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A b s t r a c t - - R e c e n t l y ,  several authors demonstrated the usefulness of fractional catleulus in ob- 
taining particular solutions of a number of such familiar second-order differential equations as those 
associated with Gauss, Legendre, Jacobi, Chebyshev, Coulomb, Whittaker, Euler, Hermite, and We- 
ber equations. The main object of this paper is to show how some of the latest contributions on 
the  subject by Tu et al. [1], involving the associated Legendre, Euler, and Hermite equations, can be 
presented in a unified manner by suitably appealing to a general theorem on particular solutions of a 
certain class of fractional differintegral equations. © 2000 Elsevier Science Ltd. All rigtVs reserved. 

K e y w o r d s - - p r a c t i o n a l  calculus, Differintegral equations. Associated Legendre equations, t'2uler 
equations, Hermite equations, Generalized Leibniz rule. 

1 ,  I N T R O D U C T I O N ,  D E F I N I T I O N S ,  A N D  P R E L I M I N A R I E S  

The  subjec t  of fract ional  calculus ( that  is, derivatives and  integrals of any real or complex order) 

has gained impor t ance  and  popular i ty  dur ing  the past  three decades or so, due main ly  to its 

d e m o n s t r a t e d  appl icat ions  in numerous  seemingly diverse fields of science and engineer ing (se(', 

for details,  [2]). By apply ing  the following defini t ion of a fractional differintegral ( tha t  is, .frac- 
tional derivative and  fractional integral) of order v E R, many  authors  have ob ta ined  par t icular  

solut ions of a n u m b e r  of families of homogeneous (as well as nonhomogeneous)  l inear fract ional  

differintegral equat ions.  

DEFINITION. (See [3-5].) If the funct ion f ( z )  is analyt ic  and  has no branch point  insid( ~ and  

on C, where 

C := {C-- ,C+} ,  (1.1) 
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C- is an integral curve along the cut joining the points z and - c~  + i3(z), C + is an integral curve 
along the cut joining the points z and oo + i3(z), 

f , ( z )  = e f t ( z ) . -  r(.+ 1) fg2rr_____~ c (~-7z--~ -+' 'f(()d( ( ,  6 R \ Z - ;  Z := { - 1 , - 2 , - 3 , . . .  }) (1.2) 

and 

where ( ¢ z, 

and 

f_n(Z) :~--~ lim {f~(z)}, (n • N := {1, 2, 3 , . . .  }), (1.3) 
V---+-- n 

-~r =< arg (( - z) =< 7v, for C-,  (1.4) 

0 =< a r g ( ( -  z) _-< 2~r, for C +, (1.5) 

then f , ( z )  (u > 0) is said to be the fractional derivative of f (z)  of order u and f~(z) (u < 0) is 
said to be the fractional integral of f (z)  of order -u ,  provided that  

[f,(z)[ < oo, (u e R).  (1.6) 

REMARK 1. Throughout the present work, we shall simply write f~ for f , ( z )  whenever the 
argument of the differintegrated function f is clearly understood by the surrounding context. 
Moreover, in case f is a many-valued function, we shall tacitly consider the principal value of f 
in our investigation. For the sake of convenience in dealing with their various (known or new) 
special cases, we choose also to state each of the fundamental results (Theorem 1 and 2 below) 
for fractional differintegral equations of a general order # c R. 

We find it to be worthwhile to recall here the following useful lemmas and properties associated 
with the fractional differintegration which is defined above (see, e.g., [3,4]). 

LEMMA 1. LINEARITY PROPERTY. If  the functions f(z)  and g(z) are single-valued and analytic 
in some domain f~ C_ C, then 

(kxf 4- k2g)v = klfu + k2gu, (u E R, z Ef t )  (1.7) 

for any constants kl and k2. 

