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a b s t r a c t

Let A + BXC and A + BX + YC be two linear matrix expressions, and denote by {A + BXC}

and {A + BX + YC} the collections of the two matrix expressions when X and Y run over
the corresponding matrix spaces. In this paper, we study relationships between the two
matrix sets {A1 + B1X1C1} and {A2 + B2X2C2}, as well as the two sets {A1 + B1X1 + Y1C1}

and {A2 + B2X2 + Y2C2}, by using some rank formulas for matrices. In particular, we give
necessary and sufficient conditions for the two matrix set inclusions {A1 + B1X1C1} ⊆

{A2 + B2X2C2} and {A1 + B1X1 + Y1C1} ⊆ {A2 + B2X2 + Y2C2} to hold. We also use the
results obtained to characterize relations of solutions of some linear matrix equations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In matrix theory, there are many matrix expressions involving one or more variable matrices. These matrix expressions,
often called matrix expressions or matrix functions, may vary over the choice of the variable matrices. Some of the simple
matrix expressions are given by A− BX, A− BXC, A− BX − YC and A− BXC −CYD, where A, B, C and D are given, and X and
Y are variable matrices. When the variable matrices in a given matrix expression are running over certain matrix sets, the
matrix expression may vary as well, such that all possible values of the matrix expression generate a matrix set. This fact
prompts us to raise the following general problem: for a pair of linear matrix expressions A1 + B11X11C11 + · · · + B1kX1kC1k
and A2 + B21X21C21 + · · · + B2lX2lC2l of the same size, give identifying conditions for

{A1 + B11X11C11 + · · · + B1kX1kC1k} ∩ {A2 + B21X21C21 + · · · + B2lX2lC2l} ≠ ∅,

{A1 + B11X11C11 + · · · + B1kX1kC1k} ⊆ {A2 + B21X21C21 + · · · + B2lX2lC2l}

to hold, respectively. Because of the multiple variable matrices and the noncommutativity of matrix multiplication, it is,
however, difficult to give a complete solution to this general problem by using the conventional methods in matrix theory.
In this paper, we use some rank formulas for matrices to characterize the relations between the two sets {A1 + B1X1C1} and
{A2 + B2X2C2}, and the two sets {A1 + B1X1 + Y1C1} and {A2 + B2X2 + Y2C2}. Some applications of the results obtained on
relations of solutions of matrix equations are also presented.

Throughout this paper, Cm×n stands for the set of all m × n complex matrices. A∗, r(A) and R(A) denote the conjugate
transpose, rank and range (column space) of a complex matrix A, respectively. The Moore–Penrose inverse of A ∈ Cm×n,
denoted by AĎ, is defined to be the unique solution X satisfying the matrix equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.
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The symbols EA and FA stand for the two orthogonal projectors EA = Im − AAĎ and FA = In − AĎA onto the null spaces A∗

and A, respectively. The following are some known results for ranks of matrices, which will be used in the latter part of this
paper.

Lemma 1.1. Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n. Then,

r[A, B] = r(A) + r(EAB) = r(B) + rr(EBA), (1.1)

r
[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC ), (1.2)

r
[
A B
C 0

]
= r(B) + r(C) + r(EBAFC ). (1.3)

Some formulas for extremal ranks of linear matrix expressions in [1–5] are given below.

Lemma 1.2. Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n be given. Then the maximal and minimal ranks of A − BX, A − BXC and
A − BX − YC with respect to X and Y are given by the following closed-form formulas:

max
X∈Ck×n

r(A − BX) = min{r[A, B], n}, (1.4)

min
X∈Ck×n

r(A − BX) = r[A, B] − r(B), (1.5)

max
X∈Ck×l

r(A − BXC) = min

r[A, B], r

[
A
C

]
, (1.6)

min
X∈Ck×l

r(A − BXC) = r[A, B] + r
[
A
C

]
− r

[
A B
C 0

]
, (1.7)

min
X∈Ck×n,Y∈Cm×l

r(A − BX − YC) = r
[
A B
C 0

]
− r(B) − r(C). (1.8)

The following result is well-known; see [6].

