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Neural Processing of Auditory
Looming in the Human Brain

Results and Discussion

Rising and falling acoustic intensity are primary cues to
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Raffaele Elefante,6 and Francesco Di Salle6 approaching and receding auditory motion. Thus, we
predicted that changing intensity would activate brain1Department of Psychiatry

2 Department of Radiology regions concerned with auditory apparent motion, in-
cluding the temporal plane and areas in the parietal3 Department of Psychosomatic Medicine

University of Basel cortex, which represent a functional stream for spatial
processing [20–23]. These areas are active during the4025 Basel

Switzerland perception of different kinds of horizontal and vertical
auditory motion, such as oscillating motion between the4 Department of Psychology

The College of Wooster ears, motion from the midline toward one side of the
head, or motion around the head [8–16]. Furthermore,Wooster, Ohio 44691

5 Section of Medical Physics we predicted, based on the perceptual priority for rising
intensity [5, 6] and its potential biological salience, thatDepartment of Diagnostic Radiology

University of Freiburg rising, but not falling, sound intensity would activate a
cortical network that is concerned with space percep-79106 Freiburg

Germany tion and the allocation of sensory attentional resources
[17–23].6 Department of Neurological Sciences

Division of Neuroradiology To identify brain areas that were specifically active
during the presentation of rising and falling intensity,University of Naples Federico II

80127 Naples we calculated the general linear contrast [24] “changing
versus constant” intensity. This yielded activation in theItaly
right temporal plane and the right superior temporal
sulcus (Figure 1A), where the blood oxygen level-depen-
dent (BOLD) signal time courses were greater for risingSummary
and falling compared to constant intensity (Figure 1B).
Right temporal plane [8–10] and superior temporal sul-Acoustic intensity change, along with interaural, spec-
cus [12] activation is consistent with previous findingstral, and reverberation information, is an important cue
obtained with horizontal and vertical auditory apparentfor the perception of auditory motion [1–4]. Approaching
motion. However, this contrast did not yield specificsound sources produce increases in intensity, and re-
activity for changing intensity in parietal areas moreceding sound sources produce corresponding de-
superior to the temporoparietal junction [9, 14]. This maycreases. Human listeners typically overestimate in-
be related to the weaker percept of motion associatedcreasing compared to equivalent decreasing sound
with falling sound intensity, as shown below.intensity [5, 6] and underestimate the time to contact

To examine whether the perceptual priority for risingof approaching sound sources [2, 7]. These character-
compared to falling intensity is reflected in a specificistics could provide a selective advantage by increas-
neural network, we compared the responses to risinging the margin of safety for response to looming ob-
and falling intensity. We found greater BOLD responsesjects. Here, we used dynamic intensity and functional
to rising than falling intensity (c.f. Figure 2D) bilaterallymagnetic resonance imaging to examine the neural
in the superior temporal sulci and the middle temporalunderpinnings of the perceptual priority for rising in-
gyri. In the right hemisphere, activity extended into thetensity. We found that, consistent with activation by
temporoparietal junction encompassing the inferior por-horizontal and vertical auditory apparent motion para-
tion of the angular gyrus, into the right central and pre-digms [8–10], rising and falling intensity activated the
central sulci, and into the right precentral gyrus. In theright temporal plane more than constant intensity. Ris-
left hemisphere, cortical activity was found in the frontaling compared to falling intensity activated a distrib-
operculum and, to a smaller extent than on the rightuted neural network subserving space recognition, au-
side, in the precentral sulcus (Figure 2A). Additional ac-ditory motion perception, and attention [8–23] and
tivity was found in a discrete area of the left superiorcomprising the superior temporal sulci and the middle
posterior cerebellar cortex (Figure 2B) and in the midline

temporal gyri, the right temporoparietal junction, the
of the midbrain (Figure 2C; this midbrain region is com-

right motor and premotor cortices, the left cerebellar
patible with the ascending reticular formation [19]).

cortex, and a circumscribed region in the midbrain.
These areas are involved in specific aspects of atten-

This anisotropic processing of acoustic intensity
tional operations and in the perception of auditory space

change may reflect the salience of rising intensity pro- [17–23, 25, 26]. A similar pattern of right-sided parieto-
duced by looming sources in natural environments. frontal brain activation has been demonstrated during

the perception of horizontal and vertical auditory appar-
ent motion [8–16]. To examine the specificity of this7 Correspondence: erich.seifritz@unibas.ch

8 These authors contributed equally to this work. response pattern, we calculated the inverse contrast
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Figure 1. Cortical Activation in Response to Changing Compared with Constant Intensity Tones

(A) The general linear contrast “rising and falling versus constant” intensity tones yielded activation in the right temporal plane and the right
superior temporal sulcus.
(B) Condition specific-averaged (and standard errors; linear interpolation to one sample/s) blood oxygen level-dependent (BOLD) signal
responses in the right temporal plane (TP) and the superior temporal sulcus (STS). The coordinates are in Talairach space.