LEMMA 2. INDEX LAW. If  the function f (z)  is single-valued and analytic in some domain f~ C C, 
then 

( f , ) ,  = f , + ,  = ( f , ) , ,  ( f ,  ¢ 0, f ,  ¢ 0, # ,u  e R, z • f~). (1.8) 

LEMMA 3. GENERALIZED LEIBNIZ RULE. I f  the functions f (z)  and g(z) are single-valued and 
analytic in some domain f~ C C, then 

( f ' g ) u  = E fu-n "gn, (u • R, z • f~), (1.9) 
n=0  

where gn is the ordinary derivative of t(z)  of order n (n • No := NU {0}), it being tacitly assumed 
(for simplicity) that g(z) is the polynomial part (if any) of the product f(z)g(z). 

P R O P E R T Y  1. F o r  a constant A, 

(eAZ), = A u e ~z, (A ¢ 0, u • ~, z • C).  (1.10) 

P R O P E R T Y  2.  F o r  a constant A, 

( e - ' X z ) ,  = e - ' ~ "  A ~' e - A z ,  (A • O, u • A, z • C). (1.11) 

PROPERTY 3. For a constant A, 

( z a ) u = e - i ~ u F ( u - A ) z ~ - ' ,  ( ~--~_--~ < o  o ) .  (1.12) r ( - a )  " •  R, z • c ,  r ( . -  a) 

Some of the most recent contributions on the subject of particular solutions of fractional 
differintegral equations are those by Tu et al. [1], who considered generalizations of the associated 
Legendre, Euler, and Hermite equations. We recall here the main results of Tu et al. [1] as 
Theorems A to C below. 
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THEOREM A.  (See [1, p. 112, Theorem 1.1; p. 114, Theorem 1.2].) If  the given function f sat isf ies  

constraint (1.6) and f z - a  ~ O, then the  generalized nonhomogeneous associated Legendre's 
differential equation 

k = l  x'n-1 

(mem:=NoOZ-,  z n ¢ l , , z E N )  

has a particular solution of  the form 

¢(z) ( ( f~ -a ( z )  (1 z n ' ~  (1 zn) - ' - 1 )  (1.14) 
---- " - -  ) / - - 1  " - -  ~ - - / 3 - - m + l  ' 

provided t ha t  the second member of (1.14) exists, a and/3 being given constants. 
Furthermore, the  generalized homogeneous associated Legendre's differential equation 

] k=l k (x~)k --F n( /3q-1)  (zn-1)k_l C m - k ( Z ) : 0 ,  (1.15) 

(mEZ, z'~ ¢ 1, hEN) 

has solutions of the  form 

¢(z)  = K ((1 - n ) - ~ - l ~ .  / ~ - f~ -m+l  ' (1.16) 

where K is an arbitrary cons tan t ,  a a n d / 3  are  given cons tants ,  a n d  the  second m e m b e r  of (1.16) 
is assumed to exist. 

THEOREM B. (See [1, p. 115, Theorem 1.4; p. 117, Theorem 1.5].) If  the given function f satisfies 
constraint (1.6) and f - a  ~ O, then the  generalized nonhomogeneous Euler's differential equation 

z ~ ¢ , J z )  + (z'~)k + (1 - 2a )  k - 1 (z'*-1)k-1 Cm-a(z) = f(z) ,  (1.17) 
k=l 

(re<Z, zn¢O, hEN) 

has a particular solution of the form 

O(Z) = ((f--c~(Z)" Z 1-2a-n) 'Z  2a -1 )  , (1.18) 
- - i  o--m+l 

provided that the second member of (1.18) exists, a being a given constant. 
Furthermore, the generalized homogeneous Euler's differential equation 

z n Cm(Z) + (zn)k + (1 - 2a )  k - 1 (zn- l )k-1 (Pm-k(Z) = O, 
k=l (1.19) 

(meg,  zn¢0, heN)  

has solutions of the form 

(~(Z) = K (Z2a--1)a_rn+l , (1.20) 

where K is an a r b i t r a r y  constant, a is a given cons tan t ,  and  the  second m e m b e r  of (1.70) is 
assumed to exist .  
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THEOREM C. (See [1, p. 118, Theorem 1.7; p. 120, Theorem 1.8].) If the given function f satisfies 
constraint (1.6) and fa 7 £ O, then the generalized nonhomogeneous Hermite's differential equation 