Lemma 1.3. (a) There exists an X such that BXC = A if and only if R(A) ⊆ R(B) and R(A∗) ⊆ R(C∗), or equivalently,
BBĎA = ACĎC = A. In this case, the general solution can be written in the parametric form

X = BĎACĎ
+ FBU1 + U2EC ,

where U1 and U2 are arbitrary matrices.
(b) There exist X and Y such that BX + YC = A if and only if EBAFC = 0.

Lemma 1.4 ([4]). Let p(X1, X2) = A − B1X1C1 − B2X2C2. Then,

max
X1,X2

r[p(X1, X2)] = min


r[A, B1, B2], r

 A
C1
C2


, r

[
A B1
C2 0

]
, r

[
A B2
C1 0

]
, (1.9)

min
X1,X2

r[p(X1, X2)] = r

 A
C1
C2


+ r[A, B1, B2] + max{s1, s2}, (1.10)

where

s1 = r
[
A B1
C2 0

]
− r

[
A B1 B2
C2 0 0

]
− r

 A B1
C1 0
C2 0


,

s2 = r
[
A B2
C1 0

]
− r

[
A B1 B2
C1 0 0

]
− r

 A B2
C1 0
C2 0


.

Lemma 1.5. Let A, Bi and Ci be given such that A − B1X1C1 − · · · − BkXkCk is defined. Then A − B1X1C1 − · · · − BkXkCk = 0
holds for all X1, . . . , Xk if and only if A = 0 and any one of the following 2k conditions:

Bi1 = 0, . . . , Bip = 0 and Cip+1 = 0, . . . , Cik = 0, p = 1, . . . , k (1.11)

holds, where i1, . . . , ik are a permutation of 1, . . . , k.
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Proof. Since the variable matrices X1, . . . , Xk are all free, it is obvious that A − B1X1C1 − · · · − BkXkCk = 0 holds for all
X1, . . . , Xk if and only if A = 0, and

B1X1C1 = 0, . . . , BkXkCk = 0

hold for all X1, . . . , Xk, which is further equivalent to (1.11). �

Lemma 1.6. There exist X, Y , Z such that AXB + CY + ZD = M holds if and only if

(ECA)(ECA)ĎECMFD = ECMFD(BFD)Ď(BFD) = ECMFD, (1.12)

or equivalently,

[I − (ECA)(ECA)Ď]ECMFD = ECMFD[I − (BFD)Ď(BFD)] = 0. (1.13)

Proof. From Lemma 1.3(b), there exist Y and Z such that AXB+ CY + ZD = M holds if and only if EC (AXB−M)FD = 0. From
Lemma 1.3(a), there exists an X such that ECAXBFD = ECMFD if and only if (1.12) holds. �

2. Relations between some matrix sets generated from linear matrix expressions

Recall that a matrix A is null if and only if r(A) = 0. Hence, two matrices A and B of the same size are equal if and only if
r(A − B) = 0. Further, two matrix sets S1 and S2 have a common matrix, i.e., S1 ∩ S2 ≠ ∅, if and only if

min
A∈S1,B∈S2

r(A − B) = 0; (2.1)

S1 ⊆ S2 if and only if

max
A∈S1

min
B∈S2

r(A − B) = 0. (2.2)

If A − B can be written as a linear matrix expression with some variable matrices, then we can find the extremal ranks of
this expression with respect to the variable matrices from (1.4)–(1.10).

We start with a simple result on the relations between the two linear matrix expressions A1 + B1X1 and A2 + B2X2 of the
same size.

Theorem 2.1. Let A1, A2 ∈ Cm×n, B1 ∈ Cm×p1 and B2 ∈ Cm×p2 be given, X1 ∈ Cp1×n and X2 ∈ Cp2×n be variable matrices, and
define

S1 = {A1 + B1X1 | X1 ∈ Cp1×n
} and S2 = {A2 + B2X2 | X2 ∈ Cp2×n

}.