“falling versus rising” intensity and found a circum- associated with the percept of approaching motion and
96% of the falling intensity trials were associated withscribed area of activation in the second and third left

frontal gyri, but no activity in the temporal and parietal the percept of receding motion. Although the motion
percept associated with intensity modulation was notlobes.

In three psychoacoustic experiments, we addressed as compelling as more realistic sounds produced by
convolving the acoustic signal at the earphones with athe possibility that the brain response pattern to our

stimuli would be associated with the percept of source generalized head-related transfer function or by using
an array of speakers to generate a free-field movingmotion. We confirmed that rising intensity of pulsed

tones is perceived to change in loudness more than sound [9, 10, 16], and although its direction was only
identifiable in an egocentric frame of reference [27], ourfalling intensity. Furthermore, we found that changing

compared to constant intensity tended to be associated findings are consistent with evidence that auditory mo-
tion can be perceived with stimuli even more impover-with the percept of a moving source. Motion was re-

ported in 78% of the rising, in 71% of the falling, and ished than those used here [28].
Our data converge with studies on the human visualin 11% of the constant intensity trials (�2

2 � 213.4, p �
0.001, rising versus falling: �2

1 � 2.55, p � 0.10). The system in which a pattern of anisotropic neural pro-
cessing has previously been demonstrated. Inward-percentage of trials in which apparent motion was re-

ported did not differ significantly between rising and moving radial dots, perceived as approaching, produced
greater activation in the parietal cortex than outward-mov-falling intensity, but its magnitude was significantly

greater in the rising intensity trials (Table 1). Finally, ing radial dots [29]. In animals, so-called “looming-selec-
tive” neurons process specific optical information towe found that 96% of the rising intensity trials were
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Figure 2. Cortical Activation by Rising Compared with Falling Intensity Tones

(A–C) (A) The general linear contrast “rising versus falling” intensity tones yielded a neural network comprising bilaterally the superior temporal
sulci and the middle temporal gyri, the right temporoparietal junction encompassing the inferior portion of the angular gyrus, the right motor
and lateral premotor cortices mainly on the right hemisphere, the left frontal operculum, and (B) discrete areas in the left superior posterior
cerebellar cortex and (C) in the midbrain (possibly representing the reticular formation).
(D) Condition specific-averaged (and standard errors; linear interpolation to one sample/s) blood oxygen level-dependent (BOLD) signal
responses in all areas shown in (A)–(C).
CS, central sulcus; PCS, precentral sulcus; LS, lateral sulcus; STS, superior temporal sulcus.

compute source or self approach [30, 31]. Whereas anal- intensity converges with associated perceptual and be-
havioral anisotropies [5, 6], phenomena that may serveogous information about auditory looming has yet to be

completely explored, recent electrophysiological work to increase the margin of safety for anticipating ap-
proaching sources. Clearly, additional views regardinghas demonstrated neural specificity for rising and falling

sound intensity in the primary auditory cortex of mon- the significance of rising intensity are to be considered
(e.g., aggressive communication, warning signs); how-keys, independent of sound level or frequency, and that

the majority of these neurons prefer rising rather than ever, such alternative interpretations and the collision
detection or avoidance hypothesis are not mutually ex-falling intensities [32]. Behavioral work in monkeys has

shown an analogous perceptual bias [33]. clusive. Furthermore, our current hypothesis is specifi-
cally supported by the fact that humans typically under-The anisotropic neural processing of rising and falling

Table 1. Perceptual Bias for Rising Sound Intensity and Related Magnitude of Apparent Auditory Motion

Sound Intensity

Perception Rising (70–85 dB) Falling (85–70 dB) Constant (85 dB)