~ ( 7 )  n+l ( 7 )  Zn~)m(Z)-~ (Zn)kCm-k(Z)-- E (z n+l) Cm-k-l(z)=f(z) k 
k=l k=0 

( m E g ,  z n ¢ 0 ,  n E N o ) ,  

(1.21) 

has a particular solution of the form 

ff)(z)--= ((fa(z)'z-n'exp(--~z2))_l"exp(lz2))l_rn_a 

provided that the second member of (1.22) exists, c~ being a given constant. 
Furthermore, the generalized homogeneous Hermite's differential equation 

(1.22) 

Z hem(z) Jr (zn)k (~ra-k(Z) -- E (zn+l)k Crn-k-l(Z) : 0, 
k=l k=0 

( m E g ,  z n ¢ 0 ,  n E N o )  

(1.23) 

has solutions of the form 

dP(z):K(exp(lz2))l_m_c , (1.24) 

where K is an arbitrary constant, ~ is a given constant, and the second member of (1.24) is 
assumed to exist. 

In this paper, we aim at presenting a unification (and generalization) of each of the above 
results (Theorems A to C) by appropriately applying a general theorem on particular solutions 
of a certain class of fractional differintegral equations. 

2. A G E N E R A L  T H E O R E M  A N D  I T S  C O N S E Q U E N C E S  

The following general theorem (due to Tu et al. [6]) unifies as well as extends a considerably 
large number of widely scattered results on the solutions of various families of homogeneous and 
nonhomogeneous fractional differintegral equations. 

THEOREM 1. (See [6, Theorems i and 2].) Let P( z; p) and Q( z; q) be polynomials in z of degrees p 
and q, respectively, defined by 

and 

P P 
P(z;p) := ~ a~ z "-~ = ao H (~ - zj) ,  (ao ¢ 0, p C N) 

k=0 j=l 

q 
Q(z; q) := ~ bk z q-k, (b0 ~ 0, q c N). 

k=0 

Suppose also that f_~ (¢ O) exists for a given function f . 
Then the nonhomogeneous linear ordinary fractional differintegral equation 

P(z;P)~I~(z)-'~ [~  (k)Sk(z;P) ~-~ (k v-- k=l 

(2.1) 

(2.2) 

(2.a) 
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has a particular solution of the form 

( ( f - u ( z )  eH(~;p,q)) e_H(~;p,q) ) 
¢(z)  = \P(z ;p)  -1 , . - .+t '  (~ ~ c \  {~, , . . .  , ~ } ) ,  (2.4) 

where, for convenience, 

z Q(¢;G) d¢, (z E C\  {z1;... Zp}) (2.5) H ( z ; p , q )  := p(¢;p------~ , , 

provided that the second member of (2.4) exists. 
Furthermore, the honlogeneous linear ordinary fractional differintegral equation 

k = l  k = l  (2.o) 

has solutions of tile form 

\ / ;,--tt+1 

uqmre K is an arbitrao" constant and H(z; p, q) is g~ven 53." (2.5). it being provided that: the 
.~econd member of (2.7) exists. 

])rEMARK 2. I t  should be remarked  in passing t ha t  Tu et al. [6, Section 3] also gave the  solut ions 
of several  general  families of partial fractional  differintegral equat ions  analogous to (2.3) and (2.6). 

\'Vith a view to apply ing  T h e o r e m  1, we set 

a 0  = ~, (~  • 0 ) ,  a l  . . . . .  ap-1 = 0,  a n d  a p  --- 7] (2.s) 

and 

b e = A ,  ( l # O )  and 

so t ha t  definit ions (2.1) and (2.2) immedia te ly  yield 

bl . . . . .  bq = O, (2.9) 

P(z;p) : (z p + rl, (~ ¢ O, p C N) (:~ lO) 

; in(  t 

Q(z; q) = Az q, 

We thus find f rom (2.5), (2.10), and (2.11) tha t  

(~#O, q c N ) .  (2.11) 

f ~ ltq dr, 
H(~; p, q) = eta, +------~ ( ) :p ¢ -~ ;  p,q ~ >I (2.12) 

[n par t icular ,  if q = p -  1 or q = p + 1, (2.12) leads us to 

/ ~p log(¢zp +,7), (q = p -  1), 

H(z;p,q) = [ Az 2 Ar I f t 
-~  -~ j ~ d t ,  ( q = p + l ) .  