Then,
(a) S1 ∩ S2 ≠ ∅ if and only if R(A1 − A2) ⊆ R[B1, B2].
(b) S1 ⊆ S2 if and only if R[A1 − A2, B1] ⊆ R(B2).
(c) S1 = S2 if and only if R(A1 − A2) ⊆ R(B1) = R(B2).

Proof. Applying (1.5) gives

min
M1∈S1,M2∈S2

r(M1 − M2) = min
X1,X2

r(A1 − A2 + B1X1 − B2X2)

= min
X1,X2

r

A1 − A2 + [B1, −B2]

[
X1
X2

]
= r[A1 − A2, B1, B2] − r[B1, B2].

Setting both sides of the equality to zero leads to (a). From (2.2), S1 ⊆ S2 holds if and only if

max
X1

min
X2

r[(A1 + B1X1) − (A2 + B2X2)] = 0. (2.3)

It follows from (1.5) that

min
X2

r[(A1 + B1X1) − (A2 + B2X2)] = r[A1 − A2 + B1X1, B2] − r(B2). (2.4)

Also by (1.6),

max
X1

r[A1 − A2 + B1X1, B2] = max
X1

r([A1 − A2, B2] − B1X1[In, 0])

= min

r[A1 − A2, B1, B2], r

[
A1 − A2 B2

In 0

]
= min {r[A1 − A2, B1, B2], r(B2) + n} . (2.5)
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Combining (2.4) and (2.5) yields

max
X1

min
X2

r[(A1 + B1X1) − (A2 + B2X2)] = min {r[A1 − A2, B1, B2] − r(B2), n} . (2.6)

Setting the right-hand side of this equality to zero and noting that n ≠ 0,we see that (2.3) is equivalent to r[A1−A2, B1, B2] =

r(B2). Thus, we have (b). By symmetry, S2 ⊆ S1 if and only if R[A1 − A2, B2] ⊆ R(B1). Combining this assertion with (b)
leads to (c). �

Similarly, we can show the following result.

Theorem 2.2. Let A1, A2 ∈ Cm×n, B1 ∈ Cm×p1 , B2 ∈ Cm×p2 , C1 ∈ Cq1×n and C2 ∈ Cq2×n be given, and let X1 ∈ Cp1×q1 and
X2 ∈ Cp2×q2 be two variable matrices. Also, assume that Bi ≠ 0 and Ci ≠ 0, i = 1, 2, and let

S1 = {A1 + B1X1C1 | X1 ∈ Cp1×q1} and S2 = {A2 + B2X2C2 | X2 ∈ Cp2×q2}.

Then,
(a) S1 ∩ S2 ≠ ∅ if and only if

R(A1 − A2) ⊆ R[B1, B2], R(A∗

1 − A∗

2) ⊆ R[C∗

1 , C∗

2 ],

r
[
A1 − A2 B1

C2 0

]
= r(B1) + r(C2), r

[
A1 − A2 B2

C1 0

]
= r(B2) + r(C1).

(b) S1 ⊆ S2 if and only if R[A1 − A2, B1] ⊆ R(B2) and R[A∗

1 − A∗

2, C
∗

1 ] ⊆ R(C∗

2 ).
(c) S1 = S2 if and only if R(A1 − A2) ⊆ R(B1) = R(B2) and R(A∗

1 − A∗

2) ⊆ R(C∗

1 ) = R(C∗

2 ).

Proof. Observe that the differenceM1−M2 forM1 ∈ S1 andM2 ∈ S2 can bewritten asM1−M2 = A1−A2+B1X1C1−B2X2C2.
Applying (1.10) to M1 − M2 gives

min
M1∈S1,M2∈S2

r(M1 − M2) = r

A1 − A2
C1
C2


+ r[A1 − A2, B1, B2] + max{s1, s2}, (2.7)

where

s1 = r
[
A1 − A2 B1

C2 0

]
− r

[
A1 − A2 B1 B2

C2 0 0

]
− r

A1 − A2 B1
C1 0
C2 0


,

s2 = r
[
A1 − A2 B2

C1 0

]
− r

[
A1 − A2 B1 B2

C1 0 0

]
− r

A1 − A2 B2
C1 0
C2 0


.

