](y)
j=1

Then {qj} cZ* and { P l,{qj}j3£ L are sets of normalized biorthogonal
polynomials
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Proof. For A € R,

87?
(X1Apy + XAy, + o +x,A0) = KUY pi(x)g;(Ay)
j=1
&
= k! Z Pj( /\x)qj‘()’)
j=1
5%
= k! Z )\kpj(x)q]‘()’)-
j=1
Thus
5% 8%
0= pi(x)q;(Ay) = X pi(Ax)q;(y)
j=1 j=1
8%
= ¥ pi(0)[q;(1y) = Nq;(»)].
j=1

The linear independence of the polynomials { p; j‘*:nkl then implies
q;(Ax) = Xq;(x).

Thus the polynomials {qj}j‘sfl are homogeneous of degree k. Further,

((xpyy + X9, + - +x,9,)", pi(y)) = k! ; (4;(»), 2i(»))pi(x).
But by (3),
((xlh T Xy, o +xnyn)k,P1()’)) = klp/(x).
Thus
pi(x) = Z (4;, P) ().
j=1

Appealing to the linear independence of the polynomials {pj}j‘lfl, we then

have
0 ifj+1
(q/'vpl) - {1 ifj=l

which completes the proof.
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As a corollary, we obtain the converse of the addition formula (4).

COROLLARY.  Suppose {p; /.5:51 cZ* is linearly independent. If

3%
k
(X391 X9, + - +x,y,) =k! ZP;(X)PJ‘()’)’
j=1

then the polynomials { p; j‘s:"k 1 are orthonormal.

We next generalize an identity that was central to the proofs of the
major theorems of [7] and [10].

THEOREM 3.  Suppose (x;, Xy, ..., %), (y1, V5, -.., y,) and (¢, t,,...,t,)
e R". Then
((xltl +)C2t2 + - +xntn)k’(y1t1 +y2t2 + o +yntn)k)

=kl (xyy; +x,9, + xnyn)k' (7)

Note that the inner product in the above expression is with respect to
the variable t = (¢, 1,,...,1,).

Proof. Let
F(3,6) = ity + 9oty + - +9,8,)"
Then f(y,t) is a homogeneous polynomial of degree k in ¢. Thus by (3),

((xsty + Xty + - x,,) ", f(y. 1)) = KUf(y, x)

k
=k!(xyy; +x39; + 0 +x,,)

Our next identity is an analog of the extended addition formula for
spherical harmonics obtained in [5].

THEOREM 4.  Suppose { pj}j‘sj ,c U ;.;0;?,;"_1 is an orthonormal set. Then

& |

(L4291 + X0, + = +x, 19, 1) = ¥ ——p,(Dp;(5).
jo1 (k=)

where [; = deg p;.
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Proof. Write

k k!

. .
(L+xy, + o +x,0y,.4) = Z ik =) ————(xy + +xn—1yn—l)]'
j=0

Then by the homogeneity of p;,

~ k
(Pj(x)'(l F Xy o X, 1Y, ) )

k! l
m(pj’(xlyl + - +xn71yn71) !

k! R
T LNk — 1) (4i(9)) (8)

by (3). The result now [ollows.
We note that if {g;}’»; c U%_,%" , is an orthonormal set, then

(Xyyg + X, 1Y, +xn)k = ij(x)q/'(j’\) (9)
j=1

where {pj}j‘?j1 is an orthogonal basis for Z*.
Formula (9) is analogous to the generating function for polynomial
solutions of partial differential equations obtained in [3], [4], [7] and [10].

2. SERIES OF ORTHOGONAL
HOMOGENEOUS POLYNOMIALS

Our first result on series of orthogonal homogeneous polynomials is an
analog of the Funk—Hecke theorem. The Funk—Hecke theorem [1, p. 247]
states that

/Eﬂx-y)hku)da(y) = ¢, (%),

where f is a bounded integrable function on the sphere 3, ¢ R”, 4 (x)is a
homogeneous harmonic polynomial of degree k, and ¢, is a constant
depending on f and k. Since our inner product (2) is defined in terms of
derivatives, we must restrict attention to functions f which are analytic.
For such functions, using the inner product (2) we obtain the result of the
Funk—Hecke theorem for arbitrary homogeneous polynomials.
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THEOREM 5.  Suppose f(u), u € R, is analytic in a neighborhood of 0. If
Py EZF, then

(Pe(y). f(x-y)) = F5(0) pi(x),
where x -y =Xy, + Xy, + -+ +x,y,.
Proof. Since f(u) is analytic in a neighborhood of 0 € R,
= f1(0)
flu)y =% u

=0 J!

where the series converges absolutely and uniformly on compact subsets of
an open interval (—R, R). Thus all partial derivatives of the series

’()

i Y

converge absolutely and uniformly on compact subsets of the same inter-
val, when the series is differentiated term by term. Therefore, if p, €.2*,
then

(Pe(¥), f(x-9)) = | Pil(¥), f )(x-y)j
= 2 5 (5. (x9y)
j=0

= f©0) py(x),
since

0 if j +#k,
(Pe(y) . (x-p)) = {k.p(x) o

where the later result is a consequence of (3).

Using the Schwarz inequality and the Pythagorean identity of [2] or its
generalization (6), we easily establish the convergence of infinite series of
orthogonal homogeneous polynomials.

. k .
THEOREM 6. Suppose {p] 154‘1 c#Z*, is an orthonormal set. Then the
series

5k

n

T Lo, ay<k (10)
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converges absolutely and uniformly on compact subsets of the open ball
2 2 2\1/2
lxl= (x} +x} + ---+xn) < R, where

lla "
W) (11)

R~ ' = Tim

k— o

and
sk 1/2
n
lagh = | S a2, .
j=1

Proof. Since the polynomials p/(x) are homogeneous of degree
k, pi(x) = r*pj(x/r), where r = |lx|| = (x2 + x§ + --- +x2)'/2. Thus,

w &k % 8k
Z E akjpli(x) = Z rk Z akjpli(x/r)
k=0j=1 k=0 j=1
o 5k
< 2t Zakjpli(x/r)
k=0 |j=1

1/2 8k 1/2
. ( > [p,¢<x/r>]2)

IA
s

~

.
—_—

1%

S
ey

k=0 \j=1 j=1
Z Mlagll

-y | .
k=0 Vk!

where the last equality follows from the Pythagorean identity of [2] or its
generalization (6). Thus the series (10) converges absolutely and uniformly
on compact subsets of the open ball |lx|| < R, where R is given by (11).

The radius of convergence of the series (10), in the special case where
all of the polynomials pj(x) are harmonic, is given in [6]. Note that for
n = 1, the result (11) reduces to the long established radius of convergence
of a power series in a single variable.
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