Loudness Changea 19.3 (8.3) 16.6 (8.4) 2.8 (5.0)
Perceived Motionb 43.1 (18.0) 35.8 (19.9) 12.1 (24.4)

aRising versus falling versus constant: F2,48 � 81.1, p � 0.001; rising versus falling: F1,24 � 6.81, p � 0.01.
bRising versus falling versus constant: F2,18 � 17.8, p � 0.001; rising versus falling, F1,19 � 6.68, p � 0.02.
The data in the table are given as means and standard deviations, which are shown in parentheses.
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tions were convolved with a �-kernel to model the hemodynamicestimate the time to contact of approaching sound
response behavior. We identified the cortical areas responding tosources [2, 7] and produce, similar to those induced
auditory stimulation by applying general linear model analyses [24]by looming optical stimuli [34, 35], physiological and
to z-transformed time series in each image voxel and used the

behavioral signs of preparation for contact in response rising, falling, and constant intensity tone conditions as explanatory
to rising sound intensity [36]. The prioritization of rising variables. For group analyses, the entire imaging time series (5568

T2*-volumes) were used. Stimulus-specific effects were calculatedsound intensity is associated with a distributed brain
by using the general linear model contrast. These contrasts werenetwork that modulates attentional and space recogni-
voxel-wise Bonferroni corrected (p � 0.05; t5549 � 4.74) and weretion processes and, as such, is likely to provide an adap-
based on fixed effects analyses. As such, the reported inferencestive advantage.
pertain only to the subjects studied here [40]. Statistical maps were
superimposed on anatomical sections and inflated cortical surfaces

Experimental Procedures of the standardized Montreal Neurological Institute T1-weighted
brain template.

Subjects and Stimuli
We studied healthy volunteers in the imaging (n � 6 females and Psychoacoustic Evaluation
10 males; age mean � SE, 32.8 � 4.7 years) and psychoacoustic In experiment 1, stimuli of 2-s duration were presented, and the
studies (n � 30 females and 20 males; age mean � SE, 28.2 � 13.2 subjects were asked to rate the perceived loudness change on a
years). Subjects who participated in the imaging studies were not 100-mm visual analog scale anchored with “no” or “large” change.
enrolled in psychoacoustic evaluations. Pure tones with 1 kHz carrier In experiment 2, stimuli were presented in 30-s arrays of repeated
frequency were amplitude modulated with a square wave envelope 2-s periods of rising, falling, and constant intensity tones, and sub-
of 5 Hz and a duty cycle of 50%. The pulses were smoothed with jects were asked to make both a categorical decision as to whether
exponential onset and offset ramps of 10-ms duration. Pulsed rather or not they perceived apparent sound motion and to rate the strength
than continuous tones were used to improve the hemodynamic of motion on a visual analog scale. The forced-choice procedure
signal contrast [37]. Two sound pressure level changes emerging included the alternatives “loudness change of a tone that is not
over a period of 2 s (rising, 70–85 dB; falling, 85–70 dB) and constant moving,” “movement of a tone that is not changing in loudness,” “no
intensity tones (85 dB) were compared. The slopes of the rising and movement and no loudness change,” and “movement and loudness
falling sound amplitudes were exponential, and the stimuli were change”; the visual analog scale was anchored with “no” and
diotically presented through headphones. In order to map out the “strong” sound movement. In experiment 3, 30-s arrays of rising,
time course of activation across the 30-s duration of the stimulus falling, and constant intensity tones were presented, and subjects
epoch (see below), image volumes were acquired with a brief inter- were asked to indicate by hand the trajectory of perceived sound
volume interval. Image acquisition, the gradient switches of which motion relative to their head. Inferential statistics were based on
can produce considerable banking background noise depending on repeated measures analysis of variance and �2 tests (2-tailed p �
the scanner and the sequence [38], reached a sound pressure level 0.05).
that peaked at 100 dB (Brüel & Kjaer 2238 Mediator Sound Level
Meter). However, the noise reduction by the headphones (Com- Acknowledgments
mander XG) of approximately 30 dB and the spectral composition
of the scanner noise enabled a clear perception of all experimental We thank F. Esposito for statistical advice, M.I. Posner, R. Goebel,
stimuli. J.C. Gillin, and A. Lüthi for helpful comments on an earlier version

of this manuscript, and the Department of Medical Radiology, Uni-
versity of Basel, for access to the imaging facilities. This work wasImaging Studies
supported by grants from the Swiss (63-58040.99; 3100-056477.99)For functional imaging, the 2-s sweeps were assembled in 30-s
and the American (9905266) National Science Foundations.arrays of repeated rising, falling, and constant intensity tones and

were implemented in a block design consisting of five randomized
Received: August 9, 2002repetitions alternating with 30-s resting periods. Subjects were in-
Revised: September 17, 2002structed to concentrate on the changes in the auditory signals and
Accepted: October 7, 2002to fixate a visual crosspiece to control for eye movements. They
Published: December 23, 2002were not asked to carry out any output tasks or to make judgments

about intensity, auditory motion, or other sound parameters. Elec-
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