Result (a) follows immediately from (2.7). From (2.2), S1 ⊆ S2 holds if and only if

max
X1

min
X2

r[(A1 + B1X1C1) − (A2 + B2X2C2)] = 0.

Applying (1.7) gives

min
X2

r[(A1 + B1X1C1) − (A2 + B2X2C2)] = r[A1 − A2 + B1X1C1, B2] + r
[
A1 − A2 + B1X1C1

C2

]
− r

[
A1 − A2 + B1X1C1 B2

C2 0

]
.

It is difficult to find the maximal rank of the expression with respect to X1. From Lemma 1.3(a), S1 ⊆ S2 holds if and only if

r[A1 − A2 + B1X1C1, B2] = r(B2) and r[A∗

1 − A∗

2 + C∗

1X
∗

1 C
∗

1 , B∗

2] = r(C2) (2.8)

hold for all X1. Applying (1.6) gives

max
X1

r[A1 − A2 + B1X1C1, B2] = min

r[A1 − A2, B1, B2], r

[
A1 − A2 B2

C1 0

]
,

max
X1

r[A∗

1 − A∗

2 + C∗

1X
∗

1 B
∗

1, C
∗

2 ] = min


r

A1 − A2
C1
C2


, r

[
A1 − A2 B1

C2 0

]
.

Thus, the first equality in (2.8) is equivalent to

r[A1 − A2, B1, B2] = r(B2) or r
[
A1 − A2 B2

C1 0

]
= r(B2), (2.9)
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and the second equality in (2.8) is equivalent to

r

A1 − A2
C1
C2


= r(C2) or r

[
A1 − A2 B1

C2 0

]
= r(C2). (2.10)

Note that B1, B2, C1 and C2 are nonzero. Hence, (2.9) and (2.10) are equivalent to (b). �

If at least one of B1, B2, C1 and C2 is zero, the relations between the two sets S1 and S2 in Theorem 2.2 become trivial.

Theorem 2.3. Let A1, A2 ∈ Cm×n, B1 ∈ Cm×p1 , B2 ∈ Cm×p2 , C1 ∈ Cq1×n and C2 ∈ Cq2×n be given, X1 ∈ Cp1×n, Y1 ∈

Cm×q1 , X2 ∈ Cp2×n and Y2 ∈ Cm×q2 be four variable matrices. Also, assume that Bi ≠ 0 and Ci ≠ 0 for i = 1, 2, and let

S1 = {A1 + B1X1 + Y1C1 | X1 ∈ Cp1×n, Y1 ∈ Cm×q1}, (2.11)

S2 = {A2 + B2X2 + Y2C2 | X2 ∈ Cp2×n, Y2 ∈ Cm×q2}. (2.12)

Also, define

N =

A1 − A2 B1 B2
C1 0 0
C2 0 0


.

Then,

(a) S1 ∩ S2 ≠ ∅ if and only if r(N) = r

C1
C2


+ r[B1, B2].

(b) S1 ⊆ S2 if and only if any one of the three conditions (i) r(B2) = m, (ii) r(C2) = n and (iii) r(N) = r(B2) + r(C2) holds.
(c) S1 = S2 if and only if any one of the three conditions (i) r(B1) = m, (ii) r(C1) = n and (iii) r(N) = r(B1) + r(C1) and any

one of the three conditions (iv) r(B2) = m, (v) r(C2) = n and (vi) r(N) = r(B2) + r(C2) hold.

Proof. Note that the differenceM1 − M2 forM1 ∈ S1 and M2 ∈ S2 can be written as

M1 − M2 = A1 − A2 + B1X1 + Y1C1 − B2X2 − Y2C2 = A1 − A2 + [B1, −B2]

[
X1
X2

]
+ [Y1, Y2]

[
C1

−C2

]
.