(2.1a) 

A special case of  T h e o r e m  1 can now be s ta ted  as the  following theorem.  



228 S.-T. Tu et al. 

THEOREM 2. Suppose that f_~ (5 O) exists for a given function f .  Then the nonhomogeneous 
linear ordinary fractional differintegral equation 

(~z p + ~ ) ¢ , ( z )  + (~ zp +~)k + E k - 1 ()~ZO)k-1 Ctz-k(Z) 
k=l k=l 

- -kA(:)q]¢tL-q- l (z )=f(z) ,  ( # , g E R ; ~ 0 ; A ~ 0 ; p ,  q EN) 

(2.14) 

has a particular solution of the form 

((.(z) ) ) ¢(Z) = ~ \ ~ Z  p -b ~ eH(z;P'q) e-H(z;P'q) 
- I  ~-,u+l 

( \ {  }) z • C z : z p = - ~  (p • N) , 

(2.15) 

where H(z; p, q) is given by (2.12), it being provided that the second member of (2.15) exists. 
Furthermore, the homogeneous linear ordinary fractionM differintegral equation 

(~Z p q- 1]) ¢,(Z) q- ~ (~ Zp + ~)k q- E k - 1 ()~zq)k-1 Ctt-k(Z) 
k=l k=l 

--bA(~)q'¢t~_q_l(Z)=O , (~t,P E R; ~ ~ 0 ; A ¢  0; p, q EN) 

(2.16) 

has solutions of the form 
¢(z) = K (e -H(z;p'q)) , (2.17) 

x / v--~+l 

where K is an arbitrary constant and H(z;p,q) is given by (2.12), it being provided that the 
second member of (2.17) exists. 

As already observed in conclusion by Tu et al. [6], either or both of the polynomials P(z; p) 
and Q(z; q), involved in Theorem 1 (and hence, also in Theorem 2), can be of degree 0 as well. 
Thus, in definitions (2.1) and (2.2) (as also in Theorems 1 and 2), N may easily be replaced (if 
and where needed) by No. 

REMARK 3. The function H(z;p,q) given by (2.13) would further simplify considerably if (for 
example) 7/= 0, and we thus find from (2.13) that  

{ ~plog({zP), 
H(z;p,q)lv=o = Az 2 

( q  = p - 1 ) ,  

(q = p +  1). 
(2.1s) 

3. F U R T H E R  D E D U C T I O N S  F R O M  T H E O R E M  2 

In the preceding section, we have already shown how simply Theorem 2 would follow as a 
special case of Theorem 1 of [6]. Theorem 2, in turn, provides a unification (and generalization) 
of Theorems A to C (see Section 1). First of all, in view of Lemma 1 and the case q = p - 1 in 
(2.13), Theorem 2 yields Theorem A as one of its special cases when 

# = m  ( m E Z ) ,  v = a - - / 3 ,  p = q + l = n ,  ( n E N ) ,  ¢ = - 1 ,  

~7 = 1, and A -- - n  03 + 1). (3.1) 



Fractional Differintegral Equations 229 

Next,  by appeal ing  to Lemma  1 and  the case q = p - 1 in (2.18), we can derive Theorem B as 

a special case of Theorem 2 when 

# = m ,  ( m E Z ) ,  u = a ,  p = q + l = n  ( n E N ) ,  ( = 1 ,  

r / =  0, and  /~ = 1 - 2c~. (3.2) 

Finally,  if we apply  L e m m a  1 and  the case q = p +  1 in (2.18), we shall readily ob ta in  Theorem C 

as yet ano ther  special case of Theorem 2 when 

/ ~ = m ,  (mEZ), u = - a  p = q - l = n ,  (n~N0), ( = 1 ,  
7] = 0, and A = - 1 .  (3.3) 
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