Applying (1.8) to this expression gives

min
M1∈S1,M2∈S2

r(M1 − M2) = r(N) − r
[
C1
C2

]
− r[B1, B2]. (2.13)

Setting the right-hand side of (2.13) to zero yields (a). It can also be derived from (1.9) and (1.10) that

max
M1∈S1

min
M2∈S2

r(M1 − M2) = min{m − r(B2), n − r(C2), r(N) − r(B2) − r(C2)}.

Setting the right-hand side to zero yields (b). Result (c) follows from (b). �

Two more general results are given below.

Theorem 2.4. Let A1, A2 ∈ Cm×n, B1 ∈ Cm×p1 , B2 ∈ Cm×p2 , B3 ∈ Cm×p3 , C1 ∈ Cq1×n, C2 ∈ Cq2×n and C3 ∈ Cq3×n be given,
and X1 ∈ Cp1×n, X2 ∈ Cp2×n, Y1 ∈ Cm×p1 , Y2 ∈ Cm×p2 and Z ∈ Cp3×q3 be five variable matrices. Also, assume that Bi ≠ 0 and
Ci ≠ 0, i = 1, 2, 3, and define

S1 = {A1 + B1X1 + Y1C1 | X1 ∈ Cp1×n, Y1 ∈ Cm×q1}, (2.14)

S2 = {A2 + B2X2 + Y2C2 + B3ZC3 | X2 ∈ Cp2×n, Y2 ∈ Cm×q2 , Z ∈ Cp3×q3}. (2.15)

Then, S1 ⊆ S2 if and only if one of the following three conditions:

(i) r(C2) = n, (ii) r[B2, B3] = m, (iii) r

A1 − A2 B1 B2 B3
C1 0 0 0
C2 0 0 0


= r[B2, B3] + r(C2), (2.16)

and one of the following three conditions:

(iv) r(B2) = m, (v) r
[
C2
C3

]
= n, (vi) r

A1 − A2 B1 B2
C1 0 0
C2 0 0
C3 0 0

 = r
[
C2
C3

]
+ r(B2) (2.17)

holds.
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Proof. Note that S1 ⊆ S2 if and only if the matrix equation

B2X2 + Y2C2 + B3ZC3 = A1 − A2 + B1X1 + Y1C1

is solvable for X2, Y2 and Z , which, from Lemma 1.6, is equivalent to

[I − (EB2B3)(EB2B3)
Ď
](EB2A1FC2 − EB2A2FC2 + EB2B1X1FC2 + EB2Y1C1FC2) = 0, (2.18)

(EB2A1FC2 − EB2A2FC2 + EB2B1X1FC2 + EB2Y1C1FC2)[I − (C3FC2)
Ď(C3FC2)] = 0 (2.19)

for all X1 and Y1. From Lemma 1.5, (2.18) holds if and only if one of the following three conditions holds:

[I − (EB2B3)(EB2B3)
Ď
]EB2 = 0, (2.20)[

[I − (EB2B3)(EB2B3)
Ď
](EB2A1FC2 − EB2A2FC2) [I − (EB2B3)(EB2B3)

Ď
]EB2B1

C1FC2 0

]
= 0, (2.21)

FC2 = 0. (2.22)

From (1.4)–(1.6),

r([I − (EB2B3)(EB2B3)
Ď
]EB2) = r[EB2B3, EB2 ] − r(EB2B3)

= r(EB2) − r[B2, B3] + r(B2) = m − r[B2, B3], (2.23)

r
[
[I − (EB2B3)(EB2B3)

Ď
](EB2A1FC2 − EB2A2FC2) [I − (EB2B3)(EB2B3)

Ď
]EB2B1

C1FC2 0

]
= r

[
EB2A1FC2 − EB2A2FC2 EB2B1 EB2B3

C1FC2 0 0

]
− r(EB2B3)

= r

A1 − A2 B1 B2 B3
C1 0 0 0
C2 0 0 0


− r[B2, B3] − r(C2). (2.24)

Hence, (2.20)–(2.22) are equivalent to (2.16). Similarly, we can show that (2.19) is equivalent to (2.17). �

Theorem 2.5. Let A1, A2 ∈ Cm×n, B1 ∈ Cm×p1 , B2 ∈ Cm×p2 , C1 ∈ Cq1×n and C2 ∈ Cq2×n be given, and X1 ∈ Cp1×q1 , X2 ∈

Cp2×q2 , Y ∈ Cp3×n and Z ∈ Cm×q3 be four variable matrices. Also, assume that Bi ≠ 0 and Ci ≠ 0, i = 1, 2, 3, and define

S1 = {A1 + B1X1C1 | X1 ∈ Cp1×q1}, (2.25)

S2 = {A2 + B2X2C2 + B3Y + ZC3 | X2 ∈ Cp2×q2 , Y ∈ Cp3×n, Z ∈ Cm×q3}. (2.26)

Then, S1 ⊆ S2 if and only if

r
[
A1 − A2 B1 B2 B3

C3 0 0 0

]
= r[B2, B3] + r(C3), r

A1 − A2 B3
C1 0
C2 0
C3 0

 = r
[
C2
C3

]
+ r(B3). (2.27)

Proof. It is obvious that S1 ⊆ S2 if and only if the matrix equation

B2X2C2 + B3Y + ZC3 = A1 − A2 + B1X1C1

is solvable for X2, Y and Z , which by Lemma 1.6 is equivalent to

[I − (EB3B2)(EB3B2)
Ď
](EB3A1FC3 − EB3A2FC3 + EB3B1X1C1FC3) = 0, (2.28)

(EB3A1FC3 − EB3A2FC3 + EB3B1X1C1FC3)[I − (C2FC3)
Ď(C2FC3)] = 0 (2.29)

for all X1. Applying Lemma 1.5 to (2.27) and (2.28) gives

[I − (EB3B2)(EB3B2)
Ď
][EB3A1FC3 − EB3A2FC3 , EB3B1] = 0, (2.30)[

EB3A1FC3 − EB3A2FC3
C1FC3

]
[I − (C2FC3)

Ď(C2FC3)] = 0, (2.31)
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where by Lemma 1.1,

r([I − (EB3B2)(EB3B2)
Ď
][EB3A1FC3 − EB3A2FC3 , EB3B1])

= r[EB3B1, EB3B2, EB3A1FC3 − EB3A2FC3 ] − r(EB3B2)

=

[
A1 − A2 B1 B2 B3

C3 0 0 0

]
− r[B2, B3] − r(C3), (2.32)

and

r
[

EB3A1FC3 − EB3A2FC3
C1FC3

]
[I − (C2FC3)

Ď(C2FC3)]


= r

EB3A1FC3 − EB3A2FC3
C1FC3
C2FC3


− r(C2FC3) = r

A1 − A2 B3
C1 0
C2 0
C3 0

 − r
[
C2
C3

]
− r(B3). (2.33)

Setting both sides of (2.32) and (2.33) to zero leads to (2.27). �

3. Some applications

The results in Section 2 can be used for investigating various relations between solutions of linear matrix equations. For
example, it is of interest to see whether the least-squares solution of the perturbed equation (A+ δA)X = B+ δB is also the
least-squares solution of the original equation AX = B. These problems can easily be solved by investigating the relations
between the corresponding solution sets.

Theorem 3.1. Let A1 ∈ Cm1×n, A2 ∈ Cm2×n, B1 ∈ Cm1×p, and B2 ∈ Cm2×p be given, and assume that A1X1 = B1 and A2X2 = B2
are consistent, respectively. Also, let

S1 = {X1 ∈ Cn×p
| A1X1 = B1} and S2 = {X2 ∈ Cn×p

| A2X2 = B2}.

Then,

min
X1∈S1,X2∈S2

r(X1 − X2) = r
[
A1 B1
A2 B2

]
− r

[
A1
A2

]
, (3.1)

max
X1∈S1

r(A2X1 − B2) = r
[
A1 B1
A2 B2

]
− r(A1). (3.2)

Hence,

(a) A1X1 = B1 and A2X2 = B2 have a common solution if and only if r

A1 B1
A2 B2


= r


A1
A2


, i.e., R


B1
B2


⊆ R


A1
A2


.

(b) S1 ⊆ S2 if and only if r

A1 B1
A2 B2


= r(A1), i.e., R


B1
B2


⊆ R


A1
A2


and R(A∗

2) ⊆ R(A∗

1).

(c) S1 = S2 if and only if r

A1 B1
A2 B2


= r(A1) = r(A2), i.e., R


B1
B2


⊆ R


A1
A2


and R(A∗

2) = R(A∗

1).

Proof. Note from Lemma 1.3(a) that

S1 = {AĎ1B1 + (In − AĎ1A1)V1 | V1 ∈ Cn×p
} and S2 = {AĎ2B2 + (In − AĎ2A2)V2 | V2 ∈ Cn×p

}.

Applying Theorem 2.1 to these two sets and simplifying by using (1.1)–(1.3) leads to (3.1) and (3.2). �

Corollary 3.2. Let A, δA ∈ Cm×n, B, δB ∈ Cm×p, be given, and assume that AX = B and (A + δA )Y = B + δB are both
consistent. Then, every solution of (A + δA )Y = B + δB is a solution of AX = B if and only if R


B

B + δB


⊆ R


A

A + δA


and

R(A∗) ⊆ R[(A + δA)∗].

Corollary 3.3. Let A ∈ Cm×n, B ∈ Cm×p and M ∈ Cp×m be given, and assume that AX = B is consistent. Also, let
S1 = {X ∈ Cn×p

| AX = B} and S2 = {X ∈ Cn×p
| MAX = MB}. Then, S1 = S2 if and only if r(MA) = r(A).

For any two matrix equations A1X1 = B1 and A2X2 = B2, where X1 and X2 have the same order, the corresponding two
normal equations are A∗

1A1X1 = A∗

1B1 and A∗

2A2X2 = A∗

2B2. From Lemma 1.3(a), the general solutions of these two norm
equations (least-squares solutions of A1X1 = B1 and A2X2 = B2) are given by

X1 = (A∗

1A1)
ĎA∗

1B1 + (In − AĎ1A1)V1, X2 = (A∗

2A2)
ĎA∗

2B2 + (In − AĎ2A2)V2,

where V1 and V2 are arbitrary. Relations between these two matrix expressions can be investigated by a similar approach.
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Suppose that the two matrix equations A1X = B1 and A2X = B2 of the same size have a common solution. Then, the
equation (A1 + A2)X = B1 + B2 is consistent as well. Also define

S3 = {X ∈ Cn×p
| A1X = B1 and A2X = B2}, S4 = {X ∈ Cn×p

| (A1 + A2)X = B1 + B2}.

Then, it is easy to see that S3 ⊆ S4. In [7], the set equality S3 = S4 and its statistical applications were discussed. Notice
that the elements in S3 and S4 can be written as two linear matrix expressions. We are able to give a new solution to this
problem by the matrix rank method.

Theorem 3.4. Let A1, A2 ∈ Cm×n, B1, B2 ∈ Cm×p be given, and assume that A1X = B1 and A2X = B2 have a common solution.
Then,

max
X∈S4

r
[

A1
A2

]
X −

[
B1
B2

]
= min


r
[
A1
A2

]
− r(A1 + A2), p


. (3.3)

Hence,

(a) S3 = S4 if and only if r

A1
A2


= r(A1 + A2), i.e., R(A∗

i ) ⊆ R(A∗

1 + A∗

2), i = 1, 2.

(b) In particular, if R(A∗

1) ∩ R(A∗

2) = {0}, then S3 = S4.

Proof. Since A1X = B1 and A2X = B2 have a common solution, the two equations[
A1
A2

]
X =

[
B1
B2

]
and (A1 + A2)X = B1 + B2 (3.4)

are consistent. Then by Lemma 1.3(a),[
A1
A2

] [
A1
A2

]Ď [
B1
B2

]
=

[
B1
B2

]
and (A1 + A2)(A1 + A2)

Ď(B1 + B2) = B1 + B2 (3.5)

hold. In these cases, the general solution of (A1 + A2)X = B1 + B2 can be written as

X = (A1 + A2)
Ď(B1 + B2) + [In − (A1 + A2)

Ď(A1 + A2)]U,

where U is an arbitrary matrix. Let A = A1 + A2. Substituting this X into the first equation in (3.4) and applying (1.4), we
obtain

max
X

r
[

A1
A2

]
X −

[
B1
B2

]
= max

U
r
[

A1
A2

]
AĎ(B1 + B2) −

[
B1
B2

]
+

[
A1
A2

]
(In − AĎA)U


= min


r
[[

A1
A2

]
AĎ(B1 + B2) −

[
B1
B2

]
,

[
A1
A2

]
(In − AĎA)

]
, p



= min

r

[
A1
A2

]
AĎ(B1 + B2) −

[
B1
B2

] [
A1
A2

]
0 A

 − r(A), p

 (by (1.2)).

Simplifying the block matrix on the right-hand side by using (3.5) and block elementary matrix operations gives (3.3). �

Applying Theorem 3.4 to the sets of the least-squares solutions of the two equations A1X = B1 and A2X = B2 yields the
following result.

Corollary 3.5. Let A1, A2 ∈ Cm×n, B1, B2 ∈ Cm×p be given, and assume that A1X = B1 and A2X = B2 have a common least-
squares solution. Also, let

S5 = {X | A∗

1A1X = A∗

1B1, A∗

2A2X = A∗

2B2}, S6 = {X | (A∗

1A1 + A∗

2A2)X = A∗

1B1 + A∗

2B2}.

Then S5 = S6.

More results on relations of solution sets of linear matrix equations can be derived. For instance, let

S7 = {X ∈ Cn×p
| AXB = C}, S8 = {X1 + X2 ∈ Cn×p

| A1X1B1 = C1, A2X2B2 = C2}. (3.6)

Then, both sets can be written as in (2.11) and (2.12) by using Lemma 1.3(a). Applying Theorem 2.3 to (3.6) yields the
following known result.
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Corollary 3.6 ([8], Theorem 2.1). Assume that the three matrix equations in (3.6) are consistent. Also, define

D =

C 0 0
0 −C1 0
0 0 −C2


, P =

 A A
A1 0
0 A2


, Q =

[
B B1 0
B 0 B2

]
.

Then,

(a) S7 ∩ S8 ≠ ∅ if and only if r

D P
Q 0


= r(P) + r(Q ), or equivalently , EPDFQ = 0.

(b) S7 ⊇ S8 if and only if A = 0, or B = 0, or r

D P
Q 0


= r(A1) + r(A2) + r(B1) + r(B2), or equivalently, R(A∗) ⊆

R(A∗

i ), R(B) ⊆ R(Bi) and C = AAĎ1C1B
Ď
1B + AAĎ2C2B

Ď
2B, i = 1, 2.

(c) S7 ⊆ S8 if and only if R(A∗

1) ∩ R(A∗

2) = {0}, or R(B1) ∩ R(B2) = {0}, or

r
[
D P
Q 0

]
= r

[
A1
A2

]
+ r[B1, B2] + r(A) + r(B).

Consequences of Corollary 3.6 and their applicationswere also given in [8]. In addition to equalities formatrices inmatrix
sets generated from linear matrix expressions, we may also consider other kinds of relations for matrices in the matrix sets.
For example, for twomatrix sets S1 and S2 generated from linearmatrix expressions, it would be of interest to give necessary
and sufficient conditions for

(a) the existence of X1 ∈ S1 and X2 ∈ S2 such that X∗

1X2 = 0, namely, X1 and X2 are orthogonal;
(b) the existence of X1 ∈ S1 and X2 ∈ S2 and some number λ such that X1 = λX2, namely, X1 and X2 are parallel.

These two problems can be solved by deriving certain closed-form formulas for the minimal ranks of X∗

1X2 and X1 − λX2
first, and then by setting the rank formulas equal to zero